
BioData Mining
Madrigal and Krajewski BioDataMining  (2015) 8:20 
DOI 10.1186/s13040-015-0051-7

METHODOLOGY Open Access

Uncovering correlated variability
in epigenomic datasets using
the Karhunen-Loeve transform
Pedro Madrigal1,2,3* and Paweł Krajewski1

*Correspondence:
pm12@sanger.ac.uk
1Department of Biometry and
Bioinformatics, Institute of Plant
Genetics of the Polish Academy of
Sciences, Strzeszyńska 34, 60-479
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Abstract

Background: Larger variation exists in epigenomes than in genomes, as a single
genome shapes the identity of multiple cell types. With the advent of next-generation
sequencing, one of the key problems in computational epigenomics is the poor
understanding of correlations and quantitative differences between large scale data
sets.

Results: Here we bring to genomics a scenario of functional principal component
analysis, a finite Karhunen-Loève transform, and explicitly decompose the variation in
the coverage profiles of 27 chromatin mark ChIP-seq datasets at transcription start sites
for H1, one of the most used human embryonic stem cell lines. Using this approach we
identify positive correlations between H3K4me3 and H3K36me3, as well as between
H3K9ac and H3K36me3, so far undetected by the most commonly used Pearson
correlation between read enrichment coverages. We uncover highly negative
correlations between H2A.Z, H3K4me3, and several histone acetylation marks, but
these occur only between principal components of first and second order. We also
demonstrate that levels of gene expression correlate significantly with scores of
components of order higher than one, demonstrating that transcriptional regulation by
histone marks escapes simple one-to-one relationships. This correlations were higher in
significance and magnitude in protein coding genes than in non-coding RNAs.

Conclusions: In summary, we present a methodology to explore and uncover novel
patterns of epigenomic variability and covariability in genomic data sets by using a
functional eigenvalue decomposition of genomic data. R code is available at: http://
github.com/pmb59/KLTepigenome.

Keywords: Histone modifications, ChIP-seq, Functional data analysis, Stem cells, H1,
Roadmap Epigenomics Consortium, H3K4me3, H3K36me3, H3K9ac, H2A.Z

Background
Mechanisms orchestrating fundamental biological processes, such as cellular division and
differentiation, are greatly affected by epigenetic regulation of gene expression [1]. By def-
inition, epigenetics is explained by DNA methylation status and modifications of histone
proteins within the nucleosomes, allowing an inherited phenotype not linked to changes
of DNA sequence. The epigenetic landscape is constituted by a wide and complex array
of combinations of histone modifications, chromatin regulators, and non-coding RNAs
acting in a coordinated way, resulting in temporally consistent, cell-, and tissue-specific
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gene expression [2]. Understanding these dynamic processes has become much easier
with recent advances in high-throughput sequencing [3]. Despite inherent biases [4], the
pertinence of chromatin immunoprecipitation followed by high-throughput sequencing
(ChIP-seq) [5, 6], DNase-seq [7], FAIRE-seq [8], ChIP-exo/ChIP-nexus [9, 10], andATAC-
seq [11], among others, to unravelling the location of transcription factor (TF) binding
events, nucleosomes, histone modifications and regions of accessible chromatin is widely
recognized [12–14].
One of the key problems in computational epigenomics is the poor understanding

of associations between epigenetic signals. Though individual correlations of read-
enrichment or co-localization of chromatin marks have been documented in various
contexts, it is frequently unknown whether a particular epigenetic signal is governed
by similar patterns on other levels of variability beyond the primary one [15]. More
than 100 distinct histone post-translational modifications have been identified thus far,
and likely many more have not been uncovered yet [16]. As the biological functions
of most of these histone modifications and histone variants are largely unknown [17],
and context-dependent, in practice researchers limit their inquiries to a reduced sub-
set of them. For instance, a set of six key histone modifications (H3K4me1, H3K4me3,
H3K9ac, H3K9me3, H3K27me3, H3K36me3) was initially defined for human epigenome
analysis by the Roadmap Epigenomics Consortium to be most informative, and hav-
ing relatively well-known function and antibodies of reasonable quality [3]. Finally only
five of them constituted the core set, with H3K9ac (and H3K27ac) included only in
selected epigenomes [2]. Many other epigenetic marks, along with their aberrant levels
that potentially trigger or anticipate disease states, are expected to be identified in the
foreseeable future [18], with the International Human Epigenome Consortium aiming to
go far beyond the Roadmap Epigenomics Consortium, up to more than 1000 human ref-
erence epigenomes [3]. Novel analytical methods will facilitate the transition from the
analysis of few to multiple epigenetic marks.
Variability is normally observed in next generation sequencing (NGS) data as a result of

technical biases in library preparation [19], batch effects [20], or sequencing errors [21].
Undesirable sources of variation can be partly controlled at the experimental design step
by assigning an appropriate number of biological/technical replicates, and randomizing
samples across library preparation batches and lanes. The variation that is of inter-
est is observed as a consequence of experimental treatments, genotypes, cell types, cell
cycle, or between single cells [22]. Remarkably: (i) a large diversity and variation exist in
epigenomes both across cell types and individuals [23]; for example up to 95-fold varia-
tion between reference epigenomes has been observed in H3K4me3 signal close to TSSs
in humans [24]; (ii) chromatin mark features such as length or read-enrichment shape
have proven to be relevant for gene expression regulation [25, 26]; (iii) chromatin marks
can capture differences that are not reflected in either methylation or DNA accessibil-
ity [2]; and (iv) these marks may have additional practical applications, as shown recently
by the histone variant H2A.X, which variability can be used as an indicator of quality
in mouse induced pluripotent stem cells [27]. Therefore, statistical measures of varia-
tion and genome-scale integrative analyses of multidimensional and multimodal data are
necessary [28, 29]. To this end, chromatin states and novel functional elements of the
histone code [30] have been inferred and annotated, respectively, from histone modifi-
cations acting in a combinatorial fashion by using multivariate hidden Markov models
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[2, 31, 32], dynamic Bayesian networks [33, 34], or unsupervised machine learning [35].
Missing marks imputed from existing data have been used to expand the number of
chromatin state annotations [24]. However, complementary to these genome segmenta-
tion approaches that divide the genome according to histone combinations, quantitative
rather than qualitative (segmentation-based) analyses are necessary, as demonstrated,
e.g., to reveal patterns produced by TF-DNA binding events [36, 37], or to infer novel
interactions in histone networking [38, 39]. Thus, both large-scale datasets and novel
computational approaches are fundamental to decipher the histone code that controls the
functionality of chromatin by modulating nucleosomal structure [17].
Herein we describe a dimensionality reduction approach based on functional princi-

pal component analysis (FPCA), a finite realization of the Karhunen-Loève transform, to
quantify the covariability existing between ChIP-seq datasets with respect to defined loci
or regions of interest. This allows to investigate the dominant modes of variation in the
data using the eigenfunctions of the covariance function. A region-of-interest based anal-
ysis increases the interpretability and statistical power when searching for differences in
epigenomic data [40, 41]. Multivariate PCA has been used to identify distinct chromatin
states [42, 43], but to the best of our knowledge there has been no attempt to decompose
chromatin marks into principal components (linear combinations of the original vari-
ables) to study their correlation. FPCA has been proven to adequately detect information
from shapes (of the curves) that cannot be identified by traditional multivariate statis-
tics [44], and computationally it allows representing data in large genomic regions by a
reduced set of coefficients. We demonstrate the advantages of FPCA over the computa-
tion of ordinary (Pearson) correlation coefficients of genomic enrichment profiles. These
are now commonly used to identify correlated genomic features (e.g., within the proxi-
mal promoter regions in ChIP-seq data sets [45]). However, by definition they are able
to identify correlated signals only if they occur in the same genomic intervals. We also
demonstrate the applicability of FPCA for studying quantitative relationships between
principal components of histone modifications and gene expression levels, which is oth-
erwise limited due to the unidimensional analysis of read-enrichment commonly used for
ChIP-seq data. Overall, our method allows a more in-depth analysis of the correlations
between epigenetic changes than conventional methods.
As a case study we use ChIP-seq data from the Roadmap Epigenomics Consortium

[2, 46]. Our results reveal the decomposition of NGS coverage profiles in the functional
space of their principal components using transcription start sites (TSSs) as reference
landmarks. We found previously unknown differences between H3K4me3 and H3K9ac
uncovered by the second principal component, and linked to opposed changes in gene
expression. Similarly, we detected significant correlations between H3K36me3 and other
chomatin marks such as H3K4me3 and H3K9ac in the first component, which cannot be
revealed using correlation coefficients based on the ordinary coverage correlation. Highly
negative correlated signatures were found between H2A.Z, H3K4me3, and several his-
tone acetylation marks, but only between components of order 1 and 2. We also find a
significant correlation between FPC scores and gene expression, not only at first but also
at higher order components. The results strongly suggest that higher order principal com-
ponents are chromatin mark features that have a direct impact on gene expression, and
that correlate with the components of other chromatin marks, thus shedding light into
the complexity of the cross-talk between these histone-code key players.
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Methodology
Functional data analysis

Functional data analysis encompasses many methodologies for statistical analysis of data
coming from measurements concerning continuous phenomena, e.g., curves or surfaces
[47]. The continuum is usually time, but it might be also spatial location or another coor-
dinate system. Belowwe briefly review the foundations of functional principal component
analysis.

Karhunen-Loève transform in an infinite-dimensional space

By the Karhunen-Loève theorem [48], a function x(t), centered and square-integrable on
an interval [ a, b]⊂ �, can be represented by the linear combination

x(t) =
∞∑
k=1

ηkξk(t), (1)

where ξ1(t), ξ2(t), . . . are orthonormal deterministic eigenfunctions, and the coefficients
η1, η2, . . . are uncorrelated random variables defined as

ηk =
∫ b

a
x(t)ξk(t)dt, k = 1, 2, . . . . (2)

The covariance function of x(t) is of the form

v(s, t) = cov (x(s), x(t)) =
∞∑
k=1

λkξk(s)ξk(t), s, t ∈[ a, b] , (3)

where λk = var(ηk) are the eigenvalues corresponding to the k-th eigenfunction. The first
eigenfunction ξ1(t) represents the dominant mode of variation of x(t), as it maximizes
the variance of η:

var(η) = var
[∫ b

a
x(t)ξ(t)dt

]
=

∫ b

a

∫ b

a
ξ(s)v(s, t)ξ(t)dsdt. (4)

Thus, in a functional orthogonal space, the function x(t) in [ a, b] is represented by the
vector of coefficients η1, η2, . . .. By definition of v(s, t), the eigenfunctions satisfy the
equation∫ b

a
v(s, t)ξk(s)ds = λkξk(t), k = 1, 2, . . . , (5)

with λ1 ≥ λ2 ≥ . . .. By solving equation (5) the functional components ξ1(t), ξ2(t), . . .
can be found.

Functional principal component analysis for genomic data

Let L be the number of genomic regions in which an NGS read coverage profile (obtained,
e.g., from a ChIP-seq, RNA-seq, or methylation experiment) is observed. If the regions
are chosen in such a way that they have some characteristic in common, e.g., they all
are TSSs, exons, CpG islands, etc., a natural question arises concerning the variability of
the observations between the regions. We propose to analyse the data profiles by means
of functional principal component analysis, a finite realization of the Karhunen-Loève
theorem.
We denote the observed profile i (i = 1, . . . , L) by xi(t). All data are then represented by

the vector of functions
[
x1(t), x2(t), . . . , xL(t)

]T . Functional principal component analysis
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(FPCA) is accomplished numerically by the application of an expansion of the observed
functions using a set of K basis functions φ1(t),φ2(t), . . . ,φK (t) [47]. We used a lin-
ear combination of B-spline functions defined by positioning equidistant knots along
the peak regions. B-splines are the common approximation system for non-cyclical non-
periodic data [49]. Thus, each profile xi(t) is first approximated by a linear combination

xi(t) =
K∑

k=1
cikφk(t), (6)

where the coefficients cik , i = 1, . . . , L; k = 1, . . . ,K are estimated by least squares, but
penalized residual sum of squares criterion can be used as well (for further details see
[47]). However, when the sample curves are smooth and observed with error, least-square
approximation in terms of B-spline basis functions is an appropriate solution for the prob-
lem of reconstructing their functional form [50]. Then, the eigenfunctions are estimated
by solving (5) (which is numerically possible if we assume that also the eigenfunctions
can be approximated by an expansion with respect to B-spline functions), and the i-th
observed profile (in our case - genomic region) is given a representation in the functional
space by a set coefficients ηi1, ηi2, . . . defined in (2), known as FPCA scores. By definition,
first eigenfunction corresponds to maximum variability among the observed profiles. The
vector of scores η11, η21, . . . , ηL1 can be used to represent variation among regions with
respect to coverage profile in one dimension, analogously to the first principal component
in the multivariate analysis. The number of estimated eigenfunctions, J , can be at most
equal to K [47]. Rules similar to the ordinary multivariate PCA can be applied to select
K . A basic explanation of the steps involved in functional principal component analysis is
given in Fig. 1.
In the rest of this paper, we will use FPCA not just to analyze variation within one data

set (genomic track), but also to compare and link variation in pairs of data sets using
common intervals [ a, b]. For this we need to make the following observations:
- Large values of an eigenfunction define the regions marked by this eigenfunction as

regions of large variation among the observed functions. For two data sets A and B, the
correlation coefficient between two estimated eigenfunctions ξA in A and ξB in B, com-
puted from their values in the interval [ a, b], measures the co-occurence of variability in
common regions between these two eigenfunctions.
- The FPCA scores related to an eigenfunction, computed for all observed functions,

approximate the ordering of those functions in the genomic region(s) indicated by this
eigenfunction as region(s) of large variation. The correlation coefficient between two sets
of scores related to ξA and ξB, measures the co-variation of the two sets of observed
functions in the regions indicated as having large variation by the two eigenfunctions.
Thus, for each pair of functional principal components estimated in two data sets, we

can compute two coefficients, one measuring the co-occurence of the regions of vari-
ation, and the other measuring the correlation of scores corresponding to this pair of
components.

ChIP-seq data normalization and statistical tests

Normalization of ChIP-seq data with respect to read number and read length was done
using the module ‘normalize.bigwig.py’ in RSeQC [51]. Pearson correlation coefficients
and tests for correlation between paired samples were computed using the statistical



Madrigal and Krajewski BioDataMining  (2015) 8:20 Page 6 of 15

Fig. 1 Basic procedure of the functional data analysis. (a) Ten observations of a function, (b) Estimated
eigenfunctions; (c) Plot of data in the system of first, second, and third functional principal component scores.
Because the eigenfunctions are orthonormal, each dominates others in some subintervals; these subintervals
define the occurence of a signal corresponding to each eigenfunction. In (a) selected profiles are marked as
green, red, and blue; their order in the subinterval around 0 dominated by first eigenfunction is the same as
the order along the first FPCA axis in (c). The same holds approximately (due to loss of information in the
two-dimensional graphs) for other functional principal component scores corresponding to eigenfunctions
drawn in (b)

software R. P-values were corrected for multiple testing using the Bonferroni method
where appropriate. Pearson correlation of read coverage was calculated by the UCSC
‘bigWigCorrelate’ function with the option ‘-restrict’ to limit the computation to TSS
regions.We filtered out regions overlapping the 411 consensus artefact blacklisted regions
[1], as not removing those can influence downstream results and correlation measures
[52, 53]. GENCODE v10 annotation was used - ribosomal genes were excluded.

Results and discussion
We downloaded ChIP-seq data sets corresponding to 27 different chromatin marks in H1
human embryonic stem cell (hESC) line (Additional file 1). We combined raw coverage
profiles for a chromatin mark, normalized signal values across the genome (factor 100 ×
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106), and applied functional principal component analysis in regions ± 5 kb around the
TSSs to study the variation of deposition of one histone mark across the various genes in
H1 cells, and to understand the correlation between different histone marks. Chromatin
configuration in different regions of the genome, such as promoters, enhancers, and those
of transcribed DNA, is defined by distinct histone modification patterns [32]. We chose
TSSs as they are well annotated genomic features. The analysis was performed separately
for protein-coding (pc) and non-coding (nc) RNAs (19762 and 31331 genes, respectively).

H3K4mono-, di- and tri-methylation correlated variation

We illustrate the method with the analysis of H3K4me1/me2/me3 data for pc and nc
genes (Fig. 2). H3K4me2 and H3K4me3 are predominantly confined to narrow peaks,
and many of these lie at the TSSs of annotated genes. On the contrary, H3K4me1 pre-
dominantly marks enhancer regions. Pearson correlation coefficients shown in Table 1
computed using full read-enrichment profiles in TSS regions report that the largest dis-
crepancies exists between me1 and me3, the smallest between me2 and me3, and that
such a comparison of profiles gives very similar results for pc and nc genes. To dissect the
relationships between variations in different methylation marks we used FPCA (K = 50

Fig. 2 Results of functional principal component analysis for H3K4me1/me2/me3 data in H1 hESCs for TSSs
of protein-coding and non-coding RNAs. (a) Heat maps of normalized coverage for H3K4me1, H3K4me2, and
H3K4me3 ChIP-seq relative to TSSs of protein-coding genes. (b) First, second, and third eigenfunctions
computed for different marks and for different groups of genes (black - FPC1, red - FPC2, green - FPC3).
(c) Cumulative proportion of variance explained by 50 eigenfunctions for protein-coding and non-coding
RNAs. X-axis is represented in log-scale. (d) Pairwise correlations between FPC scores computed for different
histone marks (Y-axis) versus corresponding correlations between underlying eigenfunctions (X-axis). Results
shown for 5 functional principal components. Symbol size proportional to the ranked product of variance
explained by the components, red circle used for the correlation between components no. 1
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Table 1 Correlation characteristics of H3K4me1/me2/me3 data sets for protein-coding and
non-coding genes based on read-enrichment profiles and on their functional principal components
1-5

Group of genes Type of correlation me1 vs. me2 me1 vs. me3 me2 vs. me3

Protein coding Ordinary correlation 0.50 0.11 0.63

Maximum correlation of ξ
0.55 (1,2) 0.72 (1,3) 0.86 (1,1)

(component numbers),
0.27 0.14 0.75

corresponding correlation of η

Maximum correlation of η
0.64 (1,1) 0.35 (3,3) 0.75 (1,1)

(component numbers),
0.22 -0.37 0.86

corresponding correlation of ξ

Significant pairwise correlations 590 203 646

Non-coding Ordinary correlation 0.48 0.15 0.65

Maximum correlation of ξ
0.86 (1,1) 0.76 (1,1) 0.96 (1,1)

(component numbers),
0.64 0.36 0.82

corresponding correlation of η

Maximum correlation of η
0.64 (1,1) 0.36 (1,1) 0.82 (1,1)

(component numbers),
0.86 0.76 0.96

corresponding correlation of ξ

Significant pairwise correlations 529 197 615

components), observing different configuration of eigenfunctions for pc and nc genes,
especially for H3K4me1 close to TSSs (Fig. 2b). Cumulative profiles of variance explained
by consecutive components show that variation in H3K4 tri-methylationmarks, known to
be found in TSSs of active genes, was more extensively captured than variation in mono-
and di-methylation, suggesting that the deposition of H3K4me3 on TSSs follows less intri-
cated read enrichment patterns (Fig. 2c). Within gene categories, the largest proportions
of variance were captured for pc-associated H3K4me3, revealing that more differences
exits in this chromatin mark for nc genes (profiles for nc not shown), but the same does
not apply for H3K4me1/me2. This can be interpreted as the regulation of H3K4me3 on
nc genes following a more complex regulation. We note that variation of H3K4 marks in
nc genes took place in intervals wider than in pc genes, as seen from characteristics of
variation defined by the eigenfunctions.
For further comparison of different H3K4 methylation marks we concentrated on first

five principal components, and we computed pairwise correlations between eigenfunc-
tions, and between principal component scores obtained for different marks (Fig. 2d).
Highest correlation between eigenfunctions, that show the co-localization of variation in
the same genomic intervals, was found between first components (ξ1, ξ1) for nc-related
marks. A different situation was observed in pc genes, where the signal of largest variation
in me1 co-occurs with signals of secondary (ξ2) or tertiary (ξ3) variation in, correspond-
ingly, me2 and me3 marks (Table 1). In consequence, the correlations between the scores
computed for the co-localizing components are approximately proportional to ordinary
correlations measured on full profiles for nc genes, but are not for pc genes (rη1,η2 =
0.27 < 0.50, H3K4me1 vs. H3K4me2). Also, from Table 1 we can see that, for pc genes,
between-scores correlation coefficients larger than those computed on the whole pro-
files can be found in components which eigenfunctions do not correlate (rξ3,ξ3 = −0.37,
H3K4me1 vs. H3K4me3). Therefore, we interpret that the comparison of different H3K4
methylation marks using the ordinary correlation is informative for nc genes for which
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the largest correlations exist in colocalizing intervals characterized by the largest signal
variation (first eigenfunctions), whereas it is not fully informative for pc genes, for which
the largest correlations concern signals in intervals that are not the same for me1 on one
hand, and for me2 and me3 on the other.
We then calculated pairwise correlations between principal component scores for all

the components, detecting significant correlations (Bonferroni corrected P ≤ 10−6) at
higher-order components in the TSSs, that could not have been observed applying the
ordinary correlation merely based on the read-enrichment in whole regions. These were
higher in number for pc genes (Table 1), suggesting that H3K4 methylation cross-talk is
more important in transcriptional regulation of pc genes. The distributions of the corre-
lation coefficients between pc and nc genes were different for the H3K4me1-H3K4me2
comparison (Kolmogorov-Smirnov (K-S) test, P = 0.00056), H3K4me2-H3K4me3 (KS
test, P = 0.026), and especially for H3K4me1-H3K4me3 (KS test, P = 4.07 × 10−6).
Overall, these analyses suggest that eigenfunction decomposition can be used to com-
pare histone modification data at higher order. This example also shows how epigenomic
variation between genes of distinct functional categories can be investigated using the
proposed methodology.

Comparison of ordinary coverage correlation versus FPCA-based correlations

We then computed pairwise Pearson correlations between the 27 data sets in TSSs asso-
ciated to pc genes in order to compare them with the (absolute) maximum correlation
values resulting from our FPCA-based approach. We found that highly correlated scores
of chromatin marks were defined usually by the first components (ξ1, ξ1), which were also
highly correlated (co-localized). On the contrary, low correlations corresponded often to
interactions between components of order higher than 3 (Fig. 3; Additional file 1).
Despite the proportionality between the two measures, we found interesting cases of

correlations detected only using our methodology, which corresponded in most cases to
negative correlation between eigenfunctions. For instance, ordinary coverage correlation
of H3K36me3 and H3K4me3 was r = −0.03, in agreement with a recent publication
that found comparable results across 127 epigenomes [2]. However, we found the max-
imum correlation between the scores of their first components equal to rη1,η1 = 0.48
(P ≤ 2.2 × 10−16, correlation test; Fig. 3). As both marks co-occur in active genes,
H3K4me3 in promoter regions close to the TSS, and H3K36me3 in transcribed regions,
it has been intriguing why correlation between these two histone modifications has been
reported as approximately 0 so far. A similar scenario takes place between H3K36me3
and the active promoter mark H3K9ac (rη1,η1 = 0.49; Fig. 3), also not uncovered by
the analysis of 127 epigenomes [2]. In both cases, the correlation between the eigen-
functions is negative (rξ1,ξ1 = −0.61), which indicates that regions of variability for
the most important components do not co-localize. A possible interpretation could be
that epigenetic marks on one nucleosome might affect (negatively) marks on neighbor-
ing nucleosomes. Opposed to this, as principal eigenfunctions have the same profile and
both marks co-localize, high correlation between H3K9ac and H3K4me3 was detected
by others [2], which is confirmed also in our analysis (rη1,η1 = 0.87, correlation of
eigenfunctions rξ1,ξ1 = 0.99). Overall, our method outperforms standard correlation
measurements when the histone marks that are similarly regulated do not directly
overlap.
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Fig. 3 Comparison of ordinary coverage correlation versus FPCA-based correlations. Scatterplot of Pearson
coverage-based correlation coefficients and maximum FPC-based Pearson correlation coefficients between
the scores of H1 hESC line at TSSs. Color scale indicates the correlation of the corresponding underlying
eigenfunctions. Shape code denotes the order of the pairs of eigenfunctions. Chromatin modifications
discussed in the main text have been labeled. No change between the two measures is represented by the
black line. All data can be found in the Additional file 1

Unlike the traditional measure of correlation, we found many negative FPC-based cor-
relations which can be divided into three groups: low negative correlations, mostly in
combinations of H3K27me3 and other marks, between their first co-localized compo-
nents. For instance, we observed negative correlation between H3K27me3 and H3K27ac,
which is expected as these marks are known to be mutually exclusive, but it was not
detected by ordinary correlation; moderate negative correlation of a heterogeneous
group of marks at high order components; and most surprinsingly, highly negative
correlations between H2A.Z, H3K4me3, and several histone acetylation marks, these
occurring only between principal components of first and second order, that do not
co-localize. This suggests that differences between chromatin marks, even those highly
correlated as acetylations, can be better detected by decomposition of the signal into
principal components. Overall, this illustrates that the methodology we propose is able
to uncover previously unknown relationships between histone modification ChIP-seq
datasets.

Eigenfunction decomposition of chromatin marks versus gene expression

The modification of chromatin structure brings unique transcriptional signatures in
eukaryotes. We then hypothesized that high order components could be correlated to
gene expression. In result of FPCA analysis for all 27 chromatin marks, we observed that
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the variation in methylation of residues in histone H3 was systematically better captured
by the functional components than the variation in other modifications, while acetyla-
tion in H4 was placed in the middle, and variation in acetylation in H2A and H2B, known
to have higher rate of histone exchange (or turnover), were generally worst captured,
except for H2BK5ac (70%, 10 components). Considering first component (ξ1), propor-
tions of variation were in the range 22.2% (H3K23ac/me2)-65% (H3K27me3) for pc, and
16% (H2A.Z)-67.5% (H3K27me3) for nc (Fig. 4a). Variation in histone variant H2A.Z was
poorly recovered for nc genes.
We then computed Pearson correlation coefficients between the scores and the gene

expression values (in RPKM) obtained by RNA-seq profiling in H1 hESCs [2] (Fig. 4b).
We observed many significant correlations (P ≤ 1 × 10−6, correlation test) for up to 5
components, and also that non primary variability (information on higher components)
was more relevant for pc genes than for nc genes (Fig. 4b). Thus, either chromatin marks
are more involved in pc gene regulation, or many nc genes are not true genes but mis-
sannotated transcripts. For pc genes, we found more positive than negative correlations
between marks at the first component, and comparable numbers in the second com-
ponent, generally decreasing for consecutive components of higher order, as expected.
However, not always the maximum of correlation (in absolute terms) was located at the
first component. Levels of intronic expression in 18410 pc genes [2] correlated most pos-
itively with H3K36me3 (r = 0.1), and most negatively with H3K27me3 (r = −0.02), and
these were significant only for ξ1 (data not shown).

Fig. 4 Correlation between chromatin marks and gene expression values. (a) Cumulative proportion of
variance explained by 50 eigenfunctions for protein-coding and non-coding RNAs in 26 histone modification
and one histone variant ChIP-seq data sets. Values correspond to FPCA analysis in regions ± 5 kb around the
TSSs for H1 hESC. (b) Pearson correlation between RPKM gene expression values and functional principal
scores for each chromatin mark. X-axis is represented in log-scale
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These results strongly suggest that higher order principal components of chromatin
marks are features that, as breadth or shape of read enrichment [25, 26], have a direct
impact on gene expression.

Effects of H3K4me3 and H3K9ac correlated variability on gene expression

We then asked if novel insights can also be obtained even when both traditional and
FPC-based correlation measures are coincident. As already mentioned, we detected high
correlation of the scores between H3K4me3 and H3K9ac (rη1,η1 = 0.87; Fig. 3; Additional
file 2). This is in agreement with the view of both marks as associated with active promot-
ers and active regulatory regions, respectively. The maximum FPC-based correlation was
almost equal to the ordinary correlation (r = 0.853 restricted to TSS regions, r = 0.796
overall). Out of the 19762 regions used in the analysis, 86% and 96% of them overlap with
significant broad domains on enrichment for H3K4me3/H3K9ac ChIP-seq. Interestingly,
we found negative correlation between scores of the second components (rη2,η2 = −0.75,
P ≤ 2.2 × 10−16), component that was the only with different shape in the comparison
between ξ1, . . . , ξ5 (Additional file 2). Correlations for ξ3 was also high, but positive
(rη3,η3 = 0.71, P ≤ 2.2 × 10−16). To study the relation of these correlations with gene
expression, we selected TSSs in score quantiles Q1 and Q10, and found that differences
in gene expression of corresponding genes between Q1 and Q10 were very significant for
ξ2 (P ≤ 2.2×10−16, paired t-test), as opposed to ξ1 (P = 0.916 for Q1, P = 0.226 for Q10,
paired t-test). This illustrates how relations between eigenfunctions that define chromatin
marks are related to transcriptional expression, and how patterns that define the identity
of two chromatin marks can be unmasked.

Conclusions
We have explored variability decomposed into functional components to reveal dif-
ferences between chromatin modifications at transcription start sites. The biologi-
cal interpretation of curve information in NGS is relevant, as we and others have
shown recently for ChIP-seq peak calling [26, 54–56], RNA-seq [57], and DNA
methylation by bisulfite sequencing [58]. The methodology we have proposed and
illustrated here continues the progress in the interpretation of next generation
sequencing data. Interesting areas to explore in the future are the use of other
functional data analysis techniques, such as functional linear regression or func-
tional canonical correlation analysis, and the incorporation of smoothing penalties in
the analyses.
In summary, we have shown that curve information in NGS datasets can be well

exploited using a functional data analysis approach based on the Karhunen-Loève
transform to uncover principal components in the data. We have interpreted the
eigenfunctions in epigenomic datasets, and found significant correlations with gene
expression. We have shown how this methodology can outperform ordinary correla-
tion measurements to uncover correlations between histone marks that are similarly
regulated but which do not directly co-localize. Due to the large amounts of data being
generated in this field, we anticipate this dimensionality reduction approach could be
useful for large scale exploratory analyses of variation aiming to study genomic and
epigenomic maps, as well as their interplay with the rules that govern the histone
code.
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Availability and requirements
R scripts are available at: http://github.com/pmb59/KLTepigenome. For one dataset the
results were run on 1 CPU with <16GB RAM in ≈2h for pc genes, and ≈3h for nc genes.

Additional files

Additional file 1: Roadmap Epigenomics Consortium ChIP-seq data sets used, and results shown in Fig. 3.

Additional file 2: Figure S1. Negative correlation between H3K4me3 and H3K9ac second principal component
scores is linked to opposed effects in gene expression. (a) FPCA analysis for H3K4me3 and H3K9ac. First five
components are shown. Proportion of variance explained by each eigenfunction is indicated. (b) Scatterplot of the
scores for the two chormatin marks. Blue and green lines indicate the first quantile (Q1) for H3K9ac and H3K4me3,
respectively. (c) Boxplot of expression values (in RPKM) for protein-coding genes in Q1 and Q10 (outliers are not
drawn).
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