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Abstract. In proteomics, electrophoretic 2-D gels are used to separate the proteome according to
the molecular weight and electrical charge of its constituents, which are proteins expressed by a
cell or organ at a particular time and under specific conditions. One of the main applications is
the analysis of differential expressions between different conditions for which certain (perhaps
many) spots are present in one of the images, but not in the other. One of the difficulties of
this analysis is that 2-D gels are affected by spatial distortions due to run-time differences and
dye-front deformations, which results in images that are significantly dissimilar and that pose a
challenging problem to image-registration algorithms. In this paper, we test the efficiency of a state-
of-the-art elastic-registration algorithm that we had already introduced in the context of biomedical
images [1]. We study here the registration of simulated 2-D gels with known expression patterns
and deformations. We show that our algorithm is capable of handling such situations. The proposed
algorithm is publicly available at http://bigwww.epfl.ch under the name UnWarpJ.
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INTRODUCTION

2-D electrophoresis is a procedure to separate and identify the proteins expressed by an
organ, tissue, or cell, at a given time and under certain conditions [2]. A complex mixture
of proteins is injected into a polyacrylamide gel. Then, proteins are first separated
according to their electric charge by a pH gradient and, then, according to their mass
by electrophoresis in the presence of SDS. Finally, a dye is applied with a selective
affinity toward specific components of the proteins. The result is a bidimensional image
where small spots reveal the presence of a protein with a certain mass and charge in the
initial solution (see Fig. 1).

One of the main applications of 2-D electrophoresis is the detection of differential
expression, which is characterized by variations in the patterns of proteins an organism
expresses under different situations, or by the different patterns expressed by different
strains of organisms. The analysis of differential expression involves a careful registra-
tion between two gels.

Putting two images into registration can be restated as finding a function (also called
a deformation field) that can be used to map a source image onto a target image [3]. In
the particular case of electrophoretic 2-D gels, the registration poses some challenging
obstacles that need to be overcome. In most cases, the deformation differs markedly from
a simple rigid-body or affine transformation. Instead, electrophoresis images usually
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FIGURE 1. Gel example corresponding to Escherichia coli from the Swiss-2DPage database (entry:
http://www.expasy.org/ch2dgifs/ECOLI4.5-5.5/ECOLI4.5-5.5.gif). The horizontal axis corresponds to the
electrical charge and the vertical axis corresponds to the molecular weight.

require local and non-linear deformations, which only an elastic-deformation framework
can handle properly. As additional difficulty, the information content of the images
is most of the times distributed in uneven fashion (e.g., there might be no relevant
information outside restricted image patches). Finally, it is inherently impossible to
register perfectly the two images since it is their difference that carries the useful
information.

Most of the image-registration algorithms (or “matching”, as referred to in elec-
trophoresis) involve pairs of spots that either are detected automatically, or that need
to be explicitly provided by the user [4]. To the best of our knowledge, the only reg-
istration methods that work directly on the electrophoretic image information can be
found in [5, 6, 7, 8]. The method in [5] solves a differential equation for the transfor-
mation field after smartly deriving an image formation model. The method in [6] can
also handle landmarks (known spot pairs), image intensities and a regularization term.
The elastic transformation field is not parametrized and the regularization term is based
on its quadratic energy. The methods in [7, 8] produce a piecewise-bilinear mapping.
In [7], the grid is generated by a Delaunay triangulation, while a regular grid is deformed
to adapt to the image characteristics in [8]. None of these two algorithms benefits from
landmarks or from regularization in the optimization process, a limitation that we over-
come with the algorithm presented in this paper.

In [1] we proposed the combined use of three components to correct for the defor-
mations that one usually encounters in 2-D gels: the image content, spot pairs, and
regularization. The image content has been shown to provide enough information as
to drastically decrease the amount of spot pairs needed to achieve a given registration
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acccuracy. However, spot pairs can still be integrated so that the algorithm can benefit
from user knowledge. The use of spot pairs is particularly useful to compensate for the
information mismatch between images (spots that appear in only one image) and the un-
even distribution of the information (large areas without spots). Furthermore, the image
matching may be restricted to a user-specified region. This possibility is also very useful
for avoiding large empty or mismatching regions. We also proposed the use of B-splines
to represent the deformation field as well as the images. In this way, nonlinear elastic
deformation models can be produced [9] and a high-quality interpolation is available
[10]. The deformation field is estimated through a minimization problem that includes
the energy of the error between both images, the error in the mapping of correspond-
ing spots, and a smoothness regularization term. We proposed to use a fully vectorial
regularization term based on vector splines [11]. This approach is a generalization of
more usual regularization terms in 2D and provides extra freedom that is particularly
useful to correct certain typical effects in gels like the dye-front deformation [12]. The
optimizer used is a Levenberg-Marquardt-like algorithm already proposed by Thévenaz
et al. [13] and enhanced by a BFGS (Broyden-Fletcher-Goldfarb-Shanno) estimation of
the Hessian [14]. The optimization is performed in a multiresolution fashion to increase
the robustness and speed of the algorithm. The exact analytical solution is provided in
the case that the data term is neglected.

In this paper, we test the applicability of our image-registration algorithm to the
analysis of differential gels under different run times and protein expression patterns
using simulated data.

MATERIALS AND METHODS

We select B-splines to model the images, which ensures their high-quality interpolation.
Similarly, we also use B-splines to model the deformation field. In this way, a nonlinear
elastic-deformation model can be produced while keeping a tight control on its level of
detail. This deformation field is estimated through a minimization problem that includes
three terms: the measure of dissimilarity Ejy,e between the target image and the warped
source image, the soft-landmark constraints £, and a priori knowledge about the
deformation field through the two independent measures Eg;, and Eyy that are related
to the gradients of divergence and curl of the vectorial deformation field, respectively.
Our algorithm is also capable of making use of additional a priori knowledge such as
masks and landmarks. Thus, the energy to minimize is a linear combination of these
energy terms, as in

E = W;Eimg +wy Eyy + (Wa Edgiv +wy Erot) -

We suggest to assist the efficient optimization method of Levenberg and Marquardt
by the accurate Broyden-Fletcher-Goldfarb-Shanno (BFGS) estimate of the Hessian.
Moreover, the optimization process is performed in a multiresolution framework in
which coarse representations of the source and target images are coarsely registered.
Then, finer details in the images and finer registration fields are alternatively computed
until reaching the desired level of accuracy. This approach has proved to be helpful for
avoiding local minima in other biomedical imaging applications. The different degrees
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of accuracy in the image representation (coarse, fine, finer, etc.) yield a pyramid of
images whose resolution is better as they get closer to the pyramid base. The number
of images in the stack is referred to as the image pyramid depth. Similarly, the different
deformation field levels yield the deformation pyramid.

Data Term

The goal of image registration is to find a function g(x) : R? — R? so that the warped
version /;(g(x)) of the source image ; resembles the target image /; as much as possible.
Moreover, when masks are considered, we ought to concentrate our attention to regions
of interest within the source and target images. Let us call Q; C R? and Q, C Z? the
regions of interest of the source and target images, respectively. Then, we measure the
dissimilarity between the warped source image and the target image by the discrete sum

Eimg = I (It (k) _IS(g(k)))za

where Q defines a mask common to the source and target images, and where #Q is the
number of pixels of this mask.

Deformation Representation
We express the deformation field as the linear combination of B-splines given by

g(x) = glxy)
= (g1(x,y),8(x,y))

S () pE-npd-n,

kiez? C2.k,l Sx Sy

where s, and s, are scalars that control the degree of detail of the representation of
the deformation field. Cubic B-splines constitute a Riesz basis of L, and have a fourth
order of approximation. Therefore, any sufficiently regular deformation field can be
represented with vanishing error using a fine-enough scale. Moreover, by using B-splines
of degree 3, the continuity of the derivatives of the deformation is guaranteed up to the
second order, which is favorable to optimization schemes based on derivatives. Another
advantage of this model is that any affine transformation (rotation, shifting, scaling or
any combination of them) can be represented by our B-spline deformation.

Spot pairs

We benefit from spot pairs in two different ways: first, we use spots to impose soft
constraints to the deformation field; second, we use spots during the initialization of the
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optimization problem. Let us assume that N pairs of corresponding spots ( §"),u,(")),

n € {1...N}, are available. Then, we handle the soft-landmark constraints by an energy
term of the form

1 X 2
En=+ Z,l ‘ me *g(#§n>)" :
Regularization

The smoothness of the deformation field is a useful regularization term for the mini-
mization problem, especially when little information is available. Considering that g is a
2-D vector field, we impose smoothness to this field by the following two regularization
terms that fully exploit the vectorial nature of the data:

Eron = v [, |Vdiv(g(0)|” dxdy
wr [ |[Vrot(g(x) | dxdy

where div(g) represents the divergence of the 2-D vector field g, where rot(g) represents
the length of the unique component of the curl of g, and where V = (dy,d)) is the
bidimensional gradient operator.

An important advantage of using this regularization structure is that it gives the user
more freedom to express her a priori knowledge about the underlying deformation. In
particular, the “smile” effect can be easily corrected by giving a heavy weight to the
rotational-based regularization term, as shown in [1].

RESULTS

To perform objective tests of the efficiency of our algorithm, we have applied our regis-
tration algorithm to three different synthetic datasets so that we could have a total control
over how they would differ. Our goals with these datasets are to evaluate the possibility
of correcting for dye-front deformations, to evaluate the amount of information pro-
vided by each of the goal function terms (data, spots, regularization), and to assess the
algorithm performance under some realistic situations.

Dataset 1: Synthetic data simulating dye-front deformations

A common deformation in gel electrophoresis is known as the “smile effect” (dye-
front deformation, [12]). It can be proved [1] that this distortion belongs to a class
of deformations whose divergence gradient is null. This means that we can tell our
algorithm to penalize deformation fields with high changes in their divergence (since the
sought solution has in fact none). This is, in principle, advantageous versus other image
registration algorithms since we can easily control the set from which the deformation
field will be picked.
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FIGURE 2. Top: Pair of corresponding 2D gels related by a “smile” transformation. The image on the
left is unprocessed data, while the image on the right was simulated by Raman et al. [4]. Bottom left:
Deformation field of the unregularized registration. Bottom right: Deformation field of the regularized
registration.

For these tests we downloaded the data used by [4] in their article comparing several
commercial solutions to the image matching problem from
http:// www.umbc.edu/proteome. We give in Figure 2 an example of this deformation
with a factor reduction of 5% and a maximum central shift of 14%. This image is
compared to its undeformed version and the resulting deformation field is computed. The
unregularized problem converges to an unsatisfactory solution as can be seen in Figure 2.
The problem is that the resulting deformation field is not sufficiently regular (it is known
that the deformation field has no horizontal component, i.e., all arrows should be vertical
and that they should not change their directions). However, successful unwarping is
achieved with wy = 4 and w; = 0 (with w; = 1 and wy, = 0). The deformation pyramid
had 2 levels, and the image pyramid had 3 levels.
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Dataset 2: Synthetic data to evaluate the influence of each goal
function term

Most of the works in electrophoresis image registration is based on spot matching [15,
16, 17, 18, 19, 20]. On one hand, matching spots is a more complex problem than
matching landmarks since their correspondence is unknown and since the number of
spots in both images may differ. On the other hand, the spot extraction can be done fully
automatically while landmarks require user input.

The effect of using the image data in our algorithm is two-fold: first, the registration
accuracy is greatly improved; second, the convergence to the final solution is substan-
tially accelerated. The number of landmarks needed to achieve the right solution ranges
from O to about 10 depending on the complexity of the underlying deformation field and
the amount of spots available in the gel [1].

Although our algorithm is capable of combining landmarks and image data, some
approaches work with landmarks only. In the next experiment, we adjust the number of
perfect landmarks necessary to achieve about the same registration accuracy as when
the data term is included in the minimization problem. We generated thirty random
“smile” deformations. The reduction factor was uniformly distributed between 0% and
5%, while the maximum central shift was uniformly distributed between 0% and 15%.
The deformation field was always represented with 4 x 4 grid points.

For the experiment taking into account the content of the images, we put a random
landmark in each of the four image quadrants. To simulate the uncertainty on the
landmarks when they are manually selected, we added random Gaussian noise with
zero mean and standard deviation 1 pixel to the x and y components of each of these
four landmarks. The deformation field had two pyramid levels, and the image pyramid
three. The weights of the data term and the landmarks were both set to w; = wy =1,
while the weight of the regularizing term based on the divergence was set to w; = 4. We
show the achieved accuracy in the first line of Table 1. The accuracy of this experiment
is computed using the warping index, a standard measure of the misregistration between
two images [21, 1, 13]. This Figure of Merit measures the difference in pixel units
between the right position of a certain point of the image and the position assigned
by the algorithm. The initial warping index for this experiment was 20.52 4= 12.80.

For the landmark-only experiments (remaining lines of Table 1), we generated N
random landmarks. The first four landmarks were distributed as described for the pre-
vious experiment, while the rest of the landmarks were randomly distributed all over
the image. No noise was added to the landmark positions, assuming that the automatic
landmark-selection algorithm performed a perfect job. We conducted two experiments:
one with regularization (wgjy = 4, wyot = 0), and another one without regularization,
discounting the implicit regularization present in the 4 x 4 B-spline-based deformation
model (Wgiy = Wrot = 0). We show in Table 1 the achieved accuracy and the number of
landmarks needed so that the hypothesis that the average final warping index is the same
for the three experiments cannot be rejected with a confidence of 99%.
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TABLE 1. Final warping index when the im-
age information is considered (w; = 0) and
the problem is regularized (w; = 0), when
the image information is disregarded (w; = 0)
but the problem is still regularized, and when
both image data and regularization are ignored
(landmark-only, w; = wy = w, = 0). In eacz
case, N landmarks are always considered (w, =
0).

wi | wy | wg | we | N | Warping index

1 1 1{ 0 4 | 0.060£0.059
0 1 41 0| 90 | 0.090+0.056
0 1 0] 0|19 | 0.099+0.070

TABLE 2. Parameters used to synthesize gels.

Image name ‘ Strain | #Proteins | Run time | Smile

I EDL933 4441 10 No
143 EDL933 3069 10 No
I EDL933 3417 20 No
Iy EDL933 2395 10 Yes
Is KL12 3734 10 No

Dataset 3: Synthetic data simulating realistic conditions

Thanks to the JVirgel program [22], we were able to simulate 2-D gels for the
proteomes of the Escherichia coli strains EDL933 [23] and K12 [24]. We have simulated
five different gels by varying parameters such as run time, strain, expression pattern, and
dye deformation. We show in Table 2 the different combinations that we have explored in
this paper. The run time represents the time needed to drive proteins of 10 or 20 kD down
to the bottom of the gel area. The number of proteins within the gel depends on the run
time (higher run times imply fewer proteins within the gel limits). To generate images
I and 14, we have arbitrarily removed all those proteins whose name starts with any
letter in the alphabetic range “a” to “h” (inclusive) to simulate a differential expression
pattern between two different conditions. Since the images generated by JVirgel are
binary, we have blurred them with a Gaussian filter in order to better simulate real data.
The standard deviation of this filter was 1 pixel.

We have performed four different experiments, with the goal of showing each time a
different aspect of the registration problem that one may actually encounter in real data.
These experiments are as follows:

e Iy vs. I: an important (=31%) fraction of the proteins are inhibited (different
expression pattern).

« I; vs. I5: different run times. This is one of the most difficult aspect to control in the
repeatability of gels.
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« I vs. I4: different expression patterns combined with a dye-front distortion.
« I vs. Is: two different strains of the same organism.

We never provided landmarks to any of the experiments, except in the I; vs. I3 case,
due to the huge difference between these two images. There, we selected three landmarks
and we used them only for initialization. We set the parameters of the algorithm to
w; =w, =1 and w; = wy = 0. We show the results of the four experiments in Figure 3.
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FIGURE 3. Each row represents a different experiment. From top to bottom: 7 vs. I, I} vs. I, I} vs.
14, and I} vs. Is. For each experiment, we show the target image /1, the source image /;, and the difference
(I; — I) between the registered image (warped source) and the target image.
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