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Blood eosinophil count is associated with a variety of common complex outcomes in epidemiological ob-
servation. The aim of this study was to explore the causal association between determined blood eosinophil
count and 20 common complex outcomes (10 metabolic, 6 cardiac, and 4 pulmonary). Through Mendelian
randomization, we investigated genetic evidence for the genetically determined eosinophil in association
with each outcomes using individual-level LifeLines cohort data (n = 13,301), where a weighted eosinophil
genetic risk score comprising five eosinophil associated variants was created. We further examined the as-
sociations of the genetically determined eosinophil with those outcomes using summary statistics obtained
from genome-wide association study consortia (6 consortia and 14 outcomes). Blood eosinophil count, by
a 1-SD genetically increased, was not statistically associated with common complex outcomes in the Life-
Lines. Using the summary statistics, we showed that a higher genetically determined eosinophil count had
a significant association with lower odds of obesity (odds ratio (OR) 0.81, 95% confidence interval (CI) [0.74,
0.89]) but not with the other traits and diseases. To conclude, an elevated eosinophil count is unlikely to
be causally associated to higher risk of metabolic, cardiac, and pulmonary outcomes. Further studies with
a stronger genetic risk score for eosinophil count may support these results.

� Keywords: eosinophil count, genetic risk score, Mendelian randomization, instrumental variable, com-
plex diseases, metabolic diseases, cardiovascular diseases, pulmonary diseases

Emerging epidemiological studies have indicated that a
higher count of eosinophils, as specialized multifunctional
leukocytes, in the blood is associated with a higher risk of
complex diseases in the human population (Amini et al.,
2016; Babio et al., 2013; Bafadhel et al., 2012; Kim, Noh
et al., 2008; Kim, Choi et al., 2006; Meng et al., 2012;
Shim et al., 2006; Siva et al., 2007; Wu et al., 2011). In
the population-based LifeLines study in the north of the
Netherlands, we have recently shown that an increased
blood eosinophil count correlates with a higher risk of
metabolic and pulmonary diseases (Amini et al., 2016).

The association of eosinophil count with common complex
outcomes may be due to the presence of confounding

received 26 January 2018; accepted 29 January 2018. First
published online 6 March 2018.
address for correspondence: Marzyeh Amini MSc PhD Fel-
low, Department of Epidemiology, University Medical Center
Groningen, University of Groningen, Hanzeplein 1, PO Box
30001, 9700 RB Groningen, The Netherlands.
E-mail: m.amini@umcg.nl

89

https://www.cambridge.org/core/terms. https://doi.org/10.1017/thg.2018.6
Downloaded from https://www.cambridge.org/core. Open University Library, on 12 May 2019 at 20:09:13, subject to the Cambridge Core terms of use, available at

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192516707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/thg.2018.6
mailto:m.amini@umcg.nl
https://www.cambridge.org/core/terms
https://doi.org/10.1017/thg.2018.6
https://www.cambridge.org/core


Marzyeh Amini et al.

factors or reverse causation, or also may be consistent with
a causal role of eosinophil in these traits and diseases (As-
tle et al., 2016; Davey Smith & Ebrahim, 2005; Davey Smith
& Hemani, 2014). If a causal association exists, then com-
mon genetic variants associated with eosinophil count may
influence these complex outcomes. A previous genome-
wide association study (GWAS) has identified five genetic
variants associated with eosinophil count in European and
Asian populations (Gudbjartsson et al., 2009). Interestingly,
among the five genetic variants, the rs3184504*T variant
(mapped to SH2B3 gene) allele has been shown to be as-
sociated with a higher risk of myocardial infarction (MI),
and the rs1420101*A variant (mapped to IL1RL1 gene)with
a higher risk of asthma (Gudbjartsson et al., 2009). Other
studies also indicated the associations of some eosinophil
genetic variants with complex outcomes (Aghabozorg Af-
jeh et al., 2014; Lian et al., 2013; Savenije et al., 2011; Talmud
et al., 2009) and the causal role of eosinophil in autoimmune
diseases (Astle et al., 2016). However, the causality of asso-
ciations between eosinophil count and other common com-
plex diseases and their related intermediate traits remained
unclear. An intermediate trait is a measurable component
that lies along the pathway of diseases, which is not a risk
factor rather it manifests the underlying disease.

Implementation of Mendelian randomization (MR)
methodology (Davey Smith & Hemani, 2014; Didelez &
Sheehan, 2007) may clarify the potential causal associa-
tion between eosinophil count and risk of complex out-
comes by transition from healthy intermediate traits to
related diseases. Using the genetic risk score of five consti-
tuting eosinophil genetic variants (eosinophil genetic risk
score (eos-GRS)), the explanatory effects of genetically de-
termined eosinophil on the risk of complex diseases can
be investigated. Recently, we successfully applied the MR
methodology to characterize the causal association between
C-reactive protein (CRP) and complex outcomes (Prins
et al., 2016), as well as between bilirubin and type 2 dia-
betes (T2D) (Abbasi et al., 2015). In this study, using a sim-
ilar methodology, we performedMR, using two approaches
to assess how a genetically determined eosinophil count
contributes causally to the risk of 20 complex intermedi-
ate traits and diseases in three classes of metabolic, cardiac,
and pulmonary outcomes. In the first approach, we per-
formed MR analysis using individual-level data. In the sec-
ond approach, in order to replicate the findings of the first
approach in an expanded sample size, we applied MR anal-
ysis to the summary statistics acquired from six large-scale
GWAS consortia of eosinophil and 14 out of 20 complex
traits and diseases (Figure 1).

Material and Methods
Study Design

To estimate the causal association of eosinophil count on
outcomes of interest, we performed MR analysis using

weighted eos-GRSs. First, we applied MR analysis proce-
dures to the individual-level LifeLines cohort data, adjusted
for age and gender, to assess causal inference on 20 com-
plex intermediate traits and diseases. Second, we tested the
causal association between eos-GRS and 14 outcomes of in-
terest from 6 consortia data (Figure 1).

Outcomes

We focused on three classes of outcomes, including
metabolic, cardiac, and pulmonary outcomes. The first
class of metabolic outcomes comprised body mass index
(BMI, kg/m2), triglycerides (TG,mmol/L), total cholesterol
(TC, mmol/L), high-density lipoprotein cholesterol (HDL-
C, mmol/L), low-density lipoprotein cholesterol (LDL-C,
mmol/L), hemoglobin A1c (HbA1c, %), fasting glucose
(FG, mmol/L), obesity, metabolic syndrome (MetS), and
T2D. The second class of cardiac outcomes included sys-
tolic blood pressure (SBP, mmHg), diastolic blood pressure
(DBP,mmHg),mean arterial pressure (MAP,mmHg), pulse
pressure (PP, mmHg), hypertension (HTN), and MI. The
third class of pulmonary outcomes included forced expi-
ratory volume in one second (FEV1, L), ratio of FEV1 and
forced vital capacity (FEV1/FVC), chronic obstructive pul-
monary disease (COPD), and asthma.

Genetic Variants and GRS

Five genetic variants affecting eosinophil count were se-
lected, based on aGWASdiscovery of over 21,000 European
individuals (Supplementary Table S1; Gudbjartsson et al.,
2009). The weighted GRS was estimated for each individ-
ual in LifeLines by summing the product of multiplying the
number of risk alleles at each locus (range 0–2) with the
corresponding effect sizes obtained from the largest meta
GWAS analysis on eosinophil count, as given in Table S1
(Gudbjartsson et al., 2009).

Data Analyses

In order to assess the causal association of eosinophil on
complex traits and diseases, we performedMR analyses us-
ing eos-GRSs as instrumental variables (Abbasi et al., 2015;
Prins et al., 2016) in two approaches.

MR approach using individual-level data. Details on
the measurement of quantitative traits and the definitions
of diseases in the LifeLines cohort are presented elsewhere
(Amini et al., 2016). We assessed the causal association of
eos-GRSLLs using standard MR procedures in individual-
level data of eosinophil count and 20 outcomes data
available in the LifeLines cohort study, while adjusted for
age and gender (Abbasi et al., 2015).We used the two-stage,
least-squares (2SLS;Abbasi et al., 2015)method (using SPSS
statistical software version 22; SPSS, Inc., Chicago, USA) to
generate the causal estimate of an elevated eosinophil count
on change of intermediate trait levels and risk of diseases.
The first stage of the 2SLS method is to examine the
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Causality of Eosinophils in Common Complex Diseases

FIGURE 1
Flow chart of the study design. BMI = body mass index, TG = triglycerides, TC = total cholesterol, HDL = high density lipoprotein, LDL =
low density lipoprotein, HbA1c = hemoglobin A1c, FG = fasting glucose, SBP = systolic blood pressure, DBP = diastolic blood pressure,
MAP = mean arterial pressure, PP = pulse pressure, HTN = hypertension, MI = myocardial infarction, FEV1 = Forced expiratory volume
in one second, FVC = forced vital capacity, COPD = chronic obstructive pulmonary diseases.

observational association between eos-GRSLLs and
eosinophil count by means of linear regression and saving
the predicted values. In the second stage, the predicted
values of eosinophil count from the first stage are used as
covariates, with traits or diseases as dependent variable in a
linear or logistic regressionmodel (Abbasi et al., 2015). The
causal estimate is this second-stage regression coefficient
for the change in the complex outcomes caused by a 1-SD
change in the eosinophil count (Burgess et al., 2017). In
addition, we estimated an F statistic for each outcome to
ensure the strength of eos-GRSs as instrumental variables
using the formula: F statistic = [R2 × (n−1−K)]/[(1−R2)
×K], where ‘R2’ represents the proportion of variance from
the first-stage, ‘n’ represents the sample size, and ‘K’ repre-
sents the number of instrumental variables included in the
model (i.e., for this study, K = 1; Rice, 1995). An F statistic
greater than 10 indicates sufficient strength to ensure the
validity of the instrument variable analysis, whereas R2 in
percent is used as a measure of the percent contribution
of genotypes to the variation in eosinophil count (Burgess
et al., 2013). To test for pleiotropy, we performed linear and

logistic regression with eosinophil count as an independent
variable and outcomes as a dependent variable, and then
saved the residuals. Next, we tested the correlation between
the genotype and the residuals (Li et al., 2014).

MR approach using summary statistics data. We esti-
mated the causal association of eos-GRSGWAS on outcome
of interest using summary statistics for each eosinophil ge-
netic variant obtained from publicly available large consor-
tia data of studied outcomes (Berndt et al., 2013; Coro-
nary Artery Disease Genetics Consortium et al., 2011;
Dupuis et al., 2010; Global Lipids Genetics Consortium
et al., 2013; Morris et al., 2012; Soranzo et al., 2009; Wain
et al., 2011; Yang et al., 2012). Analyses were performed us-
ing the grs.summary module as part of the Genetics Tool-
boX R (version 2.15.1 for Windows; Vienna, Austria). The
grs.summary module approximates the regression of an
additive GRS onto a response variable or outcome. The
method of analysis is described in detail elsewhere (Das-
tani et al., 2012; Prins et al., 2016). Since in causal inference
the heterogeneity of the genetic variants’ effect potentially
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indicates pleiotropic effects that violate the MR assump-
tion (Abbasi et al., 2015; Burgess et al., 2013; Prins et al.,
2016), we checked the goodness-of-fit test in the gtx pack-
age for the presence of heterogeneity. A p < .05 was con-
sidered statistically significant for the heterogeneity. When
significant heterogeneity was detected, genetic variants that
contributed most to the statistical heterogeneity were itera-
tively removed until the heterogeneity test was no longer
significant, and genetic risk score analyses were repeated
for the remaining subset of genetic variants (Dastani et al.,
2012). Since the ln-transformed eosinophil count was used
as the response variable in the reference study (Gudbjarts-
son et al., 2009), to obtain the effect sizes for each of the
eosinophil genetic variants, a unit increase in ln-eosinophil
equals a 10 symmetric percentage (s%) increase in actual
eosinophil count. This corresponds to a unit change in lev-
els of a continuous outcome or logit of risk-estimate for a
dichotomous outcome (Cole, 2000). Therefore, the causal
estimate of instrumental variable was presented for each
outcome as corresponding to a 10-s% increase in actual
eosinophil count (Rice, 1995).

A p < .05 was taken as nominally significant, and to ad-
dress multiple testing, Bonferroni corrected p values were
considered as statistically significant with p < 2.5×10−3

(0.05/20 total analyses) for individual-level data analyses
and p < 3.6×10−3 (0.05/14 total analyses) for summary
statistics analyses.

Results
Details of the study population characteristics are presented
in Supplementary Results.

Individual Variants Results

Using the individual-level LifeLines data (n = 13,301),
we replicated significant associations of 0.09 SD units in-
crease of eosinophil count with an increase of one copy
of SH2B3-rs3184504∗T (p = 3.9×10−13), 0.04 SD units
with IL5-rs4143832∗G (p = 1.3×10−3), 0.03 SD units
with IKZF2-rs12619285∗G (p = 1.5×10−3), 0.09 SD units
with GATA2-rs4857855∗C (p = 1.4×10−8), and 0.06 SD
units with IL1RL1-rs1420101∗A (p = 1.0×10−4) variants
(Figure S1). We also found that SH2B3-rs3184504∗T ex-
plained 0.30% variance of eosinophil count and this
was 0.05% for IL5-rs4143832∗G, 0.001% for IKZF2-
rs12619285∗G, 0.20% for GATA2-rs4857855∗C, 0.06%
for IL1RL1-rs1420101∗A. eos-GRSLLs explained 0.60% of
eosinophil count variance.

In the sensitivity analysis, we assessed the association of
the five eosinophil genetic variants with metabolic, cardiac,
and pulmonary intermediate traits and diseases usingmeta-
analysis in two large cohorts of LifeLines and theWomens’s
Genome Health Study (WGHS) with a total sample size of
36,595 individuals (Supplementary Methods and Supple-
mentary Results). The results in the metabolic class showed

that an increase in one copy of GATA2-rs4857855∗C was
significantly associated (p< 2.5×10−3) with higher TG and
SH2B3-rs3184504∗T with lower LDL-C. Additionally, an
increase in one copy of SH2B3-rs3184504∗T was nominally
(p < .05) associated with a higher HbA1c level. The re-
sults on metabolic diseases indicated a nominal significant
association of IL5-rs4143832∗G with lower risk of obesity.
In the cardiac class, we found a significant association of
SH2B3-rs3184504∗T with higher SBP, DBP, and MAP val-
ues. In the pulmonary class, there was a nominal significant
association of SH2B3-rs3184504∗T with lower FEV1/FVC.
We also found nominal significant associations of GATA2-
rs4857855∗C with lower risk of COPD and asthma, IKZF2-
rs12619285∗G and IL1RL1-rs1420101∗A with higher risk
of asthma. Details on effects and odds ratio (OR) of meta-
analysis results are presented in Supplementary Results and
Figures S2 and S3.

GRS MR Results

WeperformedMR analyses using two approaches to distin-
guish the potential causal associations between eosinophil
count and three classes of metabolic, cardiac, and pul-
monary outcomes. As the eosinophil count data was not
available in the WGHS, MR analysis in individual-level
data only has been performed in the LifeLines cohort
study.

Figure 2 presents the estimated causal associations of
eosinophil count on traits and diseases in the metabolic
class. In the first approach, eos-GRSLLs showed no signif-
icant causal association with metabolic intermediate traits
and diseases (Figure 2a.1 and a.2). The F statistics de-
rived from individual-level LifeLines data for metabolic
traits were >63.3; and for diseases, except for T2D
(=3.8), they were >13.4. In the second approach, the
eos-GRSGWAS showed that a 10-s% higher genetically de-
termined eosinophil count had a significant association
with a 0.10 (±SE 0.03; p = 3.9×10−4) mmol/L higher
TC, 0.13 (±0.03; p = 4.5×10−6) mmol/L higher HDL-
C, 0.09 (±0.03; p = 3.8×10−3) mmol/L higher LDL-C
(Figure 2b.1). However, there was significant evidence of
heterogeneity of effect sizes among the five constituting
genetic variants from meta-analyses results (Figure S4).
We performed stepwise removal of genetic variants from
eos-GRSGWAS until no significant heterogeneity remained.
This adjustment resulted in the removal of the SH2B3-
rs3184504∗T genetic variant. Consequently, the significant
association of eosinophil count with TC (0.09 ± 0.05,
p = 0.07), HDL-C (0.05 ± 0.04, p = .21), and LDL-C
(0.09 ± 0.04, p = .06) changed to non-significant, while
the direction of effect remained consistent. In addition,
eos-GRSGWAS, as an instrumental variable, showed that a
genetically10-s% increase in eosinophil count was signif-
icantly associated with lower odds of obesity (OR 0.81,
95% confidence interval (CI) [0.74, 0.89]; p = 5.0×10−6;
Figure 2b.2), while no heterogeneity was found in the
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Causality of Eosinophils in Common Complex Diseases

FIGURE 2
The causal effects with standard error of the eosinophil genetic risk scores on quantitative traits and the odds ratio with 95% confidence
intervals on diseases in metabolic class, derived from the individual-level LLs data (eos-GRSLLs; a.1, a.2) and the GWAS consortia (eos-
GRSGWAS; b.1 and b.2) before genetic variants heterogeneity effect adjustment. The causal estimate of the instrumental variable, which
is presented for each outcome, corresponds to a 10-s% increase in actual eosinophil count. No GWAS consortium data was available
for metabolic syndrome disease. GRS = genetic risk score, LLs = LifeLines cohort study, GWAS = genome wide association study, SE =
standard error, OR = odds ratio, CI = confidence interval, BMI = body mass index, TG = triglycerides, TC = total cholesterol, HDL =
high density lipoprotein, LDL = low density lipoprotein, HbA1c = hemoglobin A1c, FG = fasting glucose.
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FIGURE 3
The causal effects with standard error of the eosinophil genetic risk scores on quantitative traits and the odds ratio with 95% confidence
intervals on diseases in cardiac class, derived from the individual-level LLs data (eos-GRSLLs; a.1 and a.2) and the GWAS consortia (eos-
GRSGWAS; b.1 and b.2) before genetic variants heterogeneity effect adjustment. The causal estimate of the instrumental variable, which
is presented for each outcome, corresponds to a 10-s% increase in actual eosinophil count. No GWAS consortium data was available for
hypertension disease. GRS = genetic risk score, LLs = LifeLines cohort study, GWAS = genome wide association study, SE = standard
error, OR = odds ratio, CI = confidence interval, SBP = systolic blood pressure, DBP = diastolic blood pressure, MAP = mean arterial
pressure, PP = pulse pressure, HTN = hypertension, MI = myocardial infarction.

analyses. No significant causal association was found be-
tween eos-GRSGWAS and the other studied metabolic traits
or diseases (Figure 2b.1 and b.2).

Figure 3 shows the estimated causal associations of
eosinophil count on traits and diseases in the cardiac class.
In the first approach, eos-GRSLLs provided nominal signifi-
cant evidence of associations between eosinophil count and

blood pressure measures—an increase of 0.06 (±0.02; p =
.010) mmHg in DBP and 0.05 (±0.02; p = .021) mmHg
in MAP per 1-SD higher eosinophil count (Figure 3a.1).
However, the pleiotropic effect was significant (ppleiotropy <

.05) for both traits. eos-GRSLLs showed no significant causal
association with the other quantitative traits in the car-
diac class (Figure 3a.1). eos-GRSLLs showed moderate but
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Causality of Eosinophils in Common Complex Diseases

FIGURE 4
The causal effect with standard error of the eosinophil genetic risk scores on quantitative traits and the odds ratio with 95% confidence
intervals on diseases in pulmonary class, derived from the individual-level LLs data (eos-GRSLLs) before genetic variants heterogeneity
effect adjustment. The causal estimate of the instrumental variable, which is presented for each outcome, corresponds to a 10-s% increase
in actual eosinophil count. GRS = genetic risk score, LLs = LifeLines cohort study, SE = standard error, OR = odds ratio, CI = confidence
interval, FEV1 = Forced expiratory volume in one second, FVC = forced vital capacity, COPD = chronic obstructive pulmonary diseases.

nominal significant effect on the risk of HTN (OR 1.18, 95%
CI [1.02, 1.36]; p = .04) and MI (OR 1.05, 95% CI [1.02,
1.08]; p= .03; Figure 3a.2) with F statistics equal to 71.2 for
cardiac traits, 19.3 for hypertension, and 2.0 for MI. How-
ever, the pleiotropic effect of eos-GRSLLs for all cardiac out-
comes was significant (ppleiotropy < .05). Stepwise removal of
the potential pleiotropic SH2B3-rs3184504∗T genetic vari-
ant from eos-GRSLLs led to non-significant associations.
When MR analysis of eos-GRS was tested using summary
statistics of consortia data, the eos-GRSGWAS showed that a
10-s% higher genetically determined eosinophil count had
a significant associationwith a 3.10 (±0.67, p= 4.01×10−6)
mmHg higher SBP, 1.92 (±0.43, p = 6.81×10−6) mmHg
higher DBP, and 1.86 (±0.40, p = 3.83×10−6) mmHg
higher MAP (Figure 3b.1). However, there was significant
evidence of heterogeneity of the effect sizes among the
five constituting genetic variants (Figure S4). After re-
moval of SH2B3-rs3184504∗T as a heterogenic genetic vari-
ant, the significant association of SBP (1.38 ± 0.08; p =
.08), DBP (0.32 ± 0.49; p = .52) and MAP (0.67 ± 0.47;
p = .15) changed to non-significant. eos-GRSGWAS pro-
vided no significant causal association on MI, and for
hypertension diseases, no consortium data was available
(Figure 3b.2).

Figure 4 shows the causal associations between
eosinophil count and traits and diseases in the pulmonary
class in individual-level LifeLines data. As the consortium
data on pulmonary traits and diseases was not publicly
available, the pulmonary traits and diseases were only
tested for causal association using eos-GRSLLs. eos-GRSLLs
showed no statistically significant causal association for
these traits and diseases (Figure 4a.1 and a.2). The derived
F statistics were >72.5 for pulmonary traits, 7.4 for COPD,
and 6.2 for asthma diseases.

Discussion
In our study, we replicated the significant associations
between five eosinophil variants and eosinophil count.
Additionally, we found significant associations between
eosinophil genetic risk variants and TG, LDL-C, SBP, DBP,
and MAP. Then, we used MR analyses to investigate the
causal association between eosinophil count and a wide
range of metabolic, cardiac, and pulmonary intermediate
traits and diseases. We combined five eosinophil genetic
variants into eos-GRS as instrumental variable in order to
do MR analyses using individual-level LifeLines data and
summary statistics of the consortia data.We found a protec-
tive causal association between eosinophil count and obe-
sity using summary statistics, but this was inconclusive in
the individual-level LifeLines data.We foundno statistically
significant causal association between eosinophil count and
the other studied traits or diseases using eos-GRSLLs and
eos-GRSGWAS after correction for heterogeneity through re-
moval of potentially pleiotropic genetic variants. This sug-
gests that the associations of blood eosinophil count and the
studied complex traits and diseases may not be causal.

As a pleiotropic multifunctional leukocyte, eosinophil is
important for the initiation and progression of diverse in-
flammatory responses (Jacobsen et al., 2011) that are im-
plicated in the pathophysiology of common complex dis-
eases (Amini et al., 2016; Bafadhel et al., 2012; Fukui et al.,
2009; Kim, Noh et al., 2008; Shim et al., 2006). In ob-
servational studies, the inconsistent findings of correlation
between eosinophil count and complex outcomes (Amini
et al., 2016; Gkrania-Klotsas et al., 2010; Kim, Choi et al.,
2006; Kim, Noh et al., 2008; Meng et al., 2012; Shim et al.,
2006) might be due to the presence of measured and un-
measured confounders (Davey Smith & Ebrahim, 2003,
2005). In MR, a well-known statistical method for causality
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assessment, it is assumed that the genetic variation mod-
ifying the exposure should also affect the risk of outcome
if the exposure is causally involved in the pathogenesis of
outcome (Burgess et al., 2017). As genes randomly allocate
at conception, their effects on exposures are unaffected by
classical confounding factors and reverse causation (Davey
Smith&Ebrahim, 2003) or systemic errors would be largely
prevented compared to an ordinary linear regression anal-
yses (Davey Smith & Ebrahim, 2003, 2005). In a previous
GWA study, Gudbijartson et al. (2009) reported that five
genetic variants (SH2B3-rs3184504, IL5-rs4143832, IKZF2-
rs12619285, GATA2-rs4857855, and IL1RL1-rs1420101)
were associated with eosinophil count in European and
Asian populations. In this study, we replicated those as-
sociations between all five genetic variants and eosinophil
count, with comparable effect sizes and the same direction
of effect compared to the finding from the study of Gud-
bjartson et al.. Thus, as the starting point of our analysis,
we used well-replicated short nucleotide polymorphisms
(SNPs) robustly associatedwith eosinophil count. However,
the explained variance of blood eosinophil count was lim-
ited (ranging from 0.001% to 0.3% from individual genetic
variants and 0.6% from total genetic risk score).

Several observational studies indicated that a higher
eosinophil count was associated with a higher risk of
metabolic disorders (Amini et al., 2016; Babio et al., 2013;
Kim, Choi et al., 2006; Meng et al., 2012; Shim et al., 2006).
In our study, using eos-GRSGWAS, we found a significant
causal association between a 10-s% increase in eosinophil
count and a 1.23-fold decrease in the risk of obesity. How-
ever, using the individual-level data from the LifeLines
cohort study, we did not find this causal association with
obesity. In the individual-level data analysis, we used a two-
stage method, which is efficient but can be biased with
a weak instrument; in the summary data analysis, how-
ever, the likelihood-based method has been used, which
is asymptotically efficient and less biased (Burgess et al.,
2017). In the summary data analysis approach, informa-
tion about genetic variants in eosinophil count (Gudbjarts-
son et al., 2009) and metabolic outcomes (Berndt et al.,
2013; Dupuis et al., 2010; Global Lipids Genetics Consor-
tium et al., 2013; Morris et al., 2012; Yang et al., 2012) came
from different sources of European ancestry, but it assumes
that the two samples were from comparable populations
in terms of genomic ancestry (Burgess et al., 2015); there-
fore, ethnic difference could not have affected our results.
But, when we compared the odds estimates from our in-
strumental variable analysis (0.81) with the ordinary lin-
ear regression analysis (Amini et al., 2016; 1.18), we found
no concordant estimates in obese individuals (Amini et al.,
2016; Kim, Noh et al., 2008; Meng et al., 2012). Taken to-
gether, it remains inconclusive whether eosinophil count
is indeed a causal protective factor for obesity, as no other
previous biologically plausible reason has been reported for
such a causal association. Therefore, it is highly unlikely

that they have true causal effects. Using eos-GRSs from
individual-level LifeLines data and consortia data, we found
no significant causal association with any of the other in-
vestigated quantitative traits and diseases in the metabolic
class. In the study by Astle et al. (2016), they also could not
find any causal association between eosinophil and cardio-
metabolic outcomes in spite of their larger sample size.
In sensitivity analysis using individual genetic variants, we
found a significant association of GATA2-rs4857855 and
higher TG. Also, SH2B3-rs3184504 showed significant as-
sociation with lower LDL-C, which was consistent with re-
sults from Talmud et al. (2009), while in other studies this
variant showed either a significant association with higher
LDL-C (Aghabozorg Afjeh et al., 2014) or no significant as-
sociationwith LDL-C level at all (Gudbjartsson et al., 2009).
Thus, current evidence does not support a causal role of
eosinophil count for metabolic outcomes.

In the cardiac class, using eos-GRSs in both ap-
proaches, there was a significant causal association be-
tween eosinophil count and SBP, DBP, and MAP mea-
surements; however, these associations were largely influ-
enced by the SH2B3-rs3184504 variant. A few epidemio-
logical studies showed inconsistent results on the associa-
tion between eosinophil count and blood pressure (Amini
et al., 2016; Kim, Noh et al., 2008; Meng et al., 2012). We
also could not quantify any significant causal association
between eosinophil count and cardiac outcomes. This re-
sult is in line with Astle et al.’s (2016) study, which did
not find causal associations between blood cell indices, in-
cluding eosinophil and cardiovascular diseases (Astle et al.,
2016), using a large sample size. In our study, SH2B3-
rs3184504 showed a significant association with SBP, DBP,
and MAP, which was consistent with results of the Interna-
tional Consortium for Blood Pressure Genome-WideAsso-
ciation Studies et al. (2011).Other studies indicated that this
genetic variant was also significantly associated with other
blood cell traits (Tin et al., 2013; van der Harst et al., 2012),
blood platelet numbers (Soranzo et al., 2009), hemoglobin
concentration (Ganesh et al., 2009), hematocrit (Ganesh
et al., 2009), LDL-C (Talmud et al., 2009), cardiovascular
risks (Gudbjartsson et al., 2009; Schunkert et al., 2011),
and multiple autoimmune disorders (Alcina et al., 2010;
Barrett et al., 2009; Stahl et al., 2010). The association of
SH2B3-rs3184504 variant with multiple complex pheno-
types points to its strong pleiotropic characteristic (Ding &
Kullo, 2011; Pickrell et al., 2009). In our study, there was
also statistical evidence for a pleiotropic effect of this vari-
ant, which violates MR assumptions. In a Chinese pop-
ulation study, no significant associations were found be-
tween eosinophil genetic variants and chronic heart dis-
eases (Lian et al., 2013; Ye et al., 2015). Altogether, across the
different analyses (evidence from the observational study
(Amini et al., 2016) and MR analyses), the results on car-
diac outcomes consistently suggested an absence of causal
association.
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In the pulmonary class, using eos-GRSLLs, we found no
significant causal association between eosinophil count and
pulmonary traits and diseases. Since consortium data on
pulmonary outcomes was not available, MR analysis using
summary statistics could not be performed. In individual-
level LifeLines data, the F statistic values for pulmonary
traits were higher than 72.5, but for diseases the values
were less than 7.4, indicating that weak instrument bias
is likely to have had a substantial influence on our analy-
ses in pulmonary diseases. Statistical power in MR anal-
ysis is a function of parameters including the proportion
of variation in the exposure variable explained by the ge-
netic predictor and the true causal association between
the exposure and outcome variable. Therefore, despite the
significant association between eosinophil count and pul-
monary outcomes in previous observational studies (Amini
et al., 2016; Hospers et al., 2000; Mensinga et al., 1992), we
found no causal association of eosinophil on pulmonary
diseases, which might be due to power limitations of the
study. Also, in our large cohort, we showed no causal asso-
ciation of eosinophils with pulmonary intermediate traits
(FEV1 and FEV1/FVC) as determinants of pulmonary dis-
eases pathophysiology. Our results were inconsistent with
a study from the United Kingdom, which indicated signif-
icant causal associations between eosinophils and asthma,
and provided evidence that eosinophils are key effector cells
in the pathogenesis of asthma (Astle et al., 2016). The ob-
served causal association in that study may be explained
by a larger sample size and stronger instrumental variable
(Astle et al., 2016). Since patients with pulmonary diseases
can be clinically or physiologically stratified into several
subgroups (Fahy, 2015), the lack of causal associations in
our study might be due to biases by subgroup stratifica-
tion or possibly insufficient power to identify a relatively
small causal effect of eosinophil on pulmonary outcomes
in our database. As well, environmental factors over life-
time might mediate the potential causal association be-
tween genetically elevated eosinophil and asthma, which
needs to be investigated.Whenwe tested the association be-
tween individual eosinophil genetic variant and pulmonary
outcomes, we noticed nominal associations of SH2B3-
rs3184504with FEV1/FVC,GATA2-rs4857855with COPD,
IKZF2-rs12619285 and IL1RL1-rs1420101 with asthma.
Several studies indicated that IL1RL1 gene cluster genetic
variants, including IL1RL1-rs1420101, were associatedwith
asthma, atopy, and the development of childhood asthma
(Akhabir et al., 2014; Ali et al., 2009; Gudbjartsson et al.,
2009; Reijmerink et al., 2008; Savenije et al., 2011; Torger-
son et al., 2011). Consistent with our results, Tulah et al.
(2013), using UK family cohort data, found no association
between IL1RL1-rs1420101 and asthma and FEV1; how-
ever, in an Icelandic cohort study, this variant did show
a significant association with asthma (Gudbjartsson et al.,
2009). When all of the evidence is taken together, a di-
rect link between eosinophil and pulmonary outcomes

remains to be elucidated and should be interpreted with
caution.

Our study has several strengths. We applied MR anal-
yses using two models of individual-level data and sum-
mary statistics data. In individual-level LifeLines data, all
study participants followed the same standardized proto-
cols and were examined at the same clinic; thus, the mea-
surements and laboratory assays for all subjects were com-
parable. For the consortia summary statistics data, the large
sample size is a major advantage. However, there were po-
tential biases to be considered in our analysis. First, the
power to detect an association in population-based stud-
ies is restricted by a low prevalence of disease (Table S2);
thus, the non-significant results in diseases may not war-
rant rejection of the role of eosinophil-associated genetic
variants in the pathogenesis of complex diseases. Second,
using multiple genetic variants in a GRS for MR analysis,
statistical power can be increased by explaining a greater
proportion of eosinophils variance. Despite this, only a
small proportion (0.6%) of variance in eosinophils was ex-
plained. Therefore, follow-up analyses are needed using a
stronger eosinophil genetic risk score from forthcoming
studies. Third, it should be taken into account that gene–
gene and gene–environment interaction effects probably
contribute to inter-individual variation and the causal ef-
fect size of this hematologic trait. Fourth, formany complex
diseases, the disease is not a single disease but rather a syn-
drome consisted ofmany heterogeneous underlyingmolec-
ular mechanisms. For example, both asthma and COPD
include eosinophilic and non-eosinophilic types. As the
importance of eosinophil as a causative factor is really de-
pendent on which population to study, follow-up studies
may need to focus on a stratified population in these com-
plex diseases.

Conclusion
Following the observational association of eosinophil count
with complex outcomes, we found that eosinophil genetic
variants were significantly associated with TG, LDL-C, SBP,
DBP, and MAP. However, the causal role of eosinophil
on complex metabolic, cardiac, and pulmonary outcomes
could not be verified. The causality of eosinophils in the
pathogenesis of asthma needs to be investigated in fur-
ther studies with stronger instrumental variables using a
larger number of eosinophil count-associated SNP sets.
Rather than being a causal effect, our results suggest that
the widespread associations of eosinophil count with com-
plex disease outcomes in observational studies may at least
partly be caused by reverse causation andpleiotropic effects.
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