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Abstract
On time scales, one area lacking of development is the method of finding solutions
on partial dynamic equations. This paper proposes a method for finding the exact
solution of linear partial dynamic equations on arbitrage time scales. We modify the
variational iteration method on R to find an approximation of the nonlinear partial
dynamic equation on qN. As an example, the modified variational iteration method is
applied to q-Berger equations and to q-Fisher equations. Their numerical results
reveal that the proposed method is very effective.
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1 Introduction
A time scale is a nonempty closed subset of real numbers. On time scale calculus, no-
tations and theorems have been well established for the univariate case []. Solutions of
ordinary differential equations, such as initial value problems and boundary value prob-
lems, have been studied and published during the past two decades on time scales. In
recent years, Hoffacker [] and Ahlbrandt and Morian [] demonstrated the related ideas
to the multivariate case and studied partial dynamic equations on time scales. Notations
and definitions on multivariate time scales calculus can be found in Bohner and Guseinov
[, ]. Jackson [] extended the existing ideas of the time scales calculus [] to the mul-
tivariate case. The method of generalized Laplace transform on time scales is applied to
find solutions of the homogeneous and nonhomogeneous heat and wave equations. Re-
cent developments in the method of finding solutions have aroused further interest in the
discussion of partial dynamic equations on time scales.
For the nonlinear cases, methods of finding solutions are not mentioned for partial dy-

namic equations on time scales. One of the difficulties for developing a theory of series
solutions to nonlinear equations on time scales is that the formula for multiplications of
two generalized polynomials is not easily found. If a time scale has constant graininess,
Haile and Hall [] provided an exact formula for the multiplication of two generalized
polynomials. Using the obtained results, the series solutions for linear dynamic equations
are proposed on the time scales R and T = hZ (difference equations with step size h). On
generalized time scales, Mozyrska and Pawtuszewicz [] presented a formula for the mul-
tiplication of generalized polynomials of degree one and degree n ∈N. Liu [] provided a
product rule of two generalized polynomials on the time scale qZ = {qn | n ∈N} ∪ {}.
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The variational iterationmethod proposed byHe [] is a powerful mathematical tool in
analyzing the nonlinear problems on R (the set of real numbers). Over the last few years,
the variational iteration method (VIM) has been widely applied to analyze the nonlinear
boundary value problems [], the nonlinear heat diffusion equations [] and the nonlin-
ear reaction-diffusion equations []. An advantage of the VIM is that there is no need to
make the assumption of the small parameters. On nonlinear partial dynamic equations,
approximate solutions obtained by the variational iteration method are not found yet.
In this paper, we first explore a simple method to find the exact solution of linear partial

dynamic equations on time scales. For the nonlinear cases, we derive a product rule of two
generalized polynomials on qZ, which provides an idea for developing a series solutions on
q-calculus. Applying the product rules, we extend the variational iteration method from
the set of real numbers R to the time scales qZ. The extension provides a method to find
an approximate solution on the nonlinear partial dynamic equation on qZ. Moreover, the
VIM is applied to find an approximation of the q-Berger equation and the q-Fisher equa-
tion. By the numerical results, we found that the modified VIM is very effective. The VIM
can be applied to other time scales when the multiplication rule of two generalized poly-
nomials on these time scales is obtained.
This paper is organized as follows. In Section , the basic ideas of partial dynamic equa-

tions on time scales are introduced. In Section , a method is explored to find an exact
solution of linear initial value problems on time scales. In Section , a product rule of two
generalized polynomials at  is derived on qZ and the variational iteration method is ap-
plied to find an approximate solution of the Burger equation and the Fisher equation. In
Section , numerical examples reveal that the proposed method is very effective. Finally,
a concise conclusion and future directions are provided in Section .

2 Basic concepts on time scales
A time scale is an arbitrary nonempty closed subset of the real numbers. The calculus of
time scales was introduced byHilger [] in order to create a theory that can unify discrete
and continuous analysis.

2.1 An introduction to time scales
In this subsection, we first define the forward and backward jump operators on time scales
and then introduce the delta derivative and the integration.

Definition  Let T be a time scale. For t ∈ T the forward jump operator σ : T → T is
defined by

σ (t) := inf{s > t | s ∈ T}

and the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s < t | s ∈ T}.

The gain function μ : T→ [,∞) is defined by

μ(t) := σ (t) – t.
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According to the forward jump operator and the gain function, the delta derivative on
the time scale T is given as follows.

Definition  Assume that f : T →R is a function and let t ∈ T. If σ (t) > t, the delta deriva-
tive of f (t) at t on the time scale T is defined as

f Δ(t) =
f (σ (t)) – f (t)

μ(t)
.

A function f (t) on T is said to be differentiable at t if its derivative exists at t, ∀t ∈ T.

Integration on a time scale can be viewed as an anti-derivative.

Definition  If we have delta derivative g(t) = f Δ(t) on the time scale T, then the anti-
derivative is

f (t) =
∫ t

a
g(s)Δs + constant, a, t ∈ T

and the definite integral on the time scale T follows as

∫ b

a
g(s)Δs = f (b) – f (a), a,b ∈ T.

Following the delta derivative and integration, we define the generalized polynomials as
follows.

Definition  On the time scale T, the generalized polynomials hk(·, t) : T → R are de-
fined recursively as follows:

h(t, s) = , hk+(t, s) =
∫ t

s
hk(τ , s)Δτ .

Hence, for each fixed s, the delta derivative of hk with respect to t satisfies

hΔj
k (t, ) =

{
hk–j(t, ) if k ≥ j,
 if k < j.

2.2 An introduction to q-calculus
Let

qN =
{
qn | n ∈N

}
and qN = qN ∪ {},

where N denotes the set of positive integers.
If a and q are real numbers such that  < q < , then the q-shift factorial [] is defined

by

(a;q) =  and (a;q)n =
n–∏
k=

(
 – aqk

)
, n ∈N.

Following Definition , the q-derivative is given as follows.
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Definition  Assume that f : qN → R is a function and t ∈ qN. The q-derivative [] at t is
defined by

f Δ(t) =
f (qt) – f (t)
(q – )t

, t �= 

and

f Δ() = lim
n→∞

f (qn) – f ()
qn

.

By computing the recurrence relation, the q-polynomials are represented as

hk(t, s) =
k–∏
ν=

t – sqν∑ν
j= qj

on qN [].
A q-difference equation is an equation that contains q-derivatives of a function defined

on qN.

2.3 Multivariable calculus on time scales
The differentiation and integrations are introduced for functions of two variables on time
scales []. Definitions on multivariate calculus on time scales can be found in Bohner and
Guseinov [, ]. Following the line of ideas, the dynamic equations on time scales are
extended to partial dynamic equations on time scales [, , ].
LetT andT be any two time scales. Consider the ‘rectangle’T = T ×T. For any t ∈ T,

the jump operator of t = (t, t) for t ∈ T and t ∈ T is given as follows:
. The forward jump operators σ : T → T by σ (t) = (σ (t),σ (t)) are defined as

σ (t) = inf(s ∈ T | s > t) and σ (t) = inf(s ∈ T | s > t).
. The backward jump operators τ : T → T by τ (t) = (τ (t), τ (t)) are defined as

τ (t) = sup(s ∈ T | s < t) and τ (t) = sup(s ∈ T | s < t).
To use the notations for partial derivatives with respect to time scale variables t and t,

respectively, we employ lexicographic ordering for consistency. Let f Δ denote the time
scale partial derivative with respect to t and let f Δ denote the time scale partial derivative
with respect to t. Definitions of these partial derivatives are given as below [, ].

Definition  Let f be a real-valued function on T. At (t, t) ∈ T = T ×T we say f has a
Δ-partial derivative f Δ (t, t) if for each ε > , there exists a neighborhood U of t, with
U = (t – δ, t + δ)∩T for δ > , such that

∣∣f (σ (t), t) – f (s, t) – f Δ (t, t)
(
σ (t) – s

)∣∣ ≤ ∣∣σ (t) – s
∣∣

for all s ∈ U . On the other hand, we say f has a Δ-partial derivative f Δ (t, t) if for each
ε > , there exists a neighborhood V of t, with V = (t – δ, t + δ)∩T for δ > , such that

∣∣f (t,σ (t)) – f (t, s) – f Δ (t, t)
(
σ (t) – s

)∣∣ ≤ ∣∣σ (t) – s
∣∣

for all s ∈ V .

http://www.advancesindifferenceequations.com/content/2013/1/141
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Using the ideas of time scale partial derivatives, notations of mixed partial and high
order partial derivatives are given as follows:
. f Δij (t) (if this value exists) denotes first taking the partial derivative with respect to

ti and then taking the partial derivative with respect to tj, so that f Δij = (f Δi )Δj ,
i, j = , .

. f Δn
i (t) (if this value exists) denotes taking the partial derivative of f (t) with respect

to ti n times.
The details and examples can be found in [] and [].

3 The exact solution of linear initial value problems on time scales
Let hk(t, ) and gk(t, ) be the generalized polynomials on T and T, respectively. In this
section, the variational iteration method on R is extended to provide a method of find-
ing the exact solution of linear partial dynamic equations on time scales. The introduc-
tion and the details of the variational iteration method can be found in the Appendix and
in [].

3.1 The exact solution of the first-order linear partial dynamic equations
We first consider the first-order linear partial dynamic equations as the form

{
uΔ = cuΔ on T ×T,
u(, t) = f (t) on T,

()

where f (t) =
∑K

i= aigi(t, ) on T and ai, i = , . . . ,K are real numbers.
The basic character of the variational iterationmethod is to construct a correction func-

tional for the system, which reads

un+(t, t) = un(t, t) +
∫ t

t
λ
{
Lun(s, t) +Nũn(s, t)

}
Δs,

where L is a linear operator on T,N is a linear (or nonlinear) operator on T (or T ×T),
λ is a Lagrangemultiplier which can be identified optimally by variational theory, un is the
nth approximation, and ũn denotes a restricted variation, that is, δũn = .
The linear operator L is selected as

Lu = uΔ

and the other operator N is selected as

Nu = –cuΔ .

Make the above correction functional stationary with respect to un

δun+(t, t) = δun(t, t) + δ

∫ t


λ
{
uΔ (s, t) +Nũn(s, t)

}
Δs

=
(
 + λ(t)

)
δun(t, t) +

∫ t


λΔ(s)δun

(
σ (s), t

)
Δs.
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We, therefore, have the following stationary conditions:

 + λ(t) = ,

λΔ(s) = .

The Lagrange multiplier can be readily identified

λ(s) = –.

As a result, the variational iteration formula is obtained

un+(t, t) = un(t, t) –
∫ t



{
uΔ
n (s, t) +Nun(s, t)

}
Δs. ()

Using the initial condition u = f (t) and the iteration formula (), we have the following
equations:

u(t, t) = f (t) –
∫ t


f Δ (t)Δs

= f (t) + cf Δ (t)h(t, ),

u(t, t) = u(t, t) –
∫ t


cf Δ

 (t)h(s, )Δs

= u(t, t) + cf Δ
 (t)h(t, )

= f (t) + cf Δ (t)h(t, ) + cf Δ
 (t)h(t, )

and

uk(t, t) =
k∑
j=

cjf Δ
j
 (t)hj(t, ).

As k is large enough such that f Δk
 equals to zero, the series solution uk is the exact solution

of ().

Example  Consider the initial value problem

{
uΔ = cuΔ on T ×T,
u(, t) = gk(t, ) on T,

()

where gk(t, ) is a generalized polynomial on T. The function

uk(t, t) =
k∑
j=

cjgk–j(t, )hj(t, )

is the exact solution of ().

http://www.advancesindifferenceequations.com/content/2013/1/141
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Proof Wenow verify that the obtained function uk actually solves the initial value problem
(). First, we show that the obtained function satisfies the initial condition. Since h(t, s) ≡
 for all t, s and hj(, )≡  for j > , we have

uk(, t) = gk(t, ).

Second, we display the obtained function uk satisfying the equation by

uΔ
k (t, t) =

k∑
j=

cjgk–j(t, )hj–(t, ),

cuΔ
k (t, t) =

k–∑
j=

c(j+)gk–j–(t, )hj(t, ) =
k∑
j=

cjgk–j(t, )hj–(t, ).

This implies that uΔ
k (t, t) – cuΔ

k (t, t) =  on T ×T. �

3.2 The exact solution of the second-order linear partial dynamic equations
Consider the second-order partial dynamic equation as the form

{
uΔ = cuΔ

 on T ×T,
u(, t) = f (t) on T,

()

where f (t) =
∑K

i= aigi(t, ) on T and ai, i = , . . . ,K are real numbers.
In this work, the linear operator L is selected as

Lu = uΔ

and the other operator N is selected as

Nu = –cuΔ
 .

Using the initial condition u(t, t) = f (t) and the iteration formula (), we have the
following equations:

u(t, t) = f (t) –
∫ t


cf Δ

 (t)Δs

= f (t) + cf Δ
 (t)h(t, ),

u(t, t) = u(t, t) –
∫ t


cf Δ

 (t)h(s, )Δs

= u(t, t) + f Δ
 (t)h(t, )

= f (t) + cf Δ
 (t)h(t, ) + cf Δ

 (t)h(t, )

and

uk(t, t) =
k∑
j=

cjf Δ
(j)
 (t)hj(t, ).

http://www.advancesindifferenceequations.com/content/2013/1/141
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As k is large enough such that f Δ
(k)
 equals to zero, the series solution uk is the exact

solution of ().

Example  Consider the IVP

{
uΔ = cuΔ

 on T ×T,
u(, t) = gk(t, ) on T,

()

where gk(t, ) is a generalized polynomial of T. The function

u�k/(t, t) =
�k/∑
j=

cjgk–j(t, )hj(t, )

is the exact solution of ().
The exact solution of Example  is also obtained by Jackson []. He transformed the IVP

into an ODE and obtained the exact solution as

u(t, t) =
�k/∑
j=

cjgk–j(t, )hj(t, ),

where �k/ denotes the floor of k/.

When the initial condition can be represented as a finite series of generalized polyno-
mials, we have proposed a useful method of finding the exact solution of partial dynamic
equations on time scales. When the initial condition is represented as an infinite series
of generalized polynomials, the approximate solution can be obtained by the same man-
ner. In the following section, we consider the nonlinear partial dynamic equation on the
specific time scales.

4 Approximation solutions of nonlinear q-partial dynamic equations
In this section, we extend the variational iterationmethod to find an approximate solution
of nonlinear initial value problems on the time scale qN.
To extend the variational iteration method, we first display a production rule [] of two

q-polynomials at  which will be used to derive an approximate solution in the following
discussion.

Theorem  Let hi(t, ) and hj(t, ) be two q-polynomials at zero.We have

hi(t, )hj(t, ) =
(qi+;q)j
(q;q)j

hi+j(t, ).

Proof Since

hi+j(t, ) =
i+j–∏
ν=

t∑ν
μ=qμ

,

http://www.advancesindifferenceequations.com/content/2013/1/141
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we have

hi+j(t, ) =

( i–∏
ν=

t∑ν
μ= qμ

)(i+j–∏
ν=i

t∑ν
μ=qμ

)

= hi(t, )
(∏j–

ν=
∑ν

μ=qμ∏j–
ν=

∑ν
μ=qμ

)
tj
(i+j–∏

ν=i

∑ν
μ=qμ

)

= hi(t, )

( j–∏
ν=

t∑ν
μ=qμ

)( j–∏
ν=

ν∑
μ=

qμ

)(i+j–∏
ν=i

∑ν
μ=qμ

)

= hi(t, )hj(t, )

( j–∏
ν=

∑ν
μ=qμ∑ν+i
μ=qμ

)
.

This implies that

hi(t, )hj(t, ) =

( j–∏
ν=

∑ν+i
μ=qμ∑ν
μ=qμ

)
hi+j(t, ) =

j–∏
ν=

( – qυ+i+)
( – qυ+)

hi+j(t)

=
(qi+;q)j
(q;q)j

hi+j(t, ). �

Proposition  Let hi(t, ) and hj(t, ) be any two q-polynomials.We have

hi(t, )hj(t, ) = hj(t, )hi(t, ).

Proof It suffices to show that

(qi+;q)j
(q,q)j

=
(qj+;q)i
(q,q)i

.

Suppose i > j, we have

(qi+;q)j
(q,q)j

–
(qj+;q)i
(q,q)i

=
( – qj+) · · · ( – qi+j)
( – q) · · · ( – qi)

–
( – qi+) · · · ( – qi+j)
( – q) · · · ( – qj)

=
( – qj+) · · · ( – qi+j)
( – q) · · · ( – qi)

–
( – qi+) · · · ( – qi+j)( – qj+) · · · ( – qi)
( – q) · · · ( – qj)( – qj+) · · · ( – qi)

= . �

Let hk and gk be generalized polynomials of qN and qN . The variational iterationmethod
is now applied to find an approximate solution of the nonlinear partial dynamic equations
as the form{

uΔ =Nu on qN × qN ,
u(, t) = gk(t, ) on qN .

When the linear operator L is selected as

Lu = uΔ

http://www.advancesindifferenceequations.com/content/2013/1/141
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and the other operator N is selected as –Nu, the variational iteration formula is obtained
as

un+(t, t) = un(t, t) –
∫ t



{
uΔ
n (s, t) –Nun(s, t)

}
Δs

with the initial approximation

u = gk(t, ).

Example  Consider the partial dynamic equations as the form

{
uΔ = uuΔ on T ×T,
u(, t) = gk(t, ) on T.

With the variational iteration formula, we obtain the first few components of un(t, t):

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – u(s, t)uΔ

 (s, t)
}
Δs

= gk(t, ) +
∫ t



[
gk(t, )gk–(t, )

]
Δs

= gk(t, ) +H(k,k – )gk–(t, )h(t, ),

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – u(s, t)uΔ

 (s, t)
}
Δs

= gk(t, ) +H(k,k – )gk–(t, )h(t, )

–
∫ t



[
H(k,k – )gk–(t, ) –

(
gk(t, ) +H(k,k – )gk–(t, )h(s, )

)
× (

gk–(t, ) +H(k,k – )gk–(t, )h(s, )
)]

Δs

= gk(t, ) +H(k,k – )gk–(t, )h(t, )

+H(k,k – )H(k, k – )gk–(t, )h(t, )

+H(k,k – )H(k – , k – )gk–(t, )h(t, )

+H(k,k – )H(k,k – )H(k – , k – )gk–(t, )H(, )h(t, ),

where H(k, l) =
(qk+ ;q)l
(q;q)l

and H(k, l) =
(qk+ ;q)l
(q;q)l

.
In the same manner, the rest of components of the iteration formula are obtained itera-

tively.

4.1 Applications to the q-Burger equation and the Fisher equation
q-Burger equation
First of all, we consider the q-Burger equation as the form

{
uΔ – uuΔ – αuΔ

 =  on qN × qN ,
u(, t) = gk(t, ) on qN .

http://www.advancesindifferenceequations.com/content/2013/1/141


Liu Advances in Difference Equations 2013, 2013:141 Page 11 of 16
http://www.advancesindifferenceequations.com/content/2013/1/141

When the linear operator and the nonlinear operator are selected as Lu = uΔ and –Nu =
–uuΔ – αuΔ

 , respectively, the variational iteration formula is obtained as

un+(t, t) = un(t, t) –
∫ t



{
uΔ
n (s, t) – un(s, t)uΔ

n (s, t) – αuΔ


n (s, t)
}
Δs. ()

Let G(t) =H(k,k – )gk–(t, ) +αgk–(t, ) andH(k, l) =
(qk+ ;q)l
(q;q)l

. With the initial con-
dition u(t, t)≡ u(, t) = gk(t, ), we have

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – u(s, t)uΔ

 (s, t) – αuΔ


 (s, t)
}
Δs

= gk(t, ) –
∫ t



{
–gk(t, )gk–(t, ) – αgk–(t, )

}
Δs

= gk(t, ) +
(
H(k,k – )gk–(t, ) + αgk–(t, )

)
h(t, )

= gk(t, ) +G(t)h(t, ),

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – u(s, t)uΔ

 (s, t) – αuΔ


 (s, t)
}
Δs

= gk(t, ) +G(t)h(t, )

–
∫ t



{
G(t) –

(
gk(t, ) +G(t)h(s, )

)
× (

gk–(t, ) + gΔ (t)h(s, )
)

– α
(
gk–(t, ) + gΔ

 (t)h(s, )
)}

Δs

= gk(t, ) +H(k,k – )gk–(t, )h(t, )

+G(t)gk–(t, )h(t, ) + gΔ (t)gk(t, )h(t, )

+G(t)gΔ (t)H(, )h(t, )

+ αgk–(t, )h(t, ) + αgΔ
 (t)h(t, )

= gk(t, ) +
[
H(k,k – )gk–(t, ) + αgk–(t, )

]
h(t, )

+
[
G(t)gk–(t, ) + gΔ (t)gk(t, ) + αgΔ

 (t)
]
h(t, )

+G(t)gΔ (t)H(, )h(t, ).

In the same manner, the rest of components of the iteration formula are obtained itera-
tively.

q-Fisher equation
Secondly, we consider the q-Fisher equation, which is a nonlinear reaction diffusion equa-
tion, as the form

{
uΔ – αuΔ

 – βu( – u) =  on qN × qN ,
u(, t) = gk(t, ) on qN .

http://www.advancesindifferenceequations.com/content/2013/1/141
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The variational iteration formula is obtained as

un+(t, t) = un(t, t) –
∫ t



{
uΔ
n (s, t) – αuΔ


n (s, t)

– βun(s, t) + βun(s, t)un(s, t)
}
Δs. ()

LetG(t) = αhk–(t)+βgk(t, )–βH(k,k)gk(t, ) andH(k, l) =
(qk+ ;q)l
(q;q)l

.With the initial
condition u(t, t) ≡ u(, t) = gk(t, ), we have

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – αuΔ


 (s, t) – βu(s, t) + βu(s, t)u(s, t)

}
Δs

= gk(t, ) +
∫ t


αgk–(t, ) + βgk(t, ) – βH(k,k)gk(t, )Δs

= gk(t, ) +
(
αhk–(t) + βgk(t, ) – βH(k,k)gk(t, )

)
h(t, )

= gk(t, ) +G(t)h(t, ),

u(t, t) = u(t, t) –
∫ t



{
uΔ
 (s, t) – αuΔ


 (s, t) – βu(s, t) + βu(s, t)u(s, t)

}
Δs

= gk(t, ) +G(t)h(t, )

–
∫ t



{
G(t) – α

(
gk–(t, ) + gΔ

 (t)h(s, )
)
– β

(
gk(t, ) +G(t)h(s, )

)
+ β

(
gk(t, ) +G(t)h(s, )

)(
gk(t, ) +G(t)h(s, )

)}
Δs

= gk(t, ) + αgk–(t, )h(t, ) + αgΔ
 (t)h(t, )

+ βgk(t, )h(t, ) + βG(t)h(t, )

–
∫ t


β
(
H(k,k)gk(t, ) + G(t)gk(t, )h(s, )

+ g(t)H(, )h(s, )
)
Δs

= gk(t, ) +
[
αgk–(t, ) + βgk(t, ) – βH(k,k)gk(t, )

]
h(t, )

+
(
αgΔ

 (t) + βG(t) – βG(t)gk(t, )
)
h(t, )

– βg(t)H(, )h(t, ).

In the same manner, the rest of components of the iteration formula are obtained itera-
tively.

5 Numerical results
The approximate solutions introduced in the previous sections will be illustrated with
some examples.
Let T = T = .N = {., ., ., . . . , }, where  is the cluster point of qN. The

q-shift factorial with q = . is given as

(a; .) =  and (a; .)n =
n–∏
k=

(
 – .ka

)
, n ∈ N

http://www.advancesindifferenceequations.com/content/2013/1/141
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and the q-polynomials are represented as

hk(t, ) =
k–∏
ν=

t∑ν
j= .j

=
tk∏k–

ν=
∑ν

j= .j
=

tk∏k–
ν= ( – .ν)

,

t ∈ {.n,n ∈N} ∪ {} and hk(, ) = . The multiplication of two generalized polynomials
hk(t, ) and hl(t, ) is obtained as

hk(t, )hl(t, ) =H(k, l)hk+l(t, ),

where H(k, l) = (.k+;.)l
(.;.)l

. For example, H(, ) = (.;.)
(.;.)

= (–.)
(–.) = .

. = ..

Example  Consider the nonlinear partial dynamic equation as the form

{
uΔ – uuΔ – uΔ

 =  on .N × .N,
u(, t) = g(t, ) on .N.

()

The initial approximation can be given as

u(t, t) = g(t, )

according to the initial condition. By the variational iteration formula (), the first two
components of un(t, t) are obtained:

u(t, t) =
(
 + h(t, )

)
g(t, ),

u(t, t) =
(
 + h(t, ) + h(t, ) + .h(t, )

)
g(t, ).

The rest of components of the iteration formula are obtained in the same manner. The
responses of u(t, t) are shown in Figure .

Figure 1 Response for (8) with 2 VIM iterations.

http://www.advancesindifferenceequations.com/content/2013/1/141
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Example  Consider the Fisher equation as the form

{
uΔ – uΔ

 – u( – u) =  on .N × .N,
u(, t) = g(t, ) on .N.

()

With the initial condition u(t, t) = g(t, ), the first two components are obtained

u(t, t) = g(t, ) +
(
g(t, ) – .g(t, )

)
(t, ) = g(t, ) +G(t)g(t, ),

u(t, t) = g(t, ) +G(t)h(t, ) +
[
gΔ

 (t) +G(t) – G(t)g(t, )
]
h(t, )

– g(t)H(, )h(t, )

= g(t, ) +
[
g(t, ) – .g(t, )

]
h(t, )

+
[
–. + g(t, ) – .g(t, ) – 

(
g(t, ) – .g(t, )

)
g(t, )

]
h(t, )

– .
(
g(t, ) – .g(t, )

)h(t, )
= g(t, ) +

[
g(t, ) – .g(t, )

]
h(t, )

+
[
–. + g(t, ) – .g(t, ) + .g(t, )

]
h(t, )

– .
[
.g(t, ) – .g(t, ) + .g(t, )

]
h(t, ),

where G(t) = g(t, ) – .g(t, ). The rest of components of the iteration formula are
obtained in the same manner. The responses of u(t, t) are shown in Figure .

Now, we have demonstrated a method for finding an approximate solution of nonlinear
partial dynamic equations on qN × qN . The proposed tool could also be applied to other
nonlinear q-partial dynamic equations.
In future studies, we intend to derive the multiplication rule of two generalized polyno-

mials and extend the application of the variational iteration method to nonlinear partial
dynamic equations on other time scales.

Figure 2 Response for (9) with 2 VIM iterations.
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6 Conclusion and future direction
In this paper, we have propose a method to find the exact solution of the linear partial
dynamic equation on time scales and to find an approximate solution of the nonlinear
q-partial dynamic equations. Moreover, this method is applied to provide an approximate
solution of the q-Berger equations and the q-Fisher equations.
To extend the method to other time scales, it is important to derive a multiplication rule

of two generalized polynomials on the other time scales. On the other hand, approximate
solutions as well as their properties of the nonlinear partial dynamic equations, such as
Benjamin-Ono equations and the Benjamin-Bona-Mahony equations, are not found on
qN yet. In the future studies, we would intend to derive the multiplication rule of two gen-
eralized polynomials or to provide an approximation of other nonlinear q-partial dynamic
equations by using the proposing method.

Appendix: Basic ideas of the variational iterationmethod
To clarify the ideas of the variational iterationmethod,we consider the following nonlinear
equation:

Lu(t) +Nu(t) = g(t),

where L is a linear operator, N is a nonlinear operator and g is an inhomogeneous term.
According to the variational iteration method, we can construct a correction functional
as follows:

un+(t) = un(t) +
∫ t


λ
{
Lun(s) +Nũn(s) – g(s)

}
ds,

where λ is a general Lagrange multiplier, u is an initial approximation which must be
chosen suitably and ũn is considered as a restricted variation, that is, δũn = . To find the
optimal value of λ, we make the above correction functional stationary with respect to un,
noticing that δun() = , and have

δun+(t) = δun(t) + δ

∫ t


λLun(s)ds = .

Having obtained the optimal Lagrangemultiplier, the successive approximations un, n ≥ ,
of the solution u are determined upon the initial function u. Therefore, the exact solution
is obtained at the limit of the resulting successive approximations.
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