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Oral consumption of α-linolenic acid increases
serum BDNF levels in healthy adult humans
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Abstract

Background aims: Dietary omega-6 and omega-3 fatty acids have remarkable impacts on the levels of DHA in
the brain and retina. Low levels of DHA in plasma and blood hamper visual and neural development in children
and cause dementia and cognitive decline in adults. The level of brain-derived neurotrophic factors (BDNF)
changes with dietary omega-3 fatty acid intake. BDNF is known for its effects on promoting neurogenesis and
neuronal survival.

Methods: In this study, we examined the effect of the oral consumption of α-Linolenic acid (ALA) on blood levels
of BDNF and Malondialdehyde (MDA) in healthy adult humans. 30 healthy volunteers, 15 men and 15 women, were
selected randomly. Each individual served as his or her own control. Before consuming the Flaxseed oil capsules,
5cc blood from each individual was sampled in order to measure the plasma levels of BDNF and MDA as baseline
controls. During the experiment, each individual was given 3 oral capsules of flaxseed oil, containing 500mg of
alpha linolenic acid, daily for one week. Then, plasma levels of BDNF and MDA were tested.

Results: The plasma levels of BDNF and MDA significantly (P < 0.05) increased in individuals who received the oral
capsules of ALA. Plasma levels of BDNF increased more in the women in comparison with the men.

Conclusion: ALA treatment could be a feasible approach to reduce size of infarcts in stroke patients. Thus, ALA
could be used in adjunction with routine stroke therapies to minimize brain lesions caused by stroke.
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Introduction
The long chain omega-3 fatty acid with 6 double bonds
and 22 carbons, docosahexaenoic acid (DHA), is the most
abundant omega-3 fatty acid in the mammalian central
nervous system. DHA is concentrated in the visual units
of retina and membrane lipids of the brain grey matter.
Levels of DHA increase during mammalian development
and reduce by aging [1-5].
Many researchers have shown that dietary ω-6 and

omega ω-3 fatty acids have remarkable impact on the
levels of DHA in brain and retina [6,7]. Furthermore, ac-
cording to many epidemiological studies, low levels of
DHA in plasma and blood hamper visual and neural
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development in children and cause dementia and cogni-
tive decline in adults [8-22].
A growing body of evidence indicates that omega-3

fatty acids have neuroprotective impact on the nervous
system. These fatty acids influence the levels of neurotro-
phins, molecules that increase neuronal growth and sur-
vival. Among neurotrophins, the level of brain-derived
neurotrophic factor (BDNF) changes with dietary omega-
3 fatty acids intake [23,24]. BDNF is known for its effects
on promoting neurogenesis and neuronal survival [25,26].
The α-Linolenic acid (ALA; 18:3n - 3) is a polyunsatur-

ated omega-3 fatty acid that has several neuroprotective
effects [27-32]. In this study, we measured the plasma
levels of BDNF and MDA in two groups of healthy partici-
pants, those who received ALA and those who did not.
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Table 1 Flax seed oil capsules

Flax seed oil ALA Company

1000 mg 530 mg Swissherbal

Each 1000 mg flax seed oil capsule contained 530 mg ALA.

Figure 2 Plasma level of MDA. Plasma Levels of MDA were measured
before (cont) and after intake of Flax seed oil. Bars represent the SEM
with P < 0.05.

Hadjighassem et al. Nutrition Journal  (2015) 14:20 Page 2 of 5
Material and methods
This study was evaluated and approved by the Ethical
Committee of the Tehran University of Medical Sciences.
Thirty healthy volunteers, fifteen men and fifteen women,
were selected randomly. They read and signed a consent
form prior to enrolment in this study. These individuals
had Body Mass Indexes (BMI) of less than thirty, similar
low-fat diets, and no underlying diseases such as diabetes
or high blood pressure. Because effective doses of ALA for
increasing BDNF levels are unknown, each individual
served as his or her own control.
Before consuming the Flaxseed oil [(Swiss, Canada)

(Table 1)], 5cc blood from each individual was sampled
in order to measure the plasma levels of BDNF and MDA
as baseline controls. During the experiment, each individ-
ual was given 3 oral capsules of flaxseed oil, containing
500mg of ALA, daily for one week. Then, Plasma levels of
BDNF and MDA were assessed using BDNF Emax® Im-
munoAssay (Promega) and colorimetric Assay (Oxford
Biomedical Research) kits according to the manufac-
turer’s protocols, respectively.

Statistical analysis
GraphPad prism5 was applied to compare the levels of
BDNF and MDA, after taking the capsules for one week,
to their baselines. Numerical data are presented below as
means ± SEM. Statistical testing used Paired t-test analysis.
Each test was performed at least two times and P < 0.05
was considered significant.

Results
This study revealed that plasma BDNF levels significantly
(P < 0.05) increased in individuals who received the oral
Figure 1 Plasma level of BDNF. Plasma Levels of BDNF were
detected by ELISA. Data were analyzed by GraphPad prism5. Bars
refer to the Mean and SEM with P < 0.05.
capsules of ALA (Figure 1). In order to determine whether
or not this phenomenon was associated with peroxidation
of fatty acids, plasma levels of MDA in the ALA group
were measured, and they notably (p < 0.05) increased.
(Figure 2).
In addition, plasma levels of BDNF increased more in

the women in comparison with the men. Although we
observed a significant positive trend in increasing the
BDNF levels in the men (P = 0.01) (Table 2, Figure 3).
Discussion
The neuroprotective roles of ALA have been reported in
several stroke studies [27,31-36]. Recently, several molecu-
lar and clinical studies emphasized on the therapeutic po-
tential of Omega-3 polyunsaturated fatty acids for treating
a number of neurological and psychiatric diseases. Never-
theless, the mechanisms underlying these effects are still
poorly understood.
In 2009, Blondeau et al. showed that subchronic ALA

injections in mice induced neurogenesis in the hippo-
campus, increased in vivo and in vitro BDNF expression,
promoted Neural Stem cell (NSCs) proliferation and syn-
aptogenesis, enhanced synaptic vesicle fusion and protein
levels, and induced antidepressant-like behavior. Further-
more, they observed that pre- and post-treatments with
repeated ALA injections decreased the infarc volumes
Table 2 Data analysis of serum BDNF levels in males and
females

Sex Pretreatment Post-treatment P value

Mean Female 0.7987 1.036 0.005

Std.Deviation 0.1740 0.2035

Mean Male 0.8872 1.096 0.01

Std.Deviation 0.1270 0.1986



Figure 3 Sex dependency of BDNF change. BDNF levels were compared between the males and females before and after receiving
the capsules.
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and mortality caused by middle cerebral artery occlu-
sion (MCAO) [37]. Nguemeni et al. in 2010 reported
that dietary supplements of ALA in an enriched rape-
seed oil diet could significantly reduce the MCAO-
induced mortality rate and infarct volumes in mice [38].
In light of these studies on ALA, we examined the effect
of dietary consumption of ALA on the blood levels of
BDNF and MDA. To the best of our knowledge, this is
the first study on healthy adult humans that measured
both BDNF and MDA levels, used oral consumption of
ALA, and determined sex differences in response to ALA
intake. The results demonstrated that the levels of BDNF
and MDA both increased in individuals who took ALA.
Neurotrophins are small proteins that are crucial for

neuronal differentiation, growth, survival, and plasticity
[39]. Nerve growth factor (NGF), brain-derived neuro-
trophic factor (BDNF), neurotrophin-3 (NT-3), and
neurotrophin-4/5 (NT-4/5) are members of the mamma-
lian neurotrophin family. The impact of these molecules
on the nervous system is mediated by the tropomyosin
receptor kinase (Trk) receptors and membrane-bound
receptor tyrosine kinases that activate a number of cell
signaling pathways which are linked to growth, differenti-
ation, and survival [40]. The importance of neurotrophin
signaling in brain development is well elucidated with
findings that showed that knockout mice for any of the
neurotrophins or their receptors were fatal or exhibited
severe neural defects [41]. Neurotrophin signallings have
important roles in the survival and integration of new
neurons. For instance, BDNF triggers the TrkB receptor
tyrosine kinases. BDNF also increases the number and
survival of NSCs in the subventricular zone (SVZ) and
olfactory bulbs [42,43]. Likewise, knocking down the
TrkB receptors or disrupting the BDNF signaling path-
way in dentate gyrus progenitors can lead to the forma-
tion of shorter dendrites, reduced spine, and eventually
death [44].
BDNF signaling promotes the survival of newly-
generated neurons. In addition, defects in this pathway
are associated with decreased neuronal survival and
neurogenesis as well as the incidence and progression
of several neurological disorders, such as schizophrenia,
bipolar disorder, Alzheimer’s disease, and age-related
cognitive decline [43,45,46]. Furthermore, BDNF indir-
ectly increases the transcription of Bcl-w gene, an anti-
apoptotic member of the Bcl-2 family [47]. Thus, BDNF
decreases neuronal apoptosis. In addition, BDNF increases
adhesion, migration, and survival of neurons. This neuro-
trophic molecule also enhances neurogenesis, synaptic
plasticity, and neuronal differentiation through the BDNF/
TrkB-TK+ signaling pathway, an important pathway for
neuronal viability and function [48-57].
ALA treatment can be beneficial for the treatment of

many neurological diseases, particularly stroke, which is
the third leading cause of death worldwide [58,59]. Our
findings were in accordance with the previous studies,
confirming that ALA increases the expression of BDNF.
Considering the neuroprotective and neurotrophic char-
acteristics of BDNF, ALA treatment could be a feasible
approach to reduce infarct size in stroke patients. Thus,
ALA could be used in adjunction with routine stroke
treatments to minimize lesions caused by stroke. Fur-
ther research could attempt to replicate the present
findings with a larger sample size. Furthermore, study-
ing the molecular mechanisms underlying the positive
effects of ALA on the nervous system might also be help-
ful. Future research can investigate the effects of ALA in-
take on stroke patients.
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