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Abstract

Background: Handling the vast amount of gene expression data generated by genome-wide transcriptional profiling
techniques is a challenging task, demanding an informed combination of pre-processing, filtering and analysis methods
if meaningful biological conclusions are to be drawn. For example, a range of traditional statistical and computational
pathway analysis approaches have been used to identify over-represented processes in microarray data derived from
various disease states. However, most of these approaches tend not to exploit the full spectrum of gene expression
data, or the various relationships and dependencies. Previously, we described a pathway enrichment analysis tool
created in MATLAB that yields a Pathway Regulation Score (PRS) by considering signalling pathway topology, and
the overrepresentation and magnitude of differentially-expressed genes (J Comput Biol 19:563–573, 2012). Herein,
we extended this approach to include metabolic pathways, and described the use of a graphical user interface (GUI).

Results: Using input from a variety of microarray platforms and species, users are able to calculate PRS scores, along
with a corresponding z-score for comparison. Further pathway significance assessment may be performed to increase
confidence in the pathways obtained, and users can view Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
diagrams marked-up to highlight impacted genes.

Conclusions: The PRS tool provides a filter in the isolation of biologically-relevant insights from complex transcriptomic
data.
Background
Increasingly, high-throughput transcriptional profiling
techniques (microarrays or, increasingly, RNAseq) in-
form modern life-science research. Such techniques pro-
vide a molecular “camera” taking genome-wide “snap-
shots” of genetic activity. However, the effective analysis
of microarray data presents a number of challenges, in
particular handling the large number of genes that are
studied simultaneously.
Analysing gene expression in the context of curated

knowledge, or “knowledge base-driven pathway ana-
lysis”, is critical as this guides the reduction in search
space from many thousands of genes to an subset of
biological processes, which are much more tractable
to human interpretation [1]. According to Khatri et al [2],
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pathway enrichment approaches can be divided into three
generations:

i. Over-representation Analysis (ORA): This scores a
pathway by considering the proportion of differentially-
expressed genes (DEGs) observed in each pathway
relative to the proportion of all microarray DEGs.
This is used by several pathway analysis tools,
including GenMAPP [3], GoMiner [4], Onto-Express
[5] and FatiGo [6].

ii. Functional Class Scoring (FCS): FCS gives a score
to each gene in a pathway based on its expression,
from which a pathway-score is calculated based on
the scores of all the genes in the pathway. A number
of FCS methods have been implemented through
standalone tools such as GSEA [7], SigPathway [8],
and SAFE [9], or web tools such as T-profiler [10],
Gazer [11] and GeneTrail [12].

iii. Pathway Topology (PT)-based approaches: These
approaches exploit the topology of pathways by
giving weights to pre-defined connections between
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genes, which inform pathway scoring. Several
topology-based approaches have been described in
the literature over the past few years. According to
Mitrea et al [13], PT-based approaches differ in the
way they translate pathway topology information
into a pathway score. Some methods use only the
topology data of differentially-expressed genes
(DEGs) in the enrichment score (for example MetaCore
[14] and EnrichNet [15]), whereas others (including
SPIA [16] and GANPA [17]) use expression data of
DEGs along with the topology data. Alternatively,
some methods use expression data derived from all
microarray genes, whether they change between
conditions or not, for example PathOlogist [18],
DEGraph [19], and ACST [20]. Importantly, some
PT-based tools use only signalling pathway descriptions,
such as Pathway-Express [21], NetGSA [22],
ScorePAGE [23], TAPPA [24] MetPA [25], and
Clipper [26].

Previously, we proposed a new pathway enrichment
method, in which both pathway topology and the magni-
tude of gene expression changes informed the creation of
a Pathway Regulation Score (PRS) [27]. Specifically, by
combining fold-change data for those transcripts exceed-
ing a significance threshold, and by taking into account
the potential of altered gene expression to impact upon
downstream transcription, we identified those pathways
most relevant to the pathophysiological process under
investigation. Our approach addressed a number of issues
that potentially compromise enrichment methods. We
Figure 1 The PRS user interface showing analysis of a sample dataset
took steps to mitigate the influence of errors in ID
mapping, and to reduce the bias introduced by highly-
redundant pathways (i.e. multiple instances of the same
gene). Topology methods also have to handle loops
effectively, so we used a search algorithm derived from
graph theory to resolve this problem. We also felt that
arbitrarily dividing processes into either up- or down-
regulated was artificial as changes in gene expression
are likely to be distributed throughout pathways, thus
ours was an overall impact assessment.
Herein, we described the implementation of our PRS

approach as a standalone tool that provides end users with
the option of importing data from different microarray plat-
forms and species. The tool yields both PRS and z-scores,
provides statistical analysis, and allows browsing of path-
ways with impacted genes highlighted in different colours.
An enhancement from our original report is that users are
able to enrich both signalling and metabolic pathways.

Implementation
The PRS approach was implemented in MATLAB. Users
without access to the MATLAB environment can down-
load the MATLAB Runtime Compiler (MRC) in order to
deploy the software described herein, via a user-friendly
GUI. The PRS interface (Figure 1) provides users with
several functions:

Preprocessing microarray data
We did not re-engineer a filter to normalise data from a
variety of platforms, rather users must first preprocess
transcriptomic data using one of the myriad existing tools.
.
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Data must be in the form of a simple Excel spreadsheet, in
which the first column should be probe ID, and the
following columns normalised replicated expression
values from the control and test conditions. Additional in-
formation regarding species, sample numbers, fold-change
and t-test thresholds, normalisation method and platform
is required.

Pathway representation
Our fundamental algorithm was described previously [27].
Briefly, Kyoto Encyclopaedia of Genes and Genomes path-
way definitions [28] were used, in which pathways are
maintained in KEGG Mark-up Language (KGML) format.
We imported a total of 189 signalling and metabolic de-
scriptions from KEGG and parsed these into MATLAB
objects, which were then converted into directed graphs.
KGML files contain three types of objects: entries, rela-
tions, and reactions. These can be mapped to graphical
objects in the associated pathway map (Additional file 1).
Only entries (which form nodes, represented as boxes)
and relations (represented as edges) were used to repre-
sent signalling pathways where proteins (boxes) are linked
by “relations”. All three types are used to represent the
structure of metabolic pathways in order to capture
substrate-enzyme-product relationships where enzymes
(boxes) are linked by “relations”, and compounds (circles)
are linked by “reactions”. To convert a metabolic pathway
into a graph in a rational way, we represented enzymes as
nodes in the graph, while substrates and products were
used to detect the direction of relations (edges) between
Figure 2 Example of the conversion of a group of reactions in a meta
nodes (Figure 2). While we acknowledge that is not
possible to predict any effect on flux by this rationale, we
reasoned that any change in node expression in a
metabolic pathway could be of physiological relevance,
particularly if nodes were connected.
Representing pathways as graphs had an additional

advantage as it reduced redundancy in that genes were
only represented once in any pathway graph. A Depth-
First Search (DFS) algorithm, derived from Graph
Theory was used to ensure that loops were only counted
once.

Pathway scoring
Our method assigned weights to all significant nodes (i.e.
DEGs) in a pathway to reflect their topological strength
(specifically the number of significant downstream nodes
that are pointed to, either directly or via other significant
nodes as described previously [27]). A PRS was calculated
on the basis of fold-change value and weighting of all sig-
nificant nodes in the pathway and normalized for pathway
size. We also calculated a z-score [29] (with an improve-
ment over earlier implementations in that this was per-
formed after removing redundant genes from pathway
descriptions). The software outputs two lists of pathways
ranked according to PRS and z-score, saved as both Excel
and .mat files for later analysis.

Pathway significance assessment
We then went on to establish the probability of achiev-
ing scores at least as high as the PRS score by chance
bolic pathway (a) into a diagraph (b) after removing redundancy.
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using a non-parametric permutation method. Initially,
fold-change values for all expressed microarray genes were
permuted. These values were then mapped back onto
pathways, and a PRS recalculated. This process was re-
peated n times, where n is provided by the user through
the interface (typically n = 1000). The statistical signifi-
cance (p-value) of each pathway score was estimated by a
comparison between the observed score and the n random
scores generated. To achieve more reliable statistical sig-
nificance evaluation, p-values were adjusted for multiple-
test correction by a False Discovery Rate (FDR) method
based on a threshold provided by the user. This is
described in more detail in our original report [27].

Visualizing enriched pathways
After running the analysis, results are saved as .mat format
files for ease of retrieval. By clicking on the pathway name
from the list of ranked pathways shown in the table and
selecting the option of visualizing a pathway from the
interface, a marked-up pathway map will be displayed.
Technically, the software will call a pathway mapping web
service (REST-based API service) hosted on the KEGG
website and pass a number of parameters, including a list
of all expressed genes with their fold- changes and speci-
fied colours to differentiate DEGs from non-impacted
Figure 3 A typical marked-up pathway, in this case the KEGG “acute
accession #GSE9476); significant genes are coloured in red and non-s
genes. Figure 3 shows a typical pathway map where
significant (i.e. above threshold) genes are coloured in red
and non-significant (i.e. unchanged or not expressed) in
green.

UML for modelling and software description
Herein, we used Unified Modelling Language (UML) to
describe, model and visualize the structure and functions
of our method by diagrams. There are 14 types of dia-
grams classified in three categories in UML 2.0 [30],
however, in this paper we used only two: class and se-
quence diagrams. Class diagrams represent static struc-
tures or main objects in the software. Figure 4 shows the
key classes at the pathway analysis stage. The class
“Analysis” is the main class, which provides an interface
to run all the services provided by the tool. It has four
main attributes:

▪ MicroarrayObject: an object of the class
“Microarray_Dataset” built by calling
initialiseMicroarray() function (see Additional file
2). This holds the normalised gene expression data,
and a list of all genes with their fold-change values.

▪ kgmlObject: an object of the class “KGML_Parser”
built by calling the parseKGML() function (see
myeloid leukaemia pathway” enriched in an AML dataset (GEO
ignificant ones in green.



Figure 4 UML class diagram illustrating the main classes of the package at the pathway analysis stage.
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Additional file 3). This holds the static structure of
all pathways as a list of objects of “KGML_Path”
class that is defined by KGML format. An object of
“KGML_Path” represents the structure of one KEGG
pathway and is composed of entriesList,
reactionsList, and relationsList (see Additional file 1).

▪ PathList: this is a list of objects of the class
“Pathway” which is created by calling
CreatePathListFromKegg() function (see Additional
file 4). This object ultimately holds a list of
pathways enriched with reference to a given
microarray dataset.

▪ rankedPaths: this object is created by calling the
rankPaths() function. It holds the same list of
pathways defined by PathsList, but they are ranked
in descending order based on PRS values.

Sequence diagrams were used to represent the functions
of the PRS tool according to different types of interactions
between objects. As an example, Figure 5 represents the
main PRS functions with the following steps:

i. Conversion of pathways into graphs by the
convertPath2Graph() function, which requires the
usage of kgmlObject that holds a list of entries,
relations and reactions of all pathways.

ii. Using information stored in kgmlObject and
PathsList for each graph (see Figure 4), a list of
nodes is created (where each node represents one
or more genes from the original pathway) and a list
of children for each node.

iii. Removal of redundant genes, which may be
represented many times in the same pathway.
Two functions are designed to deal with node
redundancy: checkNodeRedundancy() and
handleNodeRedundancy().

iv. After building a graph for each pathway, graphs are
weighted by calling the createWeightedGraphs()
function, which uses the DFS algorithm to traverse
the nodes of each graph and assign a weight for
each significant node taking into account the loops
in the graph.

v. A pathway regulation score (PRS) is assigned to each
weighted graph using the weights of the significant
nodes in the graph and other parameters.

We implemented all these classes, functions, and DFS
algorithm using MATLAB R2010a.

Results and discussion
The objective evaluation of novel enrichment analysis
methods is difficult, relying on their ability to discern
biological processes already known to be perturbed in
disease states. We and others previously attempted this
by studying performance across a range of datasets
derived from distinct conditions ([27] and references
therein). Having extended our algorithm to include bio-
chemical pathways, we performed further analysis on a
dataset describing a common metabolic disorder, that of
type 2 diabetes mellitus (T2DM). The data were origin-
ally created by Taneera et al [31], who compared gene
expression levels in RNA isolated from human pancre-
atic islets taken from 9 type 2 diabetes (T2D) cadaver
donors with RNA samples of pancreatic islets derived
from 54 non-diabetic cadaver donors. These were hybri-
dised to Affymetrix Human Gene 1.0 ST Arrays, and
resulting expression values normalised by Robust Multi-
array Analysis (RMA) before being uploaded to the Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo; acces-
sion #GDS4337). We created an input file containing
Affymetrix probe IDs and normalized gene expression
data for each of the 63 samples. Other parameters re-
quired were sample numbers in each group (9 in group1,
54 in group2 in this case), and fold-change and p-value
threshold values to filter significant genes (in this case
fold-change ≥1.3 and p-value <0.05). Fold-change thres-
holds are arbitrary, and the value selected in this ex-
ample yielded a sufficient number of impacted genes to
allow pathway mapping (in this example, a threshold of
1.5 would have yielded only 88 DEGs). The user can opt
to enrich for signalling or metabolic pathways, or both
(as in this example). Additional statistical testing can be
performed, if required, by our permutation method (in
this example we used number of permutations = 1000
and p-value threshold = 0.05). Tables 1 and 2 display the
top ten pathways ranked according to PRS and z-scores
respectively, where only significant pathways (FDR < 0.05)
were selected. A number of processes relevant to T2DM
were picked up by both techniques, notably metabolic
pathways such as “Arachidonic acid metabolism” [32] and
“Fatty acid metabolism” [33,34], as well as anticipated
signalling processes such as “PPAR signalling path-
way“[35,36]. Both techniques detect “Pathways in cancer”,
which is unsurprising as this description encompasses a
number of processes perturbed in diabetes including
apoptosis and the cell cycle, along with TGF-beta signal-
ling [37]. “Complement and coagulation cascades” scored
highly with both methods, which could be a false positive
or may reflect alterations to the vasculature in diabetic is-
lets. Apart from this exception, all other high-scoring PRS
pathways are known to be impacted in diabetic states.
Conversely, a number of pathways detected by z-scoring
are harder to explain, and so may also be false positives
(“Intestinal immune network”, “Cell adhesion molecules”,
“Allograft rejection”, “Staphylococcus aureus infection”).
Finally, the PRS method afforded greater prominence to
two pathways critical to T2DM, “MAPK signalling” [38]
and “Type II diabetes mellitus” [39], compared to z-

http://www.ncbi.nlm.nih.gov/geo


Figure 5 UML sequence diagram illustrating PRS calculation and pathway ranking.
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Table 1 Top ten pathways ranked by PRS (T2D and pancreatic islets dataset)

Rank Pathway name PRS pvalue FDR

1 Arachidonic acid metabolism 3.450412 0 0

2 Cytokine-cytokine receptor interaction 1.443531 0 0

3 TGF-beta signalling pathway 1.345376 0 0

4 Complement and coagulation cascades 1.180362 0 0

5 PPAR signaling pathway 1.030316 0.002 0.0065

6 Pathways in cancer 0.910555 0.004 0.0104

7 Type II diabetes mellitus 0.793327 0.002 0.0065

8 Tryptophan metabolism 0.754089 0.001 0.004875

9 MAPK signaling pathway 0.736616 0.001 0.004875

10 Fatty acid metabolism 0.701842 0.004 0.0104
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scoring. Indeed, the latter description explicitly reflects
the impact on adipocytokine and insulin signalling, which
are central to the pathophysiology of diabetes.

Conclusions
The rapid development of high-throughput genomic
technologies and the deposition of their output in open-
access databases has produced huge amounts of biolo-
gical data. Mining and interpreting these data has driven
innovation in the field of computational biology, leading
to the emergence of sophisticated tools to produce reli-
able, meaningful and testable results. This is important
as these kinds of experiments are expensive, and new
tools are likely to add value to pre-existing analysis.
In this paper, we address two areas; firstly, the exten-

sion of our PRS enrichment algorithm [27] to include
both metabolic and signalling pathways; and secondly, to
provide a detailed description of a GUI that facilitates
array analysis by both PRS and z-scoring. The improved
tool handles a number of challenges, notably in ID map-
ping, redundancy in pathway descriptions and statistical
significance assessment. Unlike z-scoring, the PRS algo-
rithm takes into account the topology of a pathway (the
Table 2 Top ten pathways ranked by Z-score (T2D and
pancreatic islets dataset)

Rank Pathway Z-score

1 Arachidonic acid metabolism 6.103672

2 TGF-beta signaling pathway 5.571651

3 Complement and coagulation cascades 5.468563

4 PPAR signaling pathway 5.302763

5 Cytokine-cytokine receptor interaction 5.102405

6 Fatty acid metabolism 5.050608

7 Intestinal immune network for IgA production 4.748036

8 Cell adhesion molecules (CAMs) 4.601507

9 Allograft rejection 4.480696

10 Staphylococcus aureus infection 4.416682
relationships between genes) and the magnitude of gene
expression changes to identify impacted pathways. For
these reasons, we argue that PRS enrichment yields more
biologically-relevant insights compared to those provided
by the standard hypergeometric method. It was not feas-
ible to compare performance to other PT methods as the
additional preprocessing steps taken to reduce redundancy
in KEGG descriptions are not easily implemented in other
methods without considerable re-engineering. The behav-
iour of signalling and metabolic pathways is, of course,
distinct. However, as our approach was to assess transcrip-
tional changes in a pathway, rather than to predict an
effect on the function of a pathway, we felt it was reason-
able to evaluate impact on signalling and biochemical
pathways using a single method. In this way, we were able
to detect biochemical pathways known to be perturbed in
metabolic disease. A key tenet of this kind of analysis is
that biomedical scientists are guided in the subsequent in-
vestigation of targets revealed by transcriptional profiling
studies. Unfortunately, there is no unambiguous statistical
test that allows investigators to be certain that any path-
way highlighted is worthy of further study (and consider-
able expense). The use of permutation-based approaches
are commonly used to determine the likelihood of an en-
richment score being achieved by chance, and by adjusting
P values by FDR can increase investigators’ confidence
that a result is meaningful.
In summary, we suggest that providing researchers with

a choice of analysis tools, informed by distinct rationales,
will allow evidence to be combined or contrasted in order
to facilitate more informed decision making.

Availability and requirements
Project name: PRS_software.
Project home page: http://www.buckingham.ac.uk/
research/clore-laboratory-diabetes-obesity-and-metabo
lic-research/staff/maysson-al-haj-ibrahim/prs-tool/.
Operating system(s): Platform independent.
Programming language: MATLAB.

http://www.buckingham.ac.uk/research/clore-laboratory-diabetes-obesity-and-metabolic-research/staff/maysson-al-haj-ibrahim/prs-tool/
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Other requirements: MATLAB 2010a or higher. If
MATLAB is not installed on your PC, you need to install
the MCR (Matlab Compiler Runtime) environment first
and then run the PRS tool.
Restrictions for use: None.
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Additional file 1: Objects forming KEGG pathways represented in a
KGML file.

Additional file 2: UML sequence diagram representing the
implementation of the “initialise” microarray function.

Additional file 3: UML sequence diagram of the parse KGML
function.

Additional file 4: UML sequence diagram representing the
implementation details of the process of creating the list of
pathways from KEGG and mapping microarray data onto them.
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