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ABSTRACT

The horizontal and vertical structure of large-amplitude internal solitary waves propagating in stratified waters
on a continental shelf is investigated by analyzing the results of numerical simulations and in situ measurements.
Numerical simulations aimed at obtaining stationary, solitary wave solutions of different amplitudes were carried
out using a nonstationary model based on the incompressible two-dimensional Euler equations in the frame of
the Boussinesq approximation. The numerical solutions, which refer to different density stratifications typical
for midlatitude continental shelves, were obtained by letting an initial disturbance evolve according to the
numerical model. Several intriguing characteristics of the structure of the simulated large-amplitude internal
solitary waves like, for example, wavelength–amplitude and phase speed–amplitude relationship as well as form
of the locus of zero horizontal velocity emerge, consistent with those obtained previously using stationary Euler
models. The authors’ approach, which tends to exclude unstable oceanic internal solitary waves as they are
filtered out during the evolution process, was also employed to perform a detailed comparison between model
results and characteristics of large-amplitude internal solitary waves found in high-resolution in situ data acquired
north and south of the Strait of Messina, in the Mediterranean Sea. From this comparison the importance of
using higher-order theoretical models for a detailed description of large-amplitude internal solitary waves ob-
served in the real ocean emerge. Implications of the results showing the complexity related to a possible inversion
of sea surface manifestations of oceanic internal solitary waves into characteristics of the interior ocean dynamics
are finally discussed.

1. Introduction

Internal solitary waves are thought to be ubiquitous
in the World Ocean (Ostrovsky and Stepanyants 1989).
In several places, for example, in the Andaman Sea
(Osborne and Burch 1980), in the Sulu Sea (Apel et al.
1985), and at the Mascarene Ridge (Konyaev et al.
1995), large-amplitude internal solitary waves are ob-
served, that is, their amplitudes and typical length scale
of the vertical stratification are of the same order. Al-
though they can evolve from a large amount of distur-
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bances in the oceanic density field like those caused by
riverine or glacial intrusions into coastal waters, oscil-
lations of oceanic fronts, or abrupt atmospheric pressure
or wind variations, internal solitary waves mainly arise
from the disintegration of the internal tides generated
by the interaction of a barotropic tidal flow with to-
pographic features like, for example, strait sills, conti-
nental slopes, or sandbanks. Oceanic internal solitary
waves are thus thought to exert a significant contribution
to the dissipation of the rotational energy of the earth–
moon system and to the mixing of different water mas-
ses in the ocean (Apel et al. 1995; Munk and Wunsch
1998). As internal solitary waves can be linked to dif-
ferent phenomena occurring within the water column
like, for example, variations in water velocity, salinity,
temperature, or in passive tracer concentration, or at the
sea surface like, for example, modulation of the surface
wave spectrum, surface wave breaking, or accumulation
of surfactants, different measurement techniques can be
employed for their detection. Among them, remote sens-
ing has proved to be a powerful tool for studying oceanic
internal solitary waves (Apel et al. 1975; Alpers et al.
1996) and for assessing their relevance to the recog-
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nition of larger-scale oceanic fluctuations: Brandt et al.
(1999), for instance, demonstrated the possibility of in-
ferring characteristics of the subbasin circulation in the
central Mediterranean Sea by analyzing synthetic ap-
erture radar images of internal solitary waves generated
in the Strait of Messina.

The huge amount of observations of oceanic internal
solitary waves made in the last decades finds its coun-
terpart in a great number of theoretical studies and lab-
oratory experiments devoted to understanding the gen-
eral nature of this oceanic phenomenon. The simplest
theoretical model capable of describing the dynamics of
oceanic internal solitary waves in shallow waters is the
Korteweg–de Vries (KdV) equation (see, e.g., Benney
1966). In this model nonlinear waves of invariant form
can emerge from an initial disturbance as a result of the
equilibrium between phase and amplitude dispersion.
However, there are several limitations to the applica-
bility of the KdV model to the dynamics of internal
solitary waves in the real ocean: for instance, the ca-
pability of the KdV model of reproducing experimental
results decreases as wave amplitudes increase. The ac-
knowledgment of this limitation of the KdV model led
to the development of different models containing high-
er-order nonlinearities. Among them are two-layer mod-
els as well as continuously stratified models. To the first
category of extended models belong, for example, the
equations proposed by Djordjevic and Redekopp (1978),
Miles (1979, 1981), Koop and Butler (1981), Funakoshi
and Oikawa (1986), and Miyata (1988). Note that in the
last equation, which has been successfully used to ex-
plain laboratory observations of large-amplitude inter-
nal solitary waves (Michallet and Barthelemy 1998), the
full nonlinearity of the shallow-water theory up to the
first-order phase dispersion is included, that is, no lim-
itation is imposed on the wave amplitude. To the second
category belong, for example, the equations proposed
by Lee and Beardsley (1974), Benney and Ko (1978),
Gear and Grimshaw (1983), Vlasenko (1994), and
Grimshaw et al. (1997). Note that all the aforementioned
models represent either weakly nonlinear and/or weakly
nonhydrostatic approximations of the equations of mo-
tion. In order to overcome this limitation in the descrip-
tion of large-amplitude internal solitary waves, numer-
ical integration of the complete set of the fully nonlinear,
nonhydrostatic Euler equations was also performed. In
this regard two different approaches were attempted: 1)
the integration of the stationary Dubreil-Jacotin–Long
equation (Dubreil-Jacotin 1937; Long 1953; Davis and
Acrivos 1967; Tung et al. 1982; Turkington et al. 1991;
Brown and Christie 1998) and 2) the integration of the
nonstationary Euler equations (Lamb and Yan 1996;
Terez and Knio 1998). Using the first approach a very
broad set of solitary wave solutions can be found, in-
cluding waves characterized by a zone of closed cir-
culation where areas of unstable stratified fluid may exist
(Brown and Christie 1998). The second approach, which
consists of producing internal solitary waves as a result

of the evolution of an initial disturbance, tends to filter
out unstable waves that, nevertheless, can be solutions
of the stationary problem. Thus, although both ap-
proaches can be used to study characteristics of large-
amplitude internal solitary waves, the first one empha-
sizes the mathematical complexity of nonlinear disper-
sive waves, while from the second one information in-
herent in their realistic manifestations in the ocean and/
or in the atmosphere can be more easily inferred.

In the present paper we study the structure of large-
amplitude internal solitary waves by analyzing results
of a nonstationary model based on the incompressible
two-dimensional Euler equations and by analyzing high-
resolution in situ data acquired north and south of the
Strait of Messina, in the Mediterranean Sea. The paper
is organized as follows. In section 2 the numerical model
is described. The analysis of numerical results revealing
several intriguing characteristics of large-amplitude in-
ternal solitary waves and their observational evidence
are presented in section 3. Finally, in section 4, the
results are discussed and conclusions are presented.

2. The model

a. Model theory

The numerical model used in the present investigation
is based on the incompressible two-dimensional Euler
equations in the frame of the Boussinesq approximation.
The model is capable of describing the dynamics of a
continuously stratified fluid in a vertical plane. Note
that, in this model, the Coriolis force is neglected and
the water depth H is constant. In the following we refer
the model equations to a Cartesian x–z coordinate sys-
tem with the z axis directed vertically upward. In this
frame, the equations that constitute our model are

rxV 1 J(V, C) 5 g , (1)t ra

ra 2r 1 J(r, C) 1 N C 5 0. (2)t xg

Here V(x, z, t) is the vorticity,

V 5 Cxx 1 Czz, (3)

and C(x, z, t) represents the two-dimensional stream-
function,

Cz 5 u, Cx 5 2w, (4)

where u(x, z, t) and w(x, z, t) are the horizontal and ver-
tical velocity components in the x and z direction re-
spectively. The reference density (which in our model
is the sea surface density), the density anomaly, and the
undisturbed density profile are denoted by ra, r(x, z, t),
and r0(z), respectively; N(z) 5 (2g(r0)z/ra)1/2 is the
undisturbed Brunt–Väisälä frequency, and J the Jaco-
bian operator: J(A, B) 5 AxBz 2 AzBx. At the sea surface
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(z 5 0) and at the bottom (z 5 2H) the following
boundary conditions are imposed:

C 5 0, V 5 0, r 5 0. (5)

For the simulation of the dynamics of internal solitary
waves, which will be presented in the following section,
the numerical model is integrated over a domain moving
with the phase velocity cf of the leading wave (it cor-
responds to the fastest disturbance propagating in the
positive x direction, i.e., to the right). This implies that
the disturbances generated during the adjustment phase
move to the left of the model domain and never reach
the leading wave again, as their phase velocities must
be smaller than cf . The right-hand boundary x 5 xr as
well as the left-hand boundary x 5 xl are located far
from the origin x 5 0, which coincides with the position
of the maximum isopycnal displacement of the leading
wave. The following boundary conditions are imposed
at x 5 xr:

C 5 0, V 5 0, r 5 0 (6)

and at x 5 xl:

]C ]V ]r
5 0, 5 0, 5 0. (7)

]x ]x ]x

The boundary conditions (6) correspond to an assumed
undisturbed ocean for x $ xr. As noted before, all dis-
turbances traveling with a phase velocity smaller than
cf will, sooner or later, leave the model domain at x 5
xl. Thus, in principle, the model results are independent
of the particular choice of the boundary conditions there.
Therefore, these boundary conditions are chosen solely
to ensure numerical stability, as they avoid the growth
of strong gradients in the model region near x 5 xl,
which could arise from numerical inaccuracies. Equa-
tions (1)–(2) with the boundary conditions (5)–(7) are
solved numerically by using the splitting-up scheme dis-
cussed in detail by Marchuk (1974): The vorticity trans-
port equation is integrated in time using the second-
order Crank–Nicholson scheme, while the spatial de-
rivatives are approximated using a second-order central
difference scheme. At each temporal step an implicit
system of equations in the form of a tridiagonal matrix
is obtained that is solved using standard techniques. The
streamfunction is then computed from the vorticity us-
ing the Laplace equation (3). For its solution a standard
relaxation method is used. Finally the density r is com-
puted using the same methodology used for the vorticity.
The temporal spacing Dt was selected to satisfy the
Courant–Friedrichs–Levy condition: Dx/Dt . cf , where
Dx represents the spatial grid step along the x axis. The
calculations were carried out using spatial grid steps Dx
5 2 m and Dz 5 1 m. The lattice on which the cal-
culations were performed consists of 4000 nodes in the
x direction. In the z direction the amount of nodes de-
pends on the water depth.

b. Model setup

The model was initialized using analytical solitary
waves solutions of the stratified KdV equation (see, e.g.,
Vlasenko 1994):

x 2 Vt
2C(x, z, t) 5 2AV sech W (z). (8)n1 2L

Here A represents the wave amplitude (i.e., the maxi-
mum isopycnal displacement of the solitary wave), V
its phase speed

N H AgmaxV 5 1 2 , (9)1 23dHmÏm nn

and L its horizontal length scale

36H
L 5 2 . (10)! Ag

Here Nmax is the maximum Brunt–Väisälä frequency,
0

2 2W N dzE n

2H
d 5 , (11)

0

2W dzE n

2H

0

3 2W (N ) dzE n z

2H
g 5 2m . (12)n 0

2W dzE n

2H

and

The parameters mn and Wn(z) are the eigenvalues and
the eigenfunctions of the boundary value problem:

(Wn)zz 1 mnN2Wn 5 0

with Wn(0) 5 Wn(2H ) 5 0, (13)

where n is the mode number. To initialize our numerical
model, we used first-mode (n 5 1) internal solitary wave
solutions of the stratified KdV equation with different
amplitudes. Inserting (8) into (3), the vorticity associ-
ated to the analytical internal solitary waves was ob-
tained. Imposing the condition of isopycnic motion r
5 r(C 2 Vz), the density anomaly was calculated from
the undisturbed density profile. The initial fields de-
scribed above represent stationary solitary wave solu-
tions in a weakly nonlinear, weakly nonhydrostatic me-
dium. Once inserted into a nonstationary Euler model,
they will evolve toward new stationary solitary wave
solutions. The model is thus run until stationary solu-
tions are reached. Thus using this method internal sol-
itary waves of different amplitudes can be generated.
In order to control that stationary solitary waves were
indeed produced the following strategy was applied: As
the change in shape, amplitude, velocities, and energy
was less than 0.1% over a period of 20T, where
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FIG. 1. Vertical profiles of (a) density anomalies and (b) Brunt–
Väisälä frequencies characterizing the three density stratifications
(see Table 1) for which numerical simulations were carried out using
our Euler model. Solid lines refer to stratification 1, dashed lines to
stratification 2, and dotted lines to stratification 3. The Brunt–Väisälä
frequencies are computed using Eq. (14) with the three sets of pa-
rameters listed in Table 1.

TABLE 1. Values of the parameters characterizing the three water
stratifications [see Eq. (14)] used in the numerical simulations.

Stratifi-
cation

Nmax

(s21)
HN

(m)
LN

(m)

1
2
3

0.05
0.03
0.015

35
35
35

12.35
35

196.5

T 5 L/cf , the wave was considered as a stationary sol-
itary wave.

3. Characteristics of large-amplitude internal
solitary waves

a. Model results

In this section we discuss several characteristics of
large-amplitude internal solitary waves inferred from
our nonstationary Euler model for three different density
stratifications as illustrated in Fig. 1. The Brunt–Väisälä
frequencies characterizing the three stratifications be-
long to the following three-parameter family of curves:

2122(z 1 H )NN(z) 5 N 1 1 . (14)max [ ]1 2LN

Here HN represents the depth where the Brunt–Väisälä
frequency is maximum and LN a vertical length scale
characterizing the Brunt–Väisälä frequency variation. In
Table 1 the values of Nmax, HN, and LN used for deter-
mining the three stratifications are listed. These strati-
fications represent typical water mass distributions on
midlatitude continental shelves (in the simulations the
water depth is assumed to be 300 m) characterized by
the presence of a seasonal pycnocline of different
strength. Note that the three different density profiles
share the same surface and bottom density values.

The following discussion is devoted to elucidate dif-
ferent characteristics of large-amplitude internal solitary
waves, which, as a result of our numerical simulations,
emerge as general peculiarities of these oceanic features.
For the sake of clarity we will thus present here only
results obtained using the stratification identified by the
second set of parameters given in Table 1.

Figure 2a shows the density field of a large-amplitude
internal solitary wave as obtained by using the numer-
ical Euler model (solid lines) and as calculated by using
the analytical KdV model (dashed lines) for the same
density stratification. Both waves have the same am-
plitude, that is, their maximum isopycnal displacements
coincide. In a near-surface layer of about 40 m thickness
the isopycnal displacements of the Euler internal soli-
tary wave exceed those of the KdV internal solitary
wave. In the lower layer the opposite occurs. A re-
markable difference between Euler and KdV internal
solitary waves can be noted by comparing their wave-
lengths. In the present case the wavelength of the Euler
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FIG. 2. Fields of (a) density anomaly (kg m23) and (b) horizontal
velocity (cm s21) of a large-amplitude internal solitary wave obtained
using stratification 2 (see Table 1). In (a) the solid lines refer to the
results of our Euler model, the dotted lines to the results of the KdV
model. Panel (b) refers uniquely to the results of our Euler model.
Solid lines denote positive horizontal velocities and dotted lines neg-
ative horizontal velocities.

internal solitary wave is larger than that of the KdV
internal solitary wave. The dependence of the wave-
length of Euler internal solitary waves on density strat-
ification and wave amplitude is, however, nontrivial. It
will be discussed later. Figure 2b shows the horizontal
velocity field of the same Euler internal solitary wave
depicted in Fig. 2a. The form of the locus of zero hor-
izontal velocity (heavy solid line) differs remarkably
from the horizontal straight line that would result from
the KdV model. Note that the minimum horizontal ve-
locity is not located at the bottom, like in the KdV
solution. This indicates that the modal structure of Euler
internal solitary waves is affected by the higher-order
nonlinearity.

Figure 3 shows the vertical structure of Euler and
KdV internal solitary waves of different amplitudes for
the same density stratification discussed above. De-
picted are vertical profiles of (a) the normalized iso-
pycnal displacements calculated at the wave center, (b)
the normalized horizontal velocities calculated at the
wave center, and (c) the normalized vertical velocities
calculated at the positions of maximum vertical velocity.
The following parameters of KdV internal solitary
waves having the same amplitude as the presented Euler
internal solitary waves were used for the normalization:
(a) wave amplitude (AKdV), (b) maximum horizontal ve-
locity (UKdV), and (c) maximum vertical velocity (WKdV).
Choosing this normalization, the resulting vertical pro-
files of the KdV internal solitary waves are independent
on wave amplitude. Euler internal solitary waves pos-
sess several characteristics that differ from KdV internal
solitary waves. In fact, depth of maximum isopycnal
displacement (see Fig. 3a), depth of zero horizontal ve-
locity (see Fig. 3b), and depth of maximum vertical
velocity (see Fig. 3c) are functions of wave amplitude:
While the first parameter decreases, the second and third
increase with increasing wave amplitude. In general, the
difference between Euler and KdV internal solitary
waves increases with increasing amplitude. Note that
the maximum horizontal velocity as well as the vertical
velocities of Euler internal solitary waves are smaller
than those of the KdV internal solitary waves, inde-
pendent of wave amplitude. This is a consequence of
the fact that, for this stratification, in the KdV model
nonlinear effects are overestimated.

Figure 4 shows the normalized wavelength of Euler
and KdV internal solitary waves of different wave am-
plitudes as a function of depth for the same stratification
discussed above. The wavelength is defined as follows:

`1
l(z) 5 z(x, z) dx. (15)E2a(z)

2`

Here z(x, z) represents the displacement of the isopycnic
whose undisturbed depth is 2z, and a(z) its value at the
wave center. Note that l(z) is the equivalent square
wavelength (see, e.g., Miyata 1988). In Fig. 4, a nor-
malization was carried out by using the wavelength lH

defined at the depth z 5 2HN. Choosing this normal-
ization, the resulting wavelengths of the KdV internal
solitary waves, which do not depend on depth, are also
independent of wave amplitude. For every Euler internal
solitary wave amplitude, the wavelength increases with
increasing depth, this dependence being stronger for
larger amplitudes.

We will now discuss the dependence of different char-
acteristics of the simulated large-amplitude internal sol-
itary waves on density stratification. Figure 5 shows the
horizontal velocity field of two large-amplitude internal
solitary waves as obtained by using the numerical Euler
model for the density stratification identified by the first
and third set of parameters given in Table 1. In the case
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FIG. 3. Vertical profiles of (a) normalized isopycnal displacements calculated at the wave center, (b) normalized
horizontal velocities calculated at the wave center, and (c) normalized vertical velocities calculated at the position of
maximum vertical velocity as simulated by our Euler model and as calculated by the KdV model for stratification 2
(see Table 1) for different wave amplitudes. The normalization used is explained in the text.

FIG. 4. Normalized wavelengths as a function of the density anom-
aly as obtained by using our Euler model and as calculated by using
the KdV model for stratification 2 (see Table 1) for different wave
amplitudes. The normalization used is explained in the text.

of a density stratification characterized by the presence
of a sharp pycnocline (Fig. 5a), that is, for a density
stratification close to a two-layer one, a near-surface
layer exists where the horizontal velocity is almost in-
dependent of depth. Near the pycnocline, however, a

narrow region characterized by sharp vertical gradients
of the horizontal velocity is found where the horizontal
velocity reverses. Note that, close to the wave center,
the locus of zero horizontal velocity follows the pyc-
nocline, as it would result for an internal wave in a two-
layer ocean. On the contrary, in the case of a density
stratification characterized by the presence of weak ver-
tical density gradients (Fig. 5b) this locus is an almost
horizontal straight line.

In Fig. 6 the wavelength–amplitude relationship (Fig.
6a) as well as the phase speed–amplitude relationship.
(Fig. 6b) are plotted for different theoretical models and
different density stratifications. The theoretical models
include our Euler model, the KdV model, and the Miyata
model (Miyata 1988). The results referring to our Euler
model and to the KdV model were calculated for the
three density stratifications listed in Table 1, those re-
ferring to the Miyata model were calculated for a two-
layer stratification in which the depth of the maximum
Brunt–Väisälä frequency as well as the surface and bot-
tom densities coincide with the corresponding values
common to the three density stratifications listed in Ta-
ble 1. As discussed above, the Euler model predicts
depth-dependent wavelengths. The results of Fig. 6a
obtained by using the Euler model refer to the isopycnic
whose undisturbed depth coincides with the depth of
the maximum Brunt–Väisäla frequency. The bars give
the wavelength variation within an internal solitary
wave in the density anomaly interval ranging from 0.4
to 2.3 kg m23. For small wave amplitudes the difference
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FIG. 5. Fields of horizontal velocity (cm s21) of large-amplitude
internal solitary waves obtained by using our Euler model for (a)
stratification 1 and (b) stratification 3 listed in Table 1. Solid lines
denote positive horizontal velocities and dotted lines negative hori-
zontal velocities.

FIG. 6. Relationship between (a) wavelength and wave amplitude
and (b) nondimensional phase speed and wave amplitude of internal
solitary waves as simulated by our Euler model and as calculated by
the KdV model for the stratifications 1–3 (see Table 1), and as cal-
culated by the Miyata model for the two-layer stratification discussed
in the text. The nonlinear phase speed c is normalized with the linear
phase speed c0.

in wavelength between Euler and KdV internal solitary
waves is small. This difference increases with increasing
amplitude. In contrast to the results of the KdV model,
for large amplitudes the wavelength of Euler internal
solitary waves increases with increasing amplitude. This
characteristic corresponds to a known characteristic of
the Miyata model as well as of previous stationary Euler
models (Brown and Christie 1998). The dependence of
the wavelength of Euler internal solitary waves on
depth, given by the bars in Fig. 6a, increases with in-
creasing wave amplitude and decreasing strength of the
pycnocline. While in the presence of weak vertical den-
sity gradients the difference in phase speed between
Euler and KdV internal solitary waves is small, even
for large wave amplitudes; for a sharp pycnocline it is
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FIG. 7. Undisturbed vertical profiles of (a) densities and (b) Brunt–
Väisälä frequencies measured by the CTD chain near the fronts of
the internal solitary waves north (thick lines) and south (thin lines)
of the Strait of Messina depicted in Fig. 8. The dotted lines refer to
the smooth Brunt–Väisälä frequency profiles used in the numerical
simulations.

small only for small wave amplitudes. For these strat-
ifications a much better agreement can be observed be-
tween Euler and Miyata internal solitary waves.

b. Observational evidence

Several of the characteristics of large-amplitude in-
ternal solitary waves discussed in the previous section
can be observed in the real ocean. In this section we
compare high-resolution hydrographic and current data
with results obtained by applying our Euler model as
well as the KdV model. The hydrographic and current
data were acquired north and south of the Strait of Mes-
sina, in the central Mediterranean Sea, during the At-
lantic Ionian Stream 1995 cruise (AIS’95) and during
the Rapid Response 1997 cruise (RR’97) from aboard
the NRV Alliance of the SACLANT Undersea Research
Centre, La Spezia, Italy. The hydrographic data were
obtained using a conventional CTD (conductivity, tem-
perature, depth) probe and a towed CTD chain (Sell-
schopp 1997); the current data were obtained using a
75 kHz ADCP (acoustic Doppler current profiler).
mounted on the vessel. The observations refer to two
large-amplitude internal solitary waves measured about
25 km north and 45 km south of the strait sill. At these
locations a water depth of about 300 m and 1000 m
respectively was encountered. The observed waves re-
sulted from the disintegration of internal bores generated
by the interaction of the barotropic semidiurnal tidal
flow with the strait sill (Brandt et al. 1997). Due to the
large distance traveled by the waves compared to the
typical length scale of the front of the parent internal
bore, we feel confident that our data refer to almost
stationary internal solitary waves.

For carrying out a comparison between observed and
simulated internal solitary waves, a coordinate trans-
formation was applied to the data. As the ship crossed
each wave several times, the solitary wave propagation
speeds could be estimated. Given these propagation
speeds, the measured density and velocity fields could
be referred, for each wave, to a common point in time.
In Fig. 7a the undisturbed density profiles measured by
the CTD chain near the wave fronts are shown. The
corresponding Brunt–Väisälä frequency profiles togeth-
er with the smooth profiles used in the numerical sim-
ulations are shown in Fig. 7b. Using these profiles and
an initial distubance, the Euler model was run until a
stationary solitary wave solution was reached. After
several model runs initialized using KdV internal sol-
itary waves of different amplitudes, we were able to
produce Euler internal solitary waves having almost the
same amplitudes as the measured ones. In Fig. 8 the
measured and simulated density (Fig. 8a), horizontal
velocity (Fig. 8b), and vertical velocity (Fig. 8c) fields
referring to the internal solitary waves north (left panels)
and south (right panels) of the Strait of Messina are
shown. Several characteristics of the observed and sim-
ulated internal solitary waves like, for example, shape

of the isopycnal displacements, locus of zero horizontal
velocity, position of the extrema in the vertical velocity,
as well as values of the maximum horizontal and vertical
velocity are very similar, thus confirming that our Euler
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FIG. 8. Fields of (a) density (kg m23), (b) horizontal velocity (cm s21), and (c) vertical velocity (cm s21) of two large-amplitude internal
solitary waves as measured by the CTD chain and the ADCP north (left panels) and south (right panels) of the Strait of Messina and as
simulated by our Euler model (dotted lines).
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TABLE 2. Values of several characteristics of the large-amplitude internal solitary waves north and south of the Strait of Messina as
measured by the CTD chain and the ADCP, and as simulated by the Euler model.

Characteristic

North

Measured Simulated

South

Measured Simulated

Amplitude (m)
Phase speed (m s21)
Max horizontal velocity (m s21)
Max vertical velocity (m s21)
Min vertical velocity (m s21)

55
1.0
0.61
0.16

20.11

50
1.0
0.67
0.16

20.16

34
1.2
0.81
0.16

20.19

33
1.1
0.83
0.15

20.15
Depth of zero horizontal velocity

at the wave center (m) 94 91 85 77

FIG. 9. Vertical profiles of (a) isopycnal displacements calculated at the wave center, (b) horizontal velocities calculated
at the wave center, and (c) vertical velocities calculated at the position of extremal vertical velocities as measured by
the CTD chain and the ADCP north of the Strait of Messina (thick lines), as simulated by our Euler model (thin solid
lines) and as calculated by the KdV model (dashed lines).

model is capable of describing the main physical pro-
cesses governing the dynamics of large-amplitude in-
ternal solitary waves in the strait. In Table 2 typical
values referring to the observed and simulated internal
solitary waves are listed.

A comparison between characteristics of the two in-
ternal solitary waves as measured by using the CTD
chain and the ADCP, as simulated by using the Euler
model, and as calculated by using the KdV model is
presented in Figs. 9 and 10. Figure 9a shows vertical
profiles of the isopycnal displacements at the wave cen-
ter referring to the internal solitary wave north of the
Strait of Messina. Note the good agreement between the
depth of the maximum isopycnal displacement mea-
sured by using the CTD chain and simulated by using
our Euler model. In the measured data several local
extrema are, however, present that are not captured by
our model. They can be a result of the superposition of
different subscale internal waves existing in the area.
In Fig. 9b the vertical profiles of the horizontal velocity
at the wave center referring to the internal solitary wave
north of the Strait of Messina are illustrated. A com-

parison between the values measured by using the
ADCP and simulated by using our Euler model shows
a very good agreement in maximum horizontal velocity
and depth of zero horizontal velocity. Figure 9c shows
vertical profiles of the vertical velocity at the positions
of extremal vertical velocity (i.e., at the position where
the vertical velocity is maximum, at the rear of the wave,
and at the position where it is minimum, at the front of
the wave) referring to the internal solitary wave north
of the strait. Although the measured data are, in general,
noisy, a still good agreement between measured and
simulated profiles can be observed. A comparison be-
tween the characteristics of the southern internal solitary
waves as measured by using the CTD chain and the
ADCP and as simulated by using the Euler model re-
veals also a good agreement (see Fig. 10). As one could
expect, from Figs. 9 and 10 it can be clearly evinced
that a simple model like the stratified KdV model is not
able to describe several characteristics of the measured
internal solitary waves that, on the contrary, can be
simulated by using the Euler model. This is particularly
evident for the internal solitary wave measured north
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FIG. 10. Vertical profiles of (a) isopycnal displacements calculated at the wave center, (b) horizontal velocities
calculated at the wave center, and (c) vertical velocities calculated at the position of extremal vertical velocities as
measured by the CTD chain and the ADCP south of the Strait of Messina (thick lines), as simulated by our Euler
model (thin solid lines) and as calculated by the KdV model (dashed lines).

FIG. 11. Wavelength as a function of the density for two large-amplitude internal solitary waves as
measured by the CTD chain (a) north and (b) south of the Strait of Messina (solid lines), as simulated by
our Euler model (dashed lines), and as calculated by the KdV model (dotted lines).

of the Strait of Messina, which has a larger amplitude
than the one measured south of the strait.

The limit of using the KdV model for the simulation
of large-amplitude internal solitary waves becomes par-
ticularly evident in the comparison between the wave-
length measured by using the CTD chain north and south
of the Strait of Messina, simulated by using our Euler
model, and calculated by using the KdV model at dif-
ferent depths. This comparison is shown in Fig. 11a for
the northern internal solitary wave and in Fig. 11b for
the southern one. In fact, while the Euler model is ca-
pable of capturing, at least qualitatively, the observed
dependence of wavelength on depth, the wavelengths
predicted by the KdV model are depth independent.

4. Discussion

In this paper several aspects of the horizontal and
vertical structure of large-amplitude internal solitary
waves propagating in stratified waters over a continental
shelf as obtained by using an Euler model were dis-
cussed. Some of these aspects were found in high-res-
olution hydrographic and current data referring to in-
ternal solitary waves measured north and south of the
Strait of Messina. This implies that for a detailed de-
scription of the dynamics of large-amplitude internal
solitary waves observed in the real ocean higher-order
theoretical models like the one used in the present in-
vestigation are needed.
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FIG. 12. Radar image of a region south of the Strait of Messina (see inserted geographical map) acquired
by the synthetic aperture radar of the European Remote Sensing Satellite-2 at 2113 UTC 22 Aug 1997.
The image shows sea surface manifestations of a train of southward propagating internal solitary waves.
These sea surface manifestations were observed simultaneously with the in situ measurements discussed
in section 3b. The leading wave pattern is associated to the large-amplitude internal solitary wave whose
density and current fields are depicted in Fig. 8, right panels.

Moreover, from the presented results several impli-
cations on the complexity connected to the relation be-
tween sea surface manifestations of oceanic phenomena
as observed by remote sensing and characteristics of the
interior ocean emerge. Among the most common fea-
tures observed by remote sensing in coastal waters are
radar signatures of internal solitary waves. They arise
from the modulation of the sea surface roughness caused
by the variable surface currents associated with internal
solitary waves. As an example, a radar image showing
sea surface manifestations of a train of southward prop-
agating internal solitary waves south of the Strait of
Messina is depicted in Fig. 12. Among the different
parameters that can be inferred by the analysis of radar
signatures of internal solitary waves are maxima and
minima in the backscattered radar signal associated to
a single internal solitary wave as well as distance be-
tween the locations of these extrema. Note that, in gen-

eral, a single solitary wave of depression manifests itself
on a radar image as a pattern characterized by the pres-
ence of a bright band (corresponding to the wave front)
followed by a dark band (corresponding to the wave
rear). The difference in brightness between these two
bands and the surrounding area can vary greatly de-
pending on wind conditions and radar parameters. In
the case of the sea surface manifestations of internal
solitary waves visible in Fig. 12, the difference in
brightness between the dark band and the surrounding
area is not very pronounced. However, the aforemen-
tioned parameters represent, in the frame of a first-order
radar imaging theory (Alpers 1985), the most promising
ones for obtaining characteristics of the wave dynamics
and hence information about the interior ocean. A dis-
cussion about the complexity of the radar imaging the-
ory of the ocean (and about its possible overcoming,
provided that future sensors will be able to measure
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FIG. 13. Relationship between (a) maximum surface velocity di-
vergence and wave amplitude and (b) distance between the locations
of maximum surface velocity divergence and convergence and wave
amplitude of a single internal solitary wave as simulated by our Euler
model and as calculated by the KdV model for the stratifications 1–3
listed in Table 1, and as calculated by the Miyata model for the two-
layer stratification discussed in the text.

directly parameters of the sea surface velocity field) is
beyond the scope of this paper. However, according to
the first-order theory mentioned above, the maximum
and minimum in the backscattered radar signal associ-
ated with a single internal solitary wave, as well as the
distance between the locations of these extrema, are
related to the maximum surface velocity convergence
and divergence and to the distance between the locations
of these extrema.

Figure 13 shows the maximum surface velocity di-
vergence (Fig. 13a) and the distance between the lo-
cations of maximum surface velocity convergence and
divergence of a single internal solitary wave as func-
tions of the wave amplitude (Fig. 13b) as simulated by
our Euler model and as calculated by using the KdV
and Miyata models. In the case of the Euler and KdV
models, these two parameters are plotted for the three
density stratifications listed in Table 1, while, in the case
of the Miyata model, for the two-layer stratification dis-
cussed in the previous section.

The presented parameters characterizing the sea sur-
face manifestations associated with internal solitary
waves depend strongly on the choice of the theoretical
models used for their simulation. But they depend also
not univocally on the density stratification, a quantity
whose temporal and spatial variability is, in general, not
known in the World Ocean. This nontrivial dependency
can be seen as a measure of the complexity related to
the inversion of sea surface manifestations of internal
solitary waves into characteristics of the interior ocean.
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