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Abstract.
The intrinsic fluence and duration distributions of gamma-ray bursts are well represented by log-normal

distributions. This allows a bivariate log-normal distribution fit to be made to the BATSE short and long bursts
separately. A statistically significant difference between the long and short groups is found. We argue that the
effect is probably real. Applying the Cramér’s theorem these results lead to some predictions for models of long
and short bursts.

INTRODUCTION

The simplest grouping of gamma-ray bursts (GRBs) is

given by their well-known bimodal duration distribu-

tion. This divides bursts into long (T90 > 2 s) and short

(T90 < 2 s) duration groups [6]. The bursts measured with

the BATSE instrument on the Compton Gamma-Ray Ob-

servatory are usually characterized by 9 observational

quantities, i.e. 2 durations, 4 fluences and 3 peak fluxes

[7]. In [1] we used the principal components analysis

(PCA) technique to show that these 9 quantities can be

reduced to only two significant independent variables, or

principal components (PCs). The observational fact, that

the dominant principal component consists mainly of the

durations and the fluences, may be of consequence for

the physical modeling of the burst mechanism.

In this paper we investigate the nature of this principal

component decomposition, and in particular, we analyze

quantitatively the relationship between the fluences and

durations implied by the first PC. We analyze the dis-

tribution of the observed fluences and durations of the

long and the short bursts, and we present arguments in-

dicating that the intrinsic durations and fluences are well

represented by log-normal distributions. The implied bi-

variate log-normal distribution represents an ellipsoid in

these two variables, whose major axis inclinations are

statistically different for the long and the short bursts.

Our GRB sample is selected from the Current BATSE

Gamma-Ray Burst Catalog according to two criteria,

namely, that they have both measured T90 durations and

fluences (for the definition of these quantities see [7],

henceforth referred to as the Catalog). The Catalog in

its final version lists 2041 bursts for which a value of T90

is given. The fluences are given in four different energy

channels, F1;F2;F3;F4, whose energy bands correspond

to [25;50]keV, [50;100]keV, [100;300]keV and > 300

keV. The “total" fluence is defined as Ftot = F1 + F2 +

F3 + F4, and we restrict our sample to include only those

GRBs which have Fi > 0 values in at least the channels

F1;F2;F3. Concerning the fourth channel, whose energy

band is > 300 keV, if we had required F4 > 0 as well,

this would have reduced the number of eligible GRBs

by ’ 20%. Hence, we decided to accept also the bursts

with F4 = 0, rather than deleting them from the sample.

Using therefore these two cuts, we are left with N = 1929

GRBs, all of which have defined T90 and Ftot , as well as

peak fluxes P256. This is the sample that we study.

FITTING THE LOGARITHMIC

FLUENCES AND DURATIONS BY THE

SUPERPOSITION OF TWO BIVARIATE

DISTRIBUTIONS

We assume here that the distributions of the variables

T90 and Ftot , for both the short and long groups, can

well be approximated by log-normals. As it was already

noted in a previous contribution [4], this is an acceptable

assumption. In this case it is possible to fit simultane-
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TABLE 1. The best fit parameters of
the sum of two bivariate log-normal dis-
tributions for x = logT90 and y = logFtot

for the sample with N = 1929.

ax1 -0.08 ax2 1.54
ay1 -6.22 ay2 -5.29
σ
;

x1 0.73 σ
;

x2 0.67
σ
;

y1 0.46 σ
;

y2 0.37

tanα1 0.91 tanα2 2.29
W 0.32

ously the values of logFtot and logT90 by a single two-

dimensional (bivariate) normal distribution. This distri-

bution has five parameters (two means ax, ay, two dis-

persions σx, σy, and the correlation coefficient r, where

x = logT90, y = logFtot ). An equivalent set of param-

eters consists of taking the same two means with two

other dispersions σ
;

x σ
;

y, and (instead of the correlation

coefficient) the angle α between the axis logT90 and the

semi-major axis of the “dispersion ellipse". (In the case

of bivariate normal distributions, the constant probabil-

ity curves define ellipses with well-defined axis direc-

tions). In this case α and the correlation coefficient are

related unambiguously through analytical formulas [5].

If the data are well fitted by this bivariate normal distri-

bution, then the distributions of each of the variables by

themselves must also be univariate normal distributions

(the marginal distributions are also normal).

A crucial point in this analysis is that, when the r-

correlation coefficient differs from zero, then the semi-

major axis of the dispersion ellipse represents a linear

relationship between logT90 and logFtot , with a slope of

m = tanα. This linear relationship between the logarith-

mic variables implies a power law relation of form Ftot =

(T90)
m between the fluence and the duration, where m

may be different for the two groups.

Fitting the data with the superposition of two bi-

variate log-normal distributions can be done by a stan-

dard search for 11 parameters with N = 1929 measured

points. (Both log-normal distributions have five parame-

ters; the eleventh parameter defines the weight of the first

log-normal distribution.) We will use tanα as the fifth

parameter for both partial distributions (“terms"). Fig-

ure 1. shows the values of x = logT90 and y = logFtot

for the N = 1929 GRBs. Each GRB defines a point

in the x;y plane with coordinates xi;yi (i = 1;2;:::;N).

The theoretical curve is a sum of two normal distribu-

tions. The normalization constant of the first [second]

term is NW [N(1 � W)], where W is the weight (0 �

W � 1). For the first (second) term the parameters are

ax1;ay1;σx1;σy1;α1 (ax2;ay2;σx2;σy2;α2).

We obtain the best fit to the 11 parameters through

a maximum likelihood (ML) estimation. The results are

collected at Table 1.

DISCUSSION AND CONCLUSION

We have presented evidence indicating that there is a

power law relationship between the logarithmic fluences

and logT90 of the GRBs in the Current BATSE Catalog,

based on a maximum likelihood estimation of the param-

eters of the bivariate distribution of these measured quan-

tities.

An intriguing corollary of these results is that the

exponents in the power law dependence between fluence

and duration differ significantly for the two groups of

short (T90 < 2 s) and long (T90 > 2 s) bursts.

These two results may have an interesting impact on

the models of GRBs.

As it was already discussed in [4], the application of

the mathematical Cramér’s theorem [3, 8] ensures that

there is also the same power law relationship between

the total emitted energies and the intrinsic durations.

Because the exponents are different for the short and long

subgroups, these subgroups should also be generated by

different scenarios.

This results, together with the conclusion that for the

short (long) bursts the total released energy is propor-

tional to the intrinsic duration (to the square of intrinsic

duration) were already announced by [4].

Nevertheless, a care is needed yet. According to the

Bayes theorem [8], the probability density P(Ftot;T90)of

fluence and T90 is given by

P(Ftot;T90)=

Z
∞

0
P(Ftot;T90jP)G(P)dP;

where P denotes the peak-flux (either on 64 ms, or

256 ms or 1024 ms trigger), G(P) is the probability

density of P, and P(Ftot;T90jP) is the so-called ker-

nel. (The meaning of P(Ftot;T90) is straightforward:

NP(Ftot;T90)dFtotdT90 defines the number of GRBs in

the intervals [Ftot;(Ftot + dFtot)]and [T90;(T90 + dT90),

respectively, where N is the number of GRBs.) Unfor-

tunately, G(P)is well biased by instrumental effects, and

- to have the real intrinsic biasfree relation between the

fluence and duration - the kernel should be known. Of

course, in principle, due to the biases in G(P), it is not

sure that the the observed relation between the fluence

and T90 and the relation coming from the kernel are iden-

tical.

We proceeded a new estimation of these phenomena

by different approximations of kernel, and - it seems -

our previous proclamations further hold. The details of

our studies will be published elsewhere [2].
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FIGURE 1. The best fit of two bivariate log-normal distributions for the whole BATSE sample (1929 GRBs). The ellipses give
the 1σ and 2σ probabilities.
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