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Abstract

Background: It is not clear which glucose measure is more useful in the assessment of atherosclerosis. We
investigated the associations of hemoglobin A1c (HbA1c), glycated albumin (GA), 1,5-anhydroglucitol (1,5-AG),
fasting plasma glucose (FPG), and 2-hour postload glucose (PG) with carotid intima-media thickness (IMT) in
community-dwelling Japanese subjects.

Methods: A total of 2702 subjects aged 40–79 years underwent a 75-g oral glucose tolerance test and measurements
of HbA1c, GA, 1,5-AG, and carotid IMT by ultrasonography in 2007–2008. Carotid wall thickening was defined as a
maximum IMT of >1.0 mm. The crude and multivariable-adjusted linear and logistic regression models were used
to analyze cross-sectional associations between levels of glycemic measures and carotid IMT.

Results: The crude average of the maximum IMT increased significantly with rising quartiles of HbA1c, GA, FPG,
and 2-hour PG levels in subjects with and without glucose intolerance (GI), while no clear association was observed
for 1,5-AG. After adjustment for other confounding factors, positive trends for HbA1c, GA, and FPG (all p for trend
< 0.05), but not 2-hour PG (p = 0.07) remained robust in subjects with GI, but no such associations were found in
those without GI. When estimating multivariable-adjusted β values for the associations of 1 SD change in glycemic
measures with the maximum IMT in subjects with GI, the magnitude of the influence of HbA1c (β = 0.021), GA
(β = 0.024), and FPG (β = 0.024) was larger than that of 2-hour PG (β = 0.014) and 1,5-AG (β = 0.003). The
multivariable-adjusted odds ratios for the presence of carotid wall thickening increased significantly with
elevating HbA1c, GA, and FPG levels only in subjects with GI (all p for trend < 0.001). Among subjects with GI,
the area under the receiver operating characteristic curve significantly increased by adding HbA1c (p = 0.04) or GA
(p = 0.04), but not 1,5-AG, FPG, or 2-hour PG, to the model including other cardiovascular risk factors.

Conclusions: In community-dwelling Japanese subjects with GI, elevated HbA1c, GA, and FPG levels were significantly
associated with increased carotid IMT, and HbA1c and GA provided superior discrimination for carotid wall thickening
compared to 1,5-AG, FPG, and 2-hour PG, suggesting that HbA1c and GA are useful for assessing carotid atherosclerosis.
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Background
It has been well established that hemoglobin A1c

(HbA1c) levels, which have been used widely as a meas-
ure of chronic hyperglycemia, are closely associated with
the risk of microvascular complications, such as diabetic
retinopathy, and this fact has led to the adoption of
HbA1c as a diagnostic tool for diabetes by the Inter-
national Expert Committee [1]. The question has now
arisen as to whether HbA1c measurement is useful in
the assessment of macrovascular complications. Several
population-based epidemiological studies in Asian popu-
lations [2–5] as well as in Western populations [6–13]
have focused on the association between HbA1c levels
and intima-media thickness (IMT) of carotid arteries,
which is generally accepted as a marker of the early
stage of atherosclerosis. However, this issue has not been
assessed sufficiently in a general Japanese population [5].
Glycated albumin (GA) and 1,5-anhydroglucitol (1,5-

AG) levels, which are serum markers of short-term
glycemic status, have also been shown to be intimately
related to microvascular complications in recent epi-
demiological studies, including our previous report
[14–16], and there has been a growing interest in GA
and 1,5-AG as alternative markers of hyperglycemia
[17]. Although several studies have examined the asso-
ciations of GA [15, 18–25] and 1,5-AG [26, 27] levels
with atherosclerosis among patients on dialysis and
those with diabetes or hypertension, very few studies
have been conducted to clarify this association in gen-
eral populations [5, 28]. In addition, to our knowledge,
there are no data comparing HbA1c, GA, 1,5-AG, fast-
ing plasma glucose (FPG), and 2-hour postload glucose
(PG) measurements as a tool for the assessment of
atherosclerosis.
To investigate which glucose measure is more useful

in the assessment of atherosclerosis, we examined the
associations of HbA1c, GA, 1,5-AG, FPG, and 2-hour PG
levels with carotid IMT in a community-dwelling Japanese
population stratified by glucose tolerance status, and com-
pared the magnitude of the influence of these five gly-
cemic measures on the ability to discriminate carotid wall
thickening.

Methods
Study population
A population-based prospective study of cardiovascular
disease (CVD) and its risk factors has been underway
since 1961 in the town of Hisayama, a suburb of the
Fukuoka metropolitan area on Japan’s Kyushu Island.
The population of the town has been stable for 50 years
and was approximately 8400 in 2010. The age and occu-
pational distributions, and nutritional intake of the
population were similar to those of Japan as a whole
based on data from the national census and nutrition
survey [29]. In 2007 and 2008, a cross-sectional survey
for the present study was performed in the town. A de-
tailed description of this survey was published previously
[16, 30]. Among a total of 3835 residents aged 40–79
years based on the town registry, 2957 (77.1 %) took part
in a comprehensive assessment, including a 75-g oral
glucose tolerance test (OGTT), the measurement of
HbA1c, and a carotid ultrasound examination. We ex-
cluded eight subjects who did not consent to participate
in the study, 46 who had already had breakfast, 35 who
did not undergo the OGTT due to receiving insulin
therapy, and 156 who refused the OGTT, leaving a total
of 2712 subjects who completed the OGTT, HbA1c

measurement, and carotid ultrasound. Among these, 10
subjects without measurement of GA or 1,5-AG were
excluded, and the remaining 2702 subjects (1198 men
and 1504 women) were enrolled in the present study.

Clinical evaluation and laboratory measurements
The study subjects underwent the OGTT between 8:00
and 10:30 A.M. after an overnight fast of at least 12 h.
Blood for the glucose assay was obtained by venipuncture
into tubes containing sodium fluoride at fasting and at 2-
hour postload, and was separated into plasma and blood
cells within 20 min. Plasma glucose concentrations were
determined by the hexokinase method. Glucose tolerance
status was classified as normal glucose tolerance (NGT)
and glucose intolerance (GI) according to the 1998 World
Health Organization criteria [31]; namely, for NGT,
FPG <6.1 mmol/L and 2-hour PG <7.8 mmol/L; for GI,
FPG ≥6.1 mmol/L, 2-hour PG ≥7.8 mmol/L, or the use
of antidiabetic medications. Diabetes was defined as
FPG ≥7.0 mmol/L, 2-hour PG ≥11.1 mmol/L, or the use
of antidiabetic medications. HbA1c levels were mea-
sured by latex aggregation immunoassay (Determiner
HbA1C; Kyowa Medex, Tokyo, Japan). The values for
HbA1c were estimated as a National Glycohemoglobin
Standardization Program (NGSP) equivalent value cal-
culated with the formula: HbA1c (%) = 1.02 × HbA1c

(Japan Diabetes Society) (%) + 0.25 % [32]. A portion of
each serum specimen was stored at -80 °C for 5 years
until it was used for measurement of GA and 1,5-AG in
2012. Serum GA levels were determined by an enzym-
atic method using an albumin-specific proteinase,
ketoamine oxidase, and an albumin assay reagent
(Lucica GA-L; Asahi Kasei Pharma, Tokyo, Japan).
Serum 1,5-AG concentrations were measured enzymati-
cally (Lana 1,5AG Auto Liquid; Nippon Kayaku, Tokyo,
Japan). The intra- and interassay coefficients of variation
were 0.6–1.1 % and 1.4–3.4 % for HbA1c, 0.5–3.2 % and
1.3 % for GA, 1.1–2.0 % and 2.5–2.8 % for 1,5-AG, and
0.4–1.3 % and 1.9–3.0 % for plasma glucose, respectively.
Serum insulin values were measured by a chemilumin-
escent enzyme immunoassay. The homeostasis model
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assessment of insulin resistance (HOMA-IR) was calcu-
lated with the formula: FPG (mmol/L) × fasting serum
insulin (μU/mL) / 22.5 [33], and subjects in the highest
quartile of HOMA-IR distribution in our study popula-
tion (HOMA-IR ≥2.07) were defined as having insulin
resistance [31]. Serum total, low-density lipoprotein
(LDL), and high-density lipoprotein (HDL) cholesterols
and triglycerides were all determined enzymatically.
Hyper-LDL cholesterolemia was defined as LDL choles-
terol levels ≥3.62 mmol/L or the use of lipid-lowering
medications [34]. Freshly voided urine samples were
tested by the dipstick method. Proteinuria was defined
as 1+ or more. Serum creatinine concentrations were
measured enzymatically, and estimated glomerular fil-
tration rate (eGFR) (mL/min/1.73 m2) was calculated
using the following modified equations of the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
for Japanese [35]: for men with a serum creatinine level
>0.9 mg/dL, eGFR = 141 × (serum creatinine/0.9)-1.209 ×
0.993Age × 0.813; for men with a serum creatinine level
≤0.9 mg/dL, eGFR = 141 × (serum creatinine/0.9)-0.411 ×
0.993Age × 0.813; for women with a serum creatinine
level >0.7 mg/dL, eGFR = 144 × (serum creatinine/0.7)-
1.209 × 0.993Age × 0.813; for women with a serum creatin-
ine level ≤0.7 mg/dL, eGFR = 144 × (serum creatinine/
0.7)-0.329 × 0.993Age × 0.813. Chronic kidney disease
(CKD) was defined as either an eGFR <60 mL/min/
1.73 m2 or the presence of proteinuria [36].
The height and weight were measured with the subject

in light clothes without shoes, and the body mass index
(BMI) (kg/m2) was calculated. Blood pressure was
obtained three times using an automated sphygmoman-
ometer (BP-203 RVIIIB; Omron Healthcare Co., Ltd.,
Kyoto, Japan) with the subject in a sitting position after
rest for at least 5 min; the average values were used in
the analyses. Hypertension was defined as a systolic
blood pressure ≥140 mmHg, a diastolic blood pressure
≥90 mmHg, or current treatment with antihypertensive
agents.
Each participant completed a self-administered ques-

tionnaire covering medical history, antidiabetic, antihy-
pertensive, and lipid-lowering treatments, alcohol intake,
smoking habits, and physical activity. Alcohol intake and
smoking habits were classified as either current use or
not. Current smoking was defined as when the subject
smoked at least 1 cigarette per day. Current drinking
was defined as when the subject consumed at least 1 al-
cohol beverage per month. Subjects engaging in sports
at least three times per week during their leisure time
were defined as the regular exercise group. History of
CVD was defined as any preexisting events of stroke or
coronary heart disease, including myocardial infarction
and coronary intervention. All cardiovascular events
were adjudicated on the basis of physical examinations
and a review of all available clinical information includ-
ing medical records and imaging.

Carotid ultrasonography
Carotid ultrasound was performed in a supine position
using a real-time, B-mode ultrasound imaging unit
(Toshiba Sonolayer SSA-250A; Toshiba, Tokyo, Japan)
with a 7.5-MHz annular array probe. The ultrasound
examination was carried out by specially trained labora-
tory technicians using a standardized technique. The
technicians were blinded to the medical history, and
clinical and laboratory data of each participant. The
IMT was measured using the long-axis view of each
common carotid artery. An image was obtained in the
region 20 mm proximal to the origin of the bulb at the
far wall of each common carotid artery. The IMT values
at 250 computer-based points in the region were mea-
sured on each side using a computer-assisted measure-
ment system (Intimascope; Media Cross Co., Ltd., Tokyo,
Japan) [37]. The maximum IMT was defined as the largest
IMT value in either the left or right common carotid ar-
tery, and carotid wall thickening was defined as a max-
imum IMT of >1.0 mm according to the Japan Academy
of Neurosonology and the Japan Society of Ultrasonics in
Medicine’s guidelines [38, 39].

Statistical analysis
The SAS software package version 9.3 (SAS Institute,
Cary, NC) was used to perform all statistical analyses.
The differences in the mean values or frequencies of risk
factors between glucose tolerance categories were
assessed using the linear or logistic regression model, re-
spectively. HbA1c, GA, 1,5-AG, FPG, and 2-hour PG
levels were divided into quartiles by the presence or ab-
sence of GI. The values of IMT, fasting insulin, HOMA-
IR, and triglycerides were transformed into logarithms
to improve the skewed distribution, and geometric
means were reported by back transformation. The linear
regression model was used to examine the associations
of 1 SD change in glycemic measures with the maximum
IMT. The adjusted average values of the maximum IMT
were calculated using the analysis of covariance method,
and their trends across the quartiles of glycemic mea-
sures were tested by the linear regression model. The
crude and multivariable-adjusted odds ratios (ORs) and
their 95 % confidence intervals (CIs) for the presence of
carotid wall thickening were estimated using the logistic
regression model. Because serum 1,5-AG levels are de-
creased in the presence of hyperglycemia, the highest
quartile was used as the reference group for 1,5-AG,
while the lowest quartile was defined as the reference
category for other glycemic measures. The heterogeneity
in the influence of each glycemic measure on carotid
wall thickening between subjects with and without other
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cardiovascular risk factors was assessed by adding an
interaction term to the relevant statistical model. To
compare the discrimination for the presence of carotid
wall thickening between the models adjusted for known
cardiovascular risk factors with and without continuous
values of each glycemic measure, the difference in the
area under the receiver operator characteristic curve
(AUC) among models was estimated using the method
of DeLong et al. [40]. A value of p < 0.05 was considered
statistically significant in all analyses.

Ethical considerations
This study was conducted with the approval of the
Kyushu University Institutional Review Board for
Clinical Research, and written informed consent was
obtained from all the participants.

Results
Of the study participants, there were 1603 (59.3 %) with
NGT and 1099 (40.7 %) with GI. Among subjects with
GI, 145 (13.2 %) had isolated fasting hyperglycemia (FPG
≥6.1 mmol/L and 2-hour PG <7.8 mmol/L), 457 (41.6 %)
had isolated 2-hour postload hyperglycemia (FPG
<6.1 mmol/L and 2-hour PG ≥7.8 mmol/L), and 497
(45.2 %) had both fasting and 2-hour postload hypergly-
cemia (FPG ≥6.1 mmol/L and 2-hour PG ≥7.8 mmol/L).
The clinical characteristics of subjects are shown by GI
status in Table 1. The mean values of age, maximum
IMT, HbA1c, GA, FPG, 2-hour PG, fasting insulin,
HOMA-IR, systolic and diastolic blood pressures, BMI,
LDL cholesterol, and triglycerides, and the frequencies
of men, insulin resistance, hypertension, antihyperten-
sive and lipid-lowering medications, hyper-LDL choles-
terolemia, proteinuria, CKD, and history of CVD were
significantly higher in subjects with GI than in those
with NGT, and subjects with GI had significantly lower
1,5-AG, HDL cholesterol, and eGFR values. The mean
values of total cholesterol and the frequencies of alcohol
intake, smoking habits, and regular exercise did not dif-
fer between the groups.
We estimated the crude and multivariable-adjusted

geometric average of the maximum IMT according to
the quartiles of each glycemic measure in subjects with
GI. The crude geometric average of the maximum IMT
increased significantly with rising HbA1c, GA, FPG, and
2-hour PG levels (all p for trend <0.001), but no clear as-
sociation was observed for 1,5-AG levels (p for trend =
0.30). Similar associations were also observed in subjects
with NGT (p for trend <0.05 for HbA1c, GA, FPG, and
2-hour PG; p for trend = 0.32 for 1,5-AG). Among sub-
jects with GI, positive trends for HbA1c (p for trend =
0.048), GA (p for trend <0.001), and FPG (p for trend
<0.001), but not 2-hour PG (p for trend = 0.07), remained
significant even after adjustment for cardiovascular risk
factors; namely, age, sex, hypertension, LDL cholesterol,
HDL cholesterol, BMI, alcohol intake, smoking habits,
regular exercise, and lipid-lowering medication (Fig. 1).
Meanwhile, in those with NGT, the significant associa-
tions between levels of any glycemic measures and the
maximum IMT disappeared after adjustment for the
above-mentioned confounding factors (Additional file 1:
Figure S1).
In subjects with GI, when continuous variables of gly-

cemic measures were used instead of quartile categories,
HbA1c, GA, FPG, and 2-hour PG levels were signifi-
cantly and positively associated with the maximum IMT
even after adjustment for other cardiovascular factors,
but no such association was seen for 1,5-AG (Table 2).
The magnitude of the influence of 1 SD increment in
HbA1c (β = 0.021, p < 0.001), GA (β = 0.024, p < 0.001),
and FPG (β = 0.024, p < 0.001) was larger than that of 2-
hour PG (β = 0.014, p = 0.03). In those with NGT, no sig-
nificant associations were found for all five glycemic
measures after adjustment for other confounding factors
(Additional file 1: Table S1).
The crude and multivariable-adjusted ORs and their

95 % CIs for the presence of carotid wall thickening ac-
cording to the quartiles of each glycemic measure in
subjects with GI are shown in Table 3. The crude ORs
for the presence of carotid wall thickening significantly
increased with elevating HbA1c, GA, FPG, and 2-hour
PG levels, while lower 1,5-AG levels were significantly
associated with prevalent carotid wall thickening. These
associations remained robust even after adjustment for
other confounding factors for HbA1c, GA, and FPG (all
p for trend <0.001), but not for 1,5-AG (p = 0.09) and
2-hour PG (p = 0.14). In subjects with NGT, although
the crude OR for carotid wall thickening did not in-
crease with decreasing 1,5-AG levels, HbA1c, GA, FPG,
and 2-hour PG levels were significantly and positively
associated with the presence of carotid wall thickening
(Additional file 1: Table S2). However, these upward
trends were markedly attenuated and no longer signifi-
cant after multivariable adjustment.
We next performed stratified analyses to examine

whether the associations of glycemic measures with the
presence of carotid wall thickening differed between groups
with and without other cardiovascular risk factors in sub-
jects with GI (Additional file 1: Figure S2A and S2B). Over-
all, there were no statistically significant differences in the
multivariable-adjusted ORs for the prevalent carotid wall
thickening per 1 SD increment in HbA1c, GA, FPG, and 2-
hour PG, and 1 SD decrement in 1,5-AG according to
levels of other risk factors: sex, age (<65 and ≥65 years),
smoking habits, insulin resistance, hypertension, and hyper-
LDL cholesterolemia (all p for heterogeneity >0.05).
To evaluate the improvement in discriminative ability

for detecting the presence of carotid wall thickening by



Table 1 Clinical characteristics of subjects, 2007–2008

Total Glucose tolerance status

Normal Glucose intolerance P value

n = 2702 n = 1603 n = 1099

Age (years) 60 (10) 58 (11) 63 (9) <0.001

Men (%) 44.3 37.5 54.3 <0.001

Maximum IMT (mm) 0.97 (0.96 to 0.98) 0.94 (0.93 to 0.95) 1.01 (1.00 to 1.02) <0.001

Hemoglobin A1c (%) 5.5 (0.7) 5.2 (0.4) 5.9 (0.9) <0.001

(mmol/mol) 37 (8) 33 (4) 41 (10) <0.001

Glycated albumin (%) 15.2 (2.8) 14.4 (1.3) 16.4 (3.7) <0.001

1,5-anhydroglucitol (μg/mL) 20.2 (8.3) 22.2 (7.4) 17.3 (8.7) <0.001

Fasting plasma glucose (mmol/L) 5.8 (1.2) 5.3 (0.4) 6.5 (1.5) <0.001

2-hour postload glucose (mmol/L) 8.0 (3.7) 6.0 (1.1) 10.8 (4.3) <0.001

Fasting insulin (pmol/L) 39.3 (38.5 to 40.2) 34.6 (33.7 to 35.5) 47.3 (45.7 to 49.0) <0.001

HOMA-IR 1.39 (1.36 to 1.42) 1.13 (1.10 to 1.16) 1.87 (1.80 to 1.94) <0.001

Insulin resistance (%) 24.9 12.9 42.5 <0.001

Diabetes (%) 15.4 0 37.9 0.93

Antidiabetic medication (%) 6.4 0 15.7 0.93

Systolic blood pressure (mmHg) 131 (19) 126 (18) 138 (18) <0.001

Diastolic blood pressure (mmHg) 80 (11) 77 (11) 83 (10) <0.001

Hypertension (%) 45.6 33.0 64.0 <0.001

Antihypertensive medication (%) 28.5 19.0 42.4 <0.001

BMI (kg/m2) 23.2 (3.4) 22.5 (3.1) 24.3 (3.5) <0.001

Total cholesterol (mmol/L) 5.45 (0.93) 5.44 (0.94) 5.47 (0.93) 0.42

LDL cholesterol (mmol/L) 3.24 (0.80) 3.21 (0.80) 3.29 (0.81) 0.02

HDL cholesterol (mmol/L) 1.73 (0.46) 1.81 (0.47) 1.62 (0.43) <0.001

Triglycerides (mmol/L) 1.21 (1.18 to 1.23) 1.08 (1.06 to 1.11) 1.41 (1.36 to 1.46) <0.001

Hyper-LDL cholesterolemia (%) 42.5 37.1 50.3 <0.001

Lipid-lowering medication (%) 14.3 9.5 21.3 <0.001

Current drinking (%) 51.9 51.2 52.9 0.38

Current smoking (%) 21.2 21.5 20.8 0.67

Regular exercise (%) 12.4 12.0 12.9 0.46

eGFR (mL/min/1.73 m2) 76.3 (10.9) 77.4 (10.4) 74.7 (11.5) <0.001

Proteinuria (%) 5.0 2.9 8.2 <0.001

Chronic kidney disease (%) 10.8 7.8 15.1 <0.001

History of CVD (%) 4.4 2.8 6.6 <0.001

Maximum IMT, fasting insulin, HOMA-IR, and triglycerides values are shown by geometric means and 95 % confidence intervals due to the skewed distribution
All other values are given as the mean (SDs) or as a percentage
Insulin resistance was defined as HOMA-IR ≥2.07 (the highest quartile of HOMA-IR in total study population)
Diabetes was defined as fasting plasma glucose ≥7.0 mmol/L, 2-hour postload glucose ≥11.1 mmol/L, or the use of antidiabetic medications
Hypertension was defined as blood pressure ≥140/90 mmHg or current use of antihypertensive agents
Hyper-LDL cholesterolemia was defined as LDL cholesterol ≥3.62 mmol/L or the use of lipid-lowering medications
Proteinuria was defined as 1+ or more
Chronic kidney disease was defined as either an eGFR <60 mL/min/1.73 m2 or the presence of proteinuria
Regular exercise was defined as engaging in sports at least three times per week during leisure time
IMT intima-media thickness, HOMA-IR homeostasis model assessment of insulin resistance, BMI body mass index, LDL low-density lipoprotein, HDL high-density
lipoprotein, eGFR estimated glomerular filtration rate, CVD cardiovascular disease
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addition of continuous values of each glycemic measure
to the model including potential cardiovascular risk fac-
tors, we compared the AUC between the models with
and without each glycemic measure among subjects with
GI (Table 4). The AUC increased significantly by adding
HbA1c (0.729, p = 0.04) or GA (0.728, p = 0.04) values to



Fig. 1 Multivariable-adjusted geometric average of maximum intima-media thickness according to quartiles of each glycemic measure in subjects
with glucose intolerance. IMT: intima-media thickness; HbA1c: hemoglobin A1c; GA: glycated albumin; 1,5-AG: 1,5-anhydroglucitol; FPG: fasting
plasma glucose; 2-hour PG: 2-hour postload glucose. * p < 0.01 vs Quartile 1, † p for trend <0.05. Multivariable adjustment was made for age, sex,
hypertension, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, alcohol intake, smoking habits, regular
exercise, and lipid-lowering medication. HbA1c: Q1, <5.4 (36); Q2, 5.4–5.6 (36–38); Q3, 5.7–6.2 (39–44); Q4, ≥6.3 % (45 mmol/mol); GA: Q1, <14.3;
Q2, 14.3–15.3; Q3, 15.4–17.1; Q4, ≥17.2 %; 1,5-AG: Q1, <11.0; Q2, 11.0–16.9; Q3, 17.0–22.9; Q4, ≥23.0 μg/mL; FPG: Q1, <5.7; Q2, 5.7–6.1; Q3, 6.2–6.8;
Q4, ≥6.9 mmol/L; 2-hour PG: Q1, <8.0; Q2, 8.0–9.1; Q3, 9.2–12.3; Q4, ≥12.4 mmol/L
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the model including the potential cardiovascular risk fac-
tors mentioned above (0.719). When 1,5-AG (0.721, p =
0.27), FPG (0.724, p = 0.19), and 2-hour PG (0.721, p =
0.39) values were added, the AUC did not increase
significantly.
We also performed sensitivity analyses excluding sub-

jects with history of CVD and found that the findings
were not substantially altered (data not shown).

Discussion
Using data from a cross-sectional survey in a Japanese
community, we demonstrated that in subjects with GI,
elevated levels of HbA1c, GA, and FPG were more
strongly associated with increased maximum IMT com-
pared to 1,5-AG and 2-hour PG, independent of other
cardiovascular risk factors. Similar results were obtained
from analysis of the associations between glycemic mea-
sures and the presence of carotid wall thickening. There
were no clear differences in the influence of each gly-
cemic measure between subjects with and without other
Table 2 The associations of 1 SD increment in HbA1c, GA, FPG, and
IMT in subjects with glucose intolerance

Glycemic measures Crude

β (95 % CI)

HbA1c, per 0.9 % (10 mmol/mol) increment 0.028 (0.015 to 0.041)

GA, per 3.7 % increment 0.036 (0.023 to 0.049)

1,5-AG, per 8.7 μg/mL decrement 0.004 (-0.010 to 0.017

FPG, per 1.5 mmol/L increment 0.030 (0.017 to 0.043)

2-hour PG, per 4.3 mmol/L increment 0.029 (0.016 to 0.043)

Multivariable adjustment was made for age, sex, hypertension, low-density lipoprot
intake, smoking habits, regular exercise, and lipid-lowering medication
HbA1c hemoglobin A1c, GA glycated albumin, 1,5-AG 1,5-anhydroglucitol, FPG fasting
cardiovascular risk factors. Furthermore, adding HbA1c

or GA to a model including known cardiovascular risk
factors significantly improved the assessment of the like-
lihood of prevalent carotid wall thickening in those with
GI. These findings suggest that HbA1c and GA provide
superior discrimination for the presence of carotid wall
thickening, which is an early stage of atherosclerosis,
compared to other glycemic measures in community-
dwelling Japanese subjects with GI.
In the present study, increased HbA1c levels were sig-

nificantly and positively associated with the presence of
carotid wall thickening in individuals with GI, independ-
ently of other cardiovascular risk factors. Other Asian
population studies have also shown that higher HbA1c

levels were significantly and independently related to in-
creased carotid IMT in Chinese populations [2, 3] and
an Asian Indian population [4]. Similar findings
were observed in most studies in Western populations
[6, 8–10, 13]. With regard to clinical CVD events, al-
though some cohort studies in the U.S. have demonstrated
2-hour PG, and 1 SD decrement in 1,5-AG with the maximum

Multivariable-adjusted

P value β (95 % CI) P value

<0.001 0.021 (0.009 to 0.034) <0.001

<0.001 0.024 (0.012 to 0.036) <0.001

) 0.59 0.003 (-0.009 to 0.015) 0.61

<0.001 0.024 (0.011 to 0.036) <0.001

<0.001 0.014 (0.002 to 0.026) 0.03

ein cholesterol, high-density lipoprotein cholesterol, body mass index, alcohol

plasma glucose, 2-hour PG 2-hour postload glucose, CI confidence interval



Table 3 Crude and multivariable-adjusted ORs and 95 % CIs for the presence of carotid wall thickening according to quartiles of gly-
cemic measures in subjects with glucose intolerance

No. of cases/subjects Crude OR (95 % CI) P value P for trend Multivariable-adjusted OR (95 % CI) P value P for trend

HbA1c, % (mmol/mol)

Q1, <5.4 (36) 99/243 1.00 (reference) <0.001 1.00 (reference) <0.001

Q2, 5.4–5.6 (36–38) 107/271 0.95 (0.67 to 1.35) 0.77 0.94 (0.64 to 1.37) 0.73

Q3, 5.7–6.2 (39–44) 168/326 1.55 (1.11 to 2.16) 0.01 1.32 (0.91 to 1.92) 0.15

Q4, ≥6.3 (45) 156/259 2.20 (1.54 to 3.15) <0.001 1.96 (1.32 to 2.93) <0.001

GA, %

Q1, <14.3 102/273 1.00 (reference) <0.001 1.00 (reference) <0.001

Q2, 14.3–15.3 114/272 1.21 (0.86 to 1.71) 0.28 1.23 (0.84 to 1.79) 0.29

Q3, 15.4–17.1 146/279 1.84 (1.31 to 2.58) <0.001 1.68 (1.15 to 2.45) 0.007

Q4, ≥17.2 168/275 2.63 (1.87 to 3.72) <0.001 2.12 (1.45 to 3.10) <0.001

1,5-AG, μg/mL

Q1, <11.0 158/277 1.47 (1.05 to 2.06) 0.02 0.03 1.43 (0.99 to 2.07) 0.05 0.09

Q2, 11.0–16.9 120/273 0.87 (0.62 to 1.22) 0.41 0.87 (0.60 to 1.26) 0.47

Q3, 17.0–22.9 121/273 0.88 (0.63 to 1.23) 0.46 0.97 (0.67 to 1.41) 0.88

Q4, ≥23.0 131/276 1.00 (reference) 1.00 (reference)

FPG, mmol/L

Q1, <5.7 121/285 1.00 (reference) <0.001 1.00 (reference) <0.001

Q2, 5.7–6.1 120/279 1.02 (0.73 to 1.43) 0.89 0.86 (0.59 to 1.23) 0.40

Q3, 6.2–6.8 123/258 1.24 (0.88 to 1.73) 0.22 1.26 (0.87 to 1.82) 0.23

Q4, ≥6.9 166/277 2.03 (1.45 to 2.84) <0.001 1.76 (1.21 to 2.56) 0.003

2-hour PG, mmol/L

Q1, <8.0 119/286 1.00 (reference) <0.001 1.00 (reference) 0.14

Q2, 8.0–9.1 123/264 1.22 (0.87 to 1.72) 0.24 1.04 (0.72 to 1.50) 0.85

Q3, 9.2–12.3 125/273 1.19 (0.85 to 1.66) 0.32 0.92 (0.64 to 1.32) 0.64

Q4, ≥12.4 163/276 2.02 (1.45 to 2.83) <0.001 1.41 (0.97 to 2.04) 0.07

Multivariable adjustment was made for age, sex, hypertension, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, body mass index, alcohol
intake, smoking habits, regular exercise, and lipid-lowering medication. Because serum 1,5-AG levels are decreased in the presence of hyperglycemia, the highest
quartile was used as the reference group for 1,5-AG
HbA1c hemoglobin A1c, GA glycated albumin, 1,5-AG 1,5-anhydroglucitol, FPG fasting plasma glucose, 2-hour PG 2-hour postload glucose, OR odds ratio, CI
confidence interval

Table 4 Comparison of the discriminative ability for detecting
the presence of carotid wall thickening between the models
with and without each glycemic measure among subjects with
glucose intolerance

Model Area under curve (95 % CI) P value (vs. Model 1)

Model 1 0.719 (0.689 to 0.748) reference

Model 1 + HbA1c 0.729 (0.699 to 0.758) 0.04

Model 1 + GA 0.728 (0.699 to 0.758) 0.04

Model 1 + 1,5-AG 0.721 (0.691 to 0.751) 0.27

Model 1 + FPG 0.724 (0.694 to 0.753) 0.19

Model 1 + 2-hour PG 0.721 (0.691 to 0.751) 0.39

Model 1 includes age, sex, hypertension, low-density lipoprotein cholesterol,
high-density lipoprotein cholesterol, body mass index, alcohol intake, smoking
habits, regular exercise, and lipid-lowering medication
HbA1c hemoglobin A1c, GA glycated albumin, 1,5-AG 1,5-anhydroglucitol, FPG
fasting plasma glucose, 2-hour PG 2-hour postload glucose
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that HbA1c levels were not independently predictive of
CVD incidence and mortality [41, 42], our previous study
revealed that elevated HbA1c levels were significantly asso-
ciated with increased risk of the development of CVD
[43]. Other prospective studies in Western populations
have also shown significant positive associations between
HbA1c levels and the risk of CVD [9, 44]. These findings
suggest that a higher HbA1c level is a risk factor for sub-
clinical and clinical CVD in Asian populations including
Japanese as well as in Western populations.
Epidemiological studies of community-dwelling per-

sons which investigated the association between GA
levels and atherosclerosis have been scarce. Only a
Japanese community-based study has reported that max-
imum carotid IMT increased in subjects with higher GA
levels, although it did not fully take confounding factors
into consideration [5]. In our study, the likelihood of
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carotid wall thickening increased linearly with elevating
GA levels among individuals with GI, and this associ-
ation remained robust even after controlling for other
cardiovascular risk factors. With regard to clinical stud-
ies, a recent case-cohort study in subjects with type 1
diabetes failed to demonstrate a significant influence of
GA levels on CVD incidence and death [15]. Another
study of patients with type 1 diabetes has also reported
no significant association between GA/HbA1c ratio and
carotid IMT [25]. However, other studies of patients on
dialysis and those with type 2 diabetes have shown that
higher GA levels were associated with the presence and
progression of carotid atherosclerosis [20, 22, 24], the
presence of coronary artery disease [18], impaired cor-
onary collateral growth [23], and future CVD mortality
[21] or hospitalization [19]. These findings, when taken
together with our present results, indicate a close associ-
ation between GA levels and the risk of atherosclerosis.
The present analysis demonstrated no clear association

of 1,5-AG levels with maximum carotid IMT even in the
crude analysis. Prior clinical studies also did not reveal
significant differences in mean or maximum carotid
IMT across 1,5-AG levels in patients with diabetes or
hypertension [26, 27]. These findings imply that a weak
association exists between 1,5-AG levels and carotid ath-
erosclerosis. One of the possible reasons for this
phenomenon is that the 1,5-AG level depends on the
magnitude of glycosuria rather than plasma glucose
levels [17], while other glycemic measures, including
HbA1c, GA, FPG and 2-hour PG, directly reflect the de-
gree of hyperglycemia. Another reason may be that 1,5-
AG levels were affected by individual differences in the
renal thresholds for glucose [45]. These explanations
may account for the relatively weak association between
1,5-AG levels and carotid atherosclerosis in our study.
On the other hand, with regard to clinical CVD events,
one population-based cohort study in Japan has shown
that lower 1,5-AG levels significantly increased the risk
of developing CVD in men [28]. Since few studies have
investigated the associations between 1,5-AG levels and
the risk of CVD, further research is needed to clarify this
issue.
In our study, higher FPG levels were independently re-

lated to carotid wall thickening in subjects with GI, but
2-hour PG levels were not. There have been conflicting
data regarding the association between 2-hour PG levels
and carotid atherosclerosis. At least 4 studies have
shown that higher 2-hour PG levels were not a relevant
factor for carotid atherosclerosis [3, 7, 11, 46], although
others have found that elevated 2-hour PG levels were
associated with increased carotid IMT [6, 47, 48]. Our
previous prospective study showed that increased 2-hour
PG levels were an independent risk factor for the occur-
rence of clinical CVD [49]. Thus, 2-hour PG levels
might be more associated with the advanced stages of
atherosclerosis than the early stages. Further investiga-
tion is necessary to validate this hypothesis.
In the present study, adding HbA1c or GA to a model

including known cardiovascular risk factors significantly
increased the AUCs for the presence of carotid wall
thickening in subjects with GI, while the addition of 1,5-
AG, FPG, and 2-hour PG did not substantially increase
them. These results suggest that HbA1c and GA provide
greater improvement in discriminative ability for detect-
ing carotid atherosclerosis than other glycemic mea-
sures. Advanced glycation end products (AGEs) are
recognized as one of the important contributors to the
pathogenesis of atherosclerosis in hyperglycemia [50]. It
is also known that HbA1c and GA are non-enzymatically
glycated proteins, and these two measures are regarded
as precursors of AGEs [51, 52]. Thus, it is speculated
that HbA1c and GA values are correlated with the
amount of AGEs. These findings raise the possibility that
AGEs may play a key role in the early stages of athero-
sclerosis. Furthermore, it has been reported that HbA1c

had a strong correlation with elevated FPG levels, which
are mainly caused by insulin resistance, while GA was
closely related to higher postprandial glucose levels,
which are attributed to reduced insulin secretion [53].
Considering this finding, higher HbA1c levels may indi-
cate insulin resistance, while elevated GA levels are
likely to reflect decreased insulin secretion, resulting in
postprandial glucose excursion. Since insulin resistance
[54], abdominal obesity [55, 56], and glucose excursion
[57] were also found to play important roles in the
pathogenesis of atherosclerosis, higher HbA1c and GA
levels may contribute to increased carotid IMT through
insulin resistance, glucose excursion as well as AGEs,
and this might be the reason why measurements of
HbA1c and GA improve the discriminative ability for the
presence of carotid wall thickening. In addition, because
HbA1c and GA measurements can be done without fast-
ing or timed samples, these two measures are conveni-
ent and suitable for use in general practice. This
advantage has implications for the identification and
management of atherosclerosis in its early stages, and
thus measurements of HbA1c and GA suggest to be use-
ful in the assessment of atherosclerosis.
In our subjects with NGT, the crude ORs for the pres-

ence of carotid wall thickening increased with rising
HbA1c, GA, FPG, and 2-hour PG levels, but these asso-
ciations were markedly attenuated after adjustment for
other covariates. These findings suggest that higher glu-
cose levels within normal range may not contribute in-
dependently to increased carotid IMT. Since other
known cardiovascular risk factors, such as aging, hyper-
tension, and dyslipidemia, tended to accumulate at the
higher levels of HbA1c, GA, FPG, and 2-hour PG in our
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subjects with NGT (data not shown), individuals with el-
evations of these glycemic measures would seem to have
higher carotid IMT through the mediation of other
coexisting risk factors.
The strengths of our study include the population-

based design and high participation rate. We also made
a comparison of the five glycemic measures, which was
not done in prior studies. However, some limitations
should be mentioned. First, the cross-sectional study de-
sign limits the interpretation of causality between levels
of glycemic measures and carotid atherosclerosis. Since
the usefulness of glycemic measures in the assessment of
atherosclerosis would ideally be evaluated in studies that
examine the association between measures of glycemia
and incident atherosclerotic disease, further prospective
investigation is expected. Second, each glycemic measure
was based on a single measurement, as was the case in
most other epidemiological studies. This limitation may
have resulted in misclassification of study subjects into
different categories, and such misclassification could
have weakened the association found in our study, bias-
ing the results toward the null hypothesis. Third, the
serum GA and 1,5-AG levels were measured after being
stored at -80 °C for 5 years. In this context, however, we
should note that the stability of GA and 1,5-AG mea-
surements in frozen stored serum sample has been con-
firmed [58, 59]. Fourth, several laboratory technicians
took ultrasound images of carotid artery without assess-
ment of inter-observer variability. However, they were
specially trained to use a standardized technique, and
the IMT was measured automatically using a computer-
assisted measurement system. Thus, we believe that
this limitation is not likely to invalidate the findings
observed in the present study. Fifth, CKD may cause a
change in 1,5-AG levels through alterations in renal
hemodynamics. However, the sensitivity analyses ex-
cluding subjects with CKD did not make any material
difference in the findings on the association between
1,5-AG levels and carotid IMT (data not shown).
Lastly, sample size of our study was relatively small to
perform analyses separately in subjects with diabetes
and prediabetes. Further studies with larger sample
size are required to elucidate this issue.

Conclusions
The present analysis showed that, in a Japanese popula-
tion with GI, elevated HbA1c, GA, and FPG levels were
significantly associated with increased carotid IMT, and
that the ability of HbA1c and GA to detect carotid wall
thickening was superior to that of 1,5-AG, FPG, and 2-
hour PG, suggesting that measurements of HbA1c and
GA are useful as markers of early atherosclerosis.
Further prospective studies are needed to verify these
findings.
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