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Metabolomic and microbiome profiling are promising tools to identify biomarkers of food
intake and health status. The individual’s genetic makeup plays a significant role on health,
metabolism, gut microbes and diet and twin studies provide unique opportunities to untan-
gle gene–environment effects on complex phenotypes. This brief review discusses the value
of twin studies in nutrition research with a particular focus on metabolomics and the gut
microbiome. Although, the twin model is a powerful tool to segregate the genetic compo-
nent, to date, very few studies combine the twin design and metabolomics/microbiome in
nutritional sciences. Moreover, since the individual’s diet has a strong influence on the
microbiome composition and the gut microbiome is modifiable (60 % of microbiome diver-
sity is due to the environment), future studies should target the microbiome via dietary
interventions.

Metabolomics: Gut microbiome: Dietary biomarkers: Twins

‘Twins history affords means of distinguishing between the
effects of tendencies received at birth, and those that were
imposed by the circumstances of their after lives; in other
words between the effects of nature and of nurture’

Galton 1875

More than a century after Galton’s observation, twin
studies remain an invaluable tool to determine the role
of genes and environment on human development and
behaviour. Classical twin studies compare the trait con-
cordance between monozygotic (MZ) and dizoygotic
(DZ) twin pairs to estimate to what extent the observed
phenotype difference is genetically determined(1). The as-
sumption is that MZ twins share 100 % of their genes as
they originate from a single zygote and are therefore gen-
etic clones, whereas DZ twins originate from two separ-
ate eggs and thus share 50 % of their genes. If MZ twins
are more alike than DZ twins with respect to the trait,
then the trait is said to be influenced by genes, otherwise

the trait is said to be determined by lifestyle and
environment.

More formally, the twin phenotypic variance (i.e. indi-
vidual differences of a trait) can be divided into three
sources of variation: additive genetic variance (A),
shared/common environmental variance (C) and non-
shared/unique environmental variance (E)(2). Additive
genetic influences represent the sum of the effects of the
individual alleles at all loci that influence the trait. The
common environmental component estimates the contri-
bution of family environment, which is assumed to be
equal in both MZ and DZ twin pairs(3), whereas the
unique environmental component does not contribute
to twin similarity, rather it estimates the effects that
apply only to each individual including measurement
error. Heritability (h2) is defined as the proportion of
the phenotypic variation attributable to genetic factors(4),
and is given by the equation, h2 = (A)/(A +C +E). A
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number of assumptions underlie the twin study. These in-
clude: (i) MZ and DZ twin pairs share 100 % of their
common environment; (ii) twins are representative of
the general population; (iii) gene–environment interac-
tions are minimal for the trait under study; (iv) there is
random assortment(5).

Twin studies have shown that the genetic make-up of
individuals plays a significant role in a multitude of diet-
ary phenotypes, including energy, macronutrient intakes,
dietary patterns and specific food groups as extensively
reviewed(6,7). Heritability estimates of different energy
and macronutrient intakes range between 8 and 70 %,
while both ‘healthy’ and ‘unhealthy’ diet patterns are
relatively stable in adults and have heritability ranging
from 33 to 50–54 %(7). Specific foods intakes, including
garlic (46 %), fruit and vegetables (49 %), and coffee
(41 %) are also highly heritable in adults(8). A recent
study from our group identified four major food-liking
patterns (fruit and vegetables, distinctive tastes, sweet
and high carbohydrate, and meat) accounting for 26 %
of the total variance with heritability estimates ranging
from 36 to 58 % indicating genetic factors influence
food liking–disliking(9).

Besides estimating heritability of dietary assessment,
using MZ twins discordant for dietary factor/nutrition
status provides a naturally unique case-controlled experi-
ment of assessing the links between diet and human biol-
ogy. Due to their shared upbringing, including shared
fetal exposure, matched genes and sex, MZ twins allow
one to isolate the non-genetic contribution.

Diet is partially responsible for the dramatic rise in
obesity(10) and obesity-related diseases, such as type 2
diabetes(11); however, studies do not consistently support
associations between dietary intakes and disease end-
points. Dietary intakes in epidemiological settings are
generally measured via self-reported dietary assessment
methods that are subject to recall bias and measurement
error(12,13). Nutritional epidemiological studies could be
improved by the use of food intake biomarkers to better
capture exposure.

This brief review discusses the value of twin studies in
nutrition research with a particular focus on metabolo-
mics and the gut microbiome.

Metabolomics

Metabolomic profiling has the potential to identify
biomarkers of food intake(14). Metabolomics is a new
high-throughput technology that measures endogenous
metabolites in cells, tissues and other biosamples such
as blood, urine and saliva(15). These metabolites provide
a direct signature of the biochemical activities of the in-
dividual at a particular time, reflecting the metabolic
effects of nutritional intake, physical activities and envir-
onmental exposures as well as the biological pathways
associated with diet-related diseases including obesity,
CVD and type 2 diabetes(16–19). Metabolites have been
proven to be of use in nutritional research and novel
dietary biomarkers within the metabolome have been
identified(20–23). However, as the individual geneticmakeup

influences the levels of metabolites, explaining up to 81 %
of the variation in their blood levels(24–27), the twin model
can be employed to estimate the nutritional impact on
metabolites, segregating the genetic component.

To date there are relatively few studies that combine a
twin study design and metabolomics in nutritional
sciences. Studies from TwinsUK have successfully iden-
tified potential biomarkers of alcohol intake(28) including
lysophosphatidylcholines, diethyl ether lipids, diaclylpho-
sphatidycholines and sphingolipids, as well as biomarkers
of self-reported dietary patterns(22), food preference pat-
terns(9) and self-reported food intakes(29,30).

Taking advantage of the twin nature of the TwinsUK
data, we first looked for association in the larger twin
population excluding MZ twins discordant for a nutrition-
al intake. Then, for each significant metabolite–dietary
variable we run the same analysis on the discordant MZ
twin pairs to replicate results in this set.

Using a targeted metabolomics approach (Bioacrates
platform; 163 metabolites), we identified forty-two diet-
ary pattern–metabolite significant associations in 1003
female twins and successfully replicated eleven associa-
tions in a subcohort of MZ twin discordant for dietary
intake (between twenty-eight and forty discordant twins
independent from the first analysis)(22). The strongest
associations were observed for fruit and vegetables intake
with the glycerophospholipid phosphatidylcholine diaclyl
C38 : 6 and with the sphingolipid sphingomyeline C26 : 1.
Significant associations were also found with coffee and
garlic intake and for hypoenergetic dieting.

In a more recent study from our group, we looked for
association between 601 blood metabolites (456 mea-
sured with the untargeted Metabolon platform and 145
measured with Biocrates) and seventy-one reported
food intakes from FFQ in 3500 female twins to look
for novel biomarkers of nutrition intake. We identified
180 associations with thirty-nine food group after
meta-analysing the discovery and replication cohort
(MZ discordant), overall consisting of 106 different
metabolites, mainly lipids, including seventy-three novel
associations(30). In particular, we identified the amino-
acid trans-4-hydroxyproline, a component of collagen,
as a novel biomarker for red meat intake; ergothioneine
as a potential marker of mushroom intake and two meta-
bolites derived from the gut bacteria transformation of
phenolic compounds as biomarkers of fruit intake. All the
findings are compiled into the open access DietMetab data-
base (www.twinsuk.ac.uk/dietmetab-data).

Usinga similar design and replicating in two independent
European populations, we have also identified four novel
biomarkers of milk intake: trimethyl-N-aminovalerate, uri-
dine, hydroxysphingomyelin C14 : 1 and diacylphosphoti-
dylcholine C28 : 1

(29).

Microbiome

The study of the gut microbiome is an exciting area of
medicine because of its immediate potential for thera-
peutic interventions(31). The term microbiome describes
the DNA material of microbial communities within an
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animal and recent advances in technology are revealing
its complexity(32). Human subjects have about 100 tril-
lion gut microbes that outnumber their cells ten to
one(33). Human subjects and their microbiome have
co-evolved and live intimately in a symbiotic relation-
ship(34) with the microbes producing a wide range of
enzymes, chemicals, hormones and vitamins that can po-
tentially interact with the host(31). The composition of the
microbiome varies by anatomical site, with the primary
determinant of community composition being anatomic-
al location(34). Diversity measures the number of
microbes present at a particular site(35). The α diversity
refers to the number of different species at a particular
site(36), while β diversity considers how many taxa are
shared between populations, acting as a similarity
score(37). A low diversity of gut microbes (sometimes
called dysbiosis) has been implicated in many human dis-
eases including CVD, obesity, inflammatory bowel dis-
ease, colitis and type 2 diabetes(38–46). Only recently,
thanks to genetic sequencing have we been able to
study microbes properly and realise that the vast major-
ity are not harmful and many are beneficial(31). Research
has shown that the largest influence on the gut micro-
biome comes from diet(47) and hence we could potentially
alter many diseases with food and monitor the effects via
microbes. For instance, dietary fibre is fermented in the
intestine by the colonic microbiota resulting in increased
production of SCFA(48). SCFA are involved in the energy
metabolism as they regulate the balance between fatty acid
synthesis, fatty acid oxidation, and lipolysis in the body. A
reduction in the concentrations of free fatty acids in
plasma results in a decrease in body weight(48).

Studies so far on food and the microbiome have main-
ly focused on meat-based/plant-based diet and high-
lighted differences in the microbiota of plant- and
animal-based diets(47,49,50–52). In particular, they have
demonstrated that human gut responds rapidly to
major dietary changes(53). A meat-based diet, rich in ani-
mal protein, fats, artificial additives, and lacking in fibre,
has been shown to drive chronic conditions such as obes-
ity, the metabolic syndrome and atherosclerosis by en-
couraging gut dysbiosis. Dietary interventional studies,
however, have shown that the effects of meat-based
diets on the gut microbiome could be rapidly reversed
by adopting a plant-based, minimally processed
diet(54,55). Long-term dietary habits, however, tend to de-
termine the composition of the gut microbiota with stud-
ies showing that long-term dietary habits associated with
the individual microbiome signature(47). Also, changes in
diet are dependent on the individual gut microbiota com-
position suggesting that not everyone reacts the same to
the same dietary change(51).

Moreover, the way in which individuals respond to
dietary interventions may be complicated by host genet-
ics and so the twin model could be a valuable tool to
study the association of the gut microbiome with nutri-
tional phenotypes. Novel twin data shows that although
many microbes are driven by environment, a substantial
proportion of microbiota with disease associations have a
heritable component(56,57). The most heritable taxon, the
Christensenella family was shown to be associated with

leanness in human subjects and prevents weight gain
under high-fat diet in mice(56).

Using discordant twins, we have also successfully iden-
tified a striking negative association between frailty due
to ageing and gut microbiota diversity(58) as well as a
significant alteration in the gut microbiota in proton
pump inhibitors users(59). In general, therefore, a more
diverse gut microbiome signals a healthier state and
this is modified by age, diet and use of medication.

Conclusions

In conclusion, twin research is an invaluable tool to un-
tangle gene–environment effects on complex phenotypes
including metabolomics, the gut microbiome and com-
plex phenotypes such as obesity and diet related diseases.
Indeed, twins have provided valuable evidence that diet
is influenced by genetics suggesting that future dietary
counselling should target this domain.

Metabolomics and microbiomics have the potential
to identify biomarkers of food intake and health status.
Combining these omicswith twindataallows the separation
of features influenced by genetics from those influenced by
the environment. This supports the efficient longitudinal
monitoring of individuals at high genetic risk as they
progress from health to disease making this model an in-
valuable means of testing personalised medicine strategies.

Finally, because the gut microbiome is modifiable
(60 % of microbiome diversity is due to the environment)
and since an individual’s diet has a strong influence on
the microbiome composition, future studies should target
the microbiome via dietary interventions.
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