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Abstract In this article, we calculate the contributions of
the vacuum condensates up to dimension 10 in the oper-
ator product expansion, and study the J¢ = 0+, 11—,
2*++ D*D*, D¥D¥, B*B*, B¥ B} molecular states with the
QCD sum rules. In the calculations, we use the formula

nw = \/ M}Z( 1Y)Z (ZMQ)2 to determine the energy scales
of the QCD spectral densities. The numerical results favor
assigning the Z.(4020) and Z.(4025) to the JF€ = 0+,
17~ or 2tt D*D* molecular states, the Y (4140) to the
JPC = 0T+ D*D¥ molecular state, the Z,(10650) to the
JPC€ = 17— B* B* molecular state, and they disfavor assign-
ing the ¥ (3940) to the (JP¢ = 0**) molecular state. The
present predictions can be confronted with the experimental
data in the future.

1 Introduction

In 2004, the Belle collaboration observed the near-threshold
enhancement Y (3940) in the wJ /vy mass spectrum in the
exclusive B — KwJ /vy decays [1]. In 2007, the BaBar
collaboration confirmed the Y (3940) in the exclusive B —
KwJ /vy decays [2]. In 2010, the Belle collaboration con-
firmed the Y (3940) in the process yy — wJ /¢ [3]. Now the
X (3915) (Y (3940)) is listed in the Review of Particle Physics
as the .o (2P) state with the quantum numbers J ¢ = 0+
[4].

In 2009, the CDF collaboration observed the narrow struc-
ture Y (4140) near the J/vy¢ threshold in the exclusive
BT — J/Y¢K™T decays [5]. Latter, the Belle collaboration
searched for the Y (4140) in the process yy — ¢J /v and
observed no evidence [6]. In 2012, the LHCb collaboration
searched for the Y (4140) state in BT — J/y¥¢ K™ decays,
and observed no evidence [7]. In 2013, the CMS collabora-
tion observed a peaking structure consistent with the Y (4140)
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in the J /1 ¢ mass spectrum in the BX — J /¥ ¢ KT decays,
and fitted the structure to a S-wave relativistic Breit—-Wigner
line-shape with the statistical significance exceeding 5o [8].
Also in 2013, the DO collaboration observed the Y (4140) in
the BY — J/¥ ¢ K™ decays with the statistical significance
of 3.10 [9]. However, there is no suitable position in the cc
spectroscopy for the Y (4140).

The Y (3940) and Y (4140) appear near the D*D* and
D} D;k thresholds, respectively, and have analogous decays,

Y(3940) — J /¥ @,
Y (4140) — J/vy ¢. (1)

It is natural to relate the Y (3940) and Y (4140) with the
D*D* and D}D} molecular states, respectively [10-18].
Other assignments, such as the hybrid charmonium states
[15,16,19] and tetraquark states [20] also have been sug-
gested.

In 2011, the Belle collaboration observed the Z;(10610)
and Z,(10650) in the 7*Y(1,2,3S) and 7¥h,(1,2P)
invariant mass distributions in the Y(5S) — nTn~ T
(1,2,3S), 7~ hy(1, 2P) decays [21]. The quantum num-
bers 16 (J¥) = 17 (1) are favored [21]. Later, the Belle col-
laboration updated the measured parameters Mz, (10610) =
(10607.2 £ 2.0) MeV, Mz, (10650) = (10652.2 & 1.5) MeV,
th(loﬁlo) = (18.4 + 2.4) MCV, and FZ/,(IO()SO) = (11.5 +
2.2) MeV [22]. In 2013, the Belle collaboration observed the
22(10610) in a Dalitz analysis of the decays to Y(2, 3S)7 % in
the Y(5S) — Y(1, 2, 38)7%70 decays [23]. The Z,(10610)
and Z;(10650) appear near the BB* and B*B* thresh-
olds, respectively. It is natural to relate the Z;(10610) and
Z,(10650) with the B B* and B* B* molecular states, respec-
tively [24-36]. Other assignments, such as the tetraquark
states [37-39], threshold cusps [40], the re-scattering effects
[41,42], etc. are also suggested.

In 2013, the BESIII collaboration observed the Z;t (4025)
near the (D* D*)™ threshold in the 77 ¥ recoil mass spectrum
in the process ete™ — (D*D*)*xF [43]. Furthermore, the
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BESIII collaboration observed the Z.(4020) in the m¥h,
mass spectrum in the process eTe~ — w7 "h. [44]. The
Z.(4020) and Z.(4025) appear near the D*D* threshold.
It is natural to relate them with the D* D* molecular states
[45-50]. Other assignments, such as the re-scattering effects
[51,52], tetraquark states [53-55], etc. are also suggested.

The Z.(4020), Z.(4025), Z»(10610), Z;(10650) appear
near the D* D*, D* D*, BB*, B* B* thresholds, respectively,
and have analogous decays

ZE(4020) — 7 he,

Z*(4025) — (D*D*)*,

ZF(10610) — 7Y (1,2,3S), 7hy(1, 2P),

ZF(10650) — 7Y (1,2,3S), 7¥hy(1, 2P). )

The S-wave D*D*, D} D¥, B*B*, B} B} systems have the
quantum numbers JPC¢ = 0T+, 177, 27+, the S-wave
nihQ systems have the quantum numbers J7¢ = 177 the
S-wave 7Y systems have the quantum numbers JF¢ =
17, It is also possible for the P-wave nihQ systems to
have the quantum numbers J ¢ = 0++, 1+ 2++,

In this article, we take the Y (3940), Z.(4020), Z.(4025)
as the D*D* molecular states, the Y (4140) as the D} D
molecular state, the Z,(10610) as the B B* molecular state,
the Z;(10650) as the B*B* molecular state, we study the
JPC = 0t*, 17—, 21" molecular states consisting of D* D*,
DD}, B*B*, Bf B} with the QCD sum rules, and we make
tentative assignments of the Y (3940), Y (4140), Z.(4020),
Z.(4025), and Z;(10650) in the scenario of molecular states.

InRefs. [15,16], we study the scalar D* D*, D;“l_);*, B*B*,
B} B;k molecular states with the QCD sum rules by carrying
out the operator product expansion to the vacuum conden-
sates up to dimension 10 and setting the energy scale to be
n = 1GeV. The predicted masses disfavor assigning the
Y (4140) to the scalar D} D¥ molecular state. In Refs. [17,18],
Albuquerque et al. (Zhang and Huang) study the scalar D} D_;*
molecular state with the QCD sum rules by carrying out the
operator product expansion to the vacuum condensates up
to dimension 8 (6), and their predictions favor assigning the
Y (4140) to the J¥ = 0% molecular state, but they do not
show or do not specify the energy scales of the QCD spec-
tral densities. In Refs. [38,48], Cui et al. study the axial-
vector B*B* (D*D*) molecular state with the QCD sum
rules by carrying out the operator product expansion to the
vacuum condensates up to dimension 6, and their predictions
favor assigning the Z, (10650) (Z.(4025)) to the axial-vector
B*B* (D*D*) molecular state, but they do not show or do
not specify the energy scales of the QCD spectral densities.
Furthermore, in Refs. [17,18,38,48], some higher dimension
vacuum condensates involving the gluon condensate, mixed
condensate and four-quark condensate are neglected, which
impairs the predictive ability, as the higher dimension vac-
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uum condensates play an important role in determining the
Borel windows.

In this article, we study the /€ = 07+, 17—, 2+ molec-
ular states consist of D*D*, D¥D¥, B*B*, BB with the
QCD sumrules according to the routine in our previous works
[36,39,54-56].

InRefs. [39,54-56], we focus on the scenario of tetraquark
states, calculate the vacuum condensates up to dimension
10 in the operator product expansion, study the diquark—
antidiquark-type scalar, vector, axial-vector, tensor hidden-
charmed tetraquark states, and axial-vector hidden-bottom
tetraquark states systematically with the QCD sum rules,
and make reasonable assignments of the X (3872), Z.(3900),
Z-(3885), Z.(4020), Z.(4025), Z(4050), Z(4250),
Y (4360), Y (4630), Y (4660), Z;(10610), and Z;(10650). In
Ref. [36], we focus on the scenario of molecular states, cal-
culate the vacuum condensates up to dimension 10 in the
operator product expansion, study the axial-vector hadronic
molecular states with the QCD sum rules, and make tenta-
tive assignments of the X (3872), Z.(3900), Z,(10610). The
interested reader can consult Ref. [57-61] for more articles
on the exotic X, Y, and Z particles. A hadron cannot be iden-
tified unambiguously by the mass alone. It is interesting to
explore possible assignments in the scenario of molecular
states.

In Refs. [36,39,54-56], we explore the energy-scale
dependence of the hidden-charmed (bottom) tetraquark states
and molecular states in detail for the first time, and we suggest
the formula

M= \/M}z(/Y/Z — (2Mp)?, G)

with the effective masses Mg to determine the energy scales
of the QCD spectral densities in the QCD sum rules, which
works very well.

In this article, we calculate the contributions of the vacuum
condensates up to dimension 10 in a consistent way, study the
JPC = ot+, 17—, 2+ molecular states consist of D*D*,
DD}, B*B*, B} B¥ in a systematic way, and make tentative
assignments of the Y (3940), Y (4140), Z.(4020), Z.(4025),
and Z;(10650) based on the QCD sum rules.

The article is arranged as follows: we derive the QCD
sum rules for the masses and pole residues of the D* D*,
D;kD;‘, B*B*, Bs*l_?;k molecular states in Sect. 2; in Sect. 3,
we present the numerical results and discussions; Sect. 4 is
reserved for our conclusion.

2 QCD sum rules for the D*D*, D*D*, B*B*, B*B?*
molecular states

In the following, we write down the two-point correlation
functions IT,,4g(p) and I1(p) in the QCD sum rules,
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Maap(p) =1 [ @t (017 {0y} 0). @

() =i [ atve (o7 {neon’©)] 0] ©)
Wit v %)

a0y @) () nd(x) £ @)y Q(x) Q(x)y,d(x)
= 7 ,

My ()

_ 5@y Q) Q) ys (x) £ 51 Q) Q) yus (x)
5 :

Niaa (x) = i(x) Y, Q(x) Q(x)y*d(x),

M5s (%) = 5(0) Y Q(x) Q(x)y*s (x), (6)

where 7,,(x) =

Mt oo () Mg (0 100 = (),
nw(x) Q0 =c b. Under the charge conjugation transfor-
mation C the currents 7= 1w (%) and n(x) have the following
properties:

6”3\)()6) 6_1 = ﬂ:ni;(x) lusd
Cnx)C7' = n(x) luesas ©)

thereafter we will smear the subscripts ud, ss, and super-
scripts &+ for simplicity. On the other hand, the currents
n/“fv (x) and n(x) are of the type V,,®V,,, where the V,, denotes
the two-quark vector currents interpolating the conventional
vector heavy mesons, so they have positive parity. The cur-
rents 'hfv (x) and 7n(x) have both positive charge conjuga-
tion and positive parity, therefore couple potentially to the
JPC = 2++ or 01 states, while the currents 1, (x) have
negative charge conjugation but positive parity, therefore
couple potentially to the JP¢ = 11~ states. We construct
the color smglet—smglet type currents 7, (x) and 7(x) to
study the D*D*, D¥D?, B* B*, B¥ B molecular states, and
we assume that the operators 7,,, (x) and 1(x) couple poten-
tially to the bound states, not to the scattering states. We can
also construct the color octet—octet-type currents nfw (x) and
ng(x), which have the same quantum numbers J PC s their
color singlet-singlet partners, to study the D*D*, DD,
B*B*, B} B;* molecular states,

My )
_ E)yA Q(x) Q(x)ypAdd(x) £t (x)yy A Q(x) O (x) ¥, A%d(x)
% ,
NSt ()
_ 50O YA Q) Q) A%s () £5 () YA Q(x) O (X) Y Ads (x)
5 :
Nha(x) = ()Y A" Q(x) Q(x)y2%d(x),
e (x) = 5(0) 7 A Q(x) Q ()" A%s (x), (®)

where the A¢ are the Gell-Mann matrices. In Ref. [36], we
observe that the color octet—octet-type molecular states have

larger masses than that of the corresponding color singlet—
singlet-type molecular states. So in this article, we prefer
the color singlet—singlet-type currents, which couple poten-
tially to the color singlet—singlet-type molecular states have
smaller masses. In Refs. [38,48], Cui, Liu and Huang take
the currents j, (x),

Ju(®) = €unap 1)y Q(x) iD* Q(1)yPd(x), €))

where DY = 9% — iggG¥(x), to study the Z,(10650) and
Z.(4025) as the B*B* and D* D* molecular states, respec-
tively, with J P — 1% InRef. [49], Chen et al. take the current
Ju(x),

Ju(x) = g(x)y“e(x)c(x)oauysq (x)
—g(xX)oauysc(x)c(x)y“q(x), (10

to study the Z.(4025) as the D*D* molecular state with
JPC = 17~ In this article, we use the simple V,®V,-
type currents to study the J©¢ = 0+, 17~ 2+ molecular
states in a systematic way.

At the hadronic side, we can insert a complete set of inter-
mediate hadronic states with the same quantum numbers as
the current operators 7,,(x) and n(x) into the correlation
functions IT;,,4s(p) and I1(p) to obtain the hadronic repre-
sentation [62,63]. After isolating the ground state contribu-
tions of the scalar, axial-vector and tensor molecular states,
we get the following results:

Sualvp + 8up8va w8
i = Mt (s Tt B
+I15(p) 8uv8aps
2 ~ o~ ~ o~ ~ o~
Mz <g;wzgvﬁ + 8upva guv&xﬁ)
MI2’/Z p? 2 3
T (11)
505 (p) = T—1(p) (~ZuaPvPp — BvpPuPa
+ g;uﬁpvpa +§vapupﬁ)
+I,(p) (gp,otguﬁ - guﬂgva) ,
)\2
= (~Buapvpp — Boppup
= 3 na Pv vBPuPa
My, ; — p?
+é~'uﬁpvpoz +§vapp_l7ﬂ)+"' ) (12)
22
- My/z
N7=0(p) = My=o(p) = —5— L+, (13)
My,, —p
where the notation g, = guv — LuPv " the components

IT;(p) are irrelevant in the present analy51s [64], and the
pole residues Ay, z are defined by

Ol ONY/Z () = hy/z v
01, OIY/Z;_1(p)) = Ay;z (€upv — EvPu)s
OMmOIY/Zj—o(p)) = ry)z, (14)
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the €, and ¢, are the polarization vectors of the tensor and
axial-vector molecular states, respectively, with the follow-
ing properties:

gomgﬁv + g;owgﬁu . gaﬂg;w
2 3 7

28;/_‘30" P)euv(A, p) =
A

ZSZ(k,p)Sv(k,p) = —guv- (15)
A

Here we add the superscripts and subscripts J/ = 2, 1, Oto
denote the total angular momentum. In Ref. [50], Khemchan-
dani et al. take the current j,, (x) = E(x)yﬂu(x)&(x)yvc(x)
to interpolate the molecular states, and use the projectors
730 — w’ 731 — guaguﬂ;g/tﬂgva , pz — guotgvﬁ‘;gp.ﬁgva _
8unal 1o separate the contributions of the J© = 0T, 1+, 2+
molecular states, respectively. The present treatment differs
from that of Ref. [50], while the present currents 7, (x) dif-
fer from those of Refs. [38,49].

In the following, we briefly outline the operator product
expansion for the correlation functions I, (p) and IT(p)
in perturbative QCD. We contract the s and Q quark fields in
the correlation functions I, (p) and I1(p) with the Wick
theorem, and obtain the results

Myuvep(P) = % / a*xe?* {Tr [5G (0708 () |
X Tr [ 18" (0785 (=) |
+Tr [5G (@) S (=)
xTr -y,LSm" (x)yaS'ém(—x)-

£Tr [ 15 ()87 () |

xTr _yﬂS’"” (x)vg S'ém(—x)_
+Tr [VMSZ (X)yp Sji(—x)]

XTe [ 8™ @) SE" (—)|} (16)

M(p) =i / d*xe e [ 7,50 () v ST (<) |
xTr [y“S’”"(x)y"‘S’é’"(—x)] , (17)

where the £ correspond to &+ charge conjugations, respec-
tively, the S (x) and S (x) are the full s and Q quark prop-
agators, respectively,

S (x) = i8ij X Sijms  8ij(Ss) " i8;j Xmg(ss)
T 2n2xt 4w 2x? 12 48
8ijx* (5850 Gs) | i8ijx* ¥my (5850 Gs)
192 1152
igsGagtfi (o + 0P §)  i5;x? (g2 (5s)?
327m2x2 7776
8ijx*(55)(g2GG) 1 _
T eas g ow
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Lo u
2SSt (18)
i j i . S
Sy = o [ atket {_w
0 Qn)* K —mg
_gng/sl‘;’j P +mg) + [ +mo)a®f
2 .23\2
4 (k= —mp)
gs DO,G%AtZ’/(fKﬂa + f)»aﬁ)
3(k2 —m)*
g?(lalb),’ngﬂsz(fa,BMV_i_fauﬁv_i_faﬂvﬁ)
B 2 .2\5
4(k me)
ol

2P =+ mo)yy K+ m)y* | +mg)y” (K +my),
TP = ([ +mo)y* K +mo)yP (K +mo)y" (K
+mg)y" (K +mg), (19)

and " = %, the A" are the Gell-Mann matrices, D, =
0y — igsGht" [63], then compute the integrals both in the
coordinate and momentum spaces, and obtain the correla-
tion functions Iy, (p) and IT(p) therefore the QCD spec-
tral densities!. In Eq. (18), we retain the terms (5 ;0,,,s;) and
(8jvusi) originate from the Fierz re-ordering of the (s;5;)

1Tt is convenient to introduce the external fields %, x, A4, and the
additional Lagrangian AL
AL = 5(x) (iy" 8, — myg) x (x)
X0 (iy" 0 — myg) s(x) + g5 ()Yt s () AL (x) + -+,
in carrying out the operator product expansion [63,65,66]. We expand

the heavy and light quark propagators Sg and S;; in terms of the external
fields x, x, and Ag,

_ i 4 —ike Si
S (x. % x. AL) = (2ﬂ)4/d ke™ X{ﬁ

_ & Auplii 0P+ mo) + | +mg)o”
4 (K —m%)?

.t

idij X Prone]

w2t T X (x)x’(0)

_igsAGytf; ({0 + 0P ) N
327m2x2

where Afy = 9y A} — 0pAG + gsf“b"AgA;. Then the correlation

functions I1(p) can be written as

Sij (e, %0 x5 AG) =

T

[o.¢]
M(p) = ) Culp, 1) On (X, X, AY, 1)
n=0

in the external fields x, x, and Ag, where the C,(p, i) are the Wilson
coefficients, the O, ( X X, AS, u) are operators characterized by their
dimensions n. We choose the energy scale © > Agcp, the Wilson
coefficients C, (pz, 1) depend only on short-distance dynamics, and
the perturbative calculations make sense. If we neglect the perturbative
(or radiative) corrections, the operators O, ( X X, AY, p,) can also be
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to absorb the gluons emitted from the heavy quark lines
to form (585G gy, 0uvsi) and (5,.8i8s Dy Gogly,) S0 as
to extract the mixed condensate and four-quark condensates
(sgsoGs) and g% (55)2, respectively. The s-quark fields s(x),
5(x), and the gluon field GZ (x) can be expanded in terms of

the Taylor series of covariant derivatives,

o0

1
s(x) = Z mx’“x”2 .

n=0

: xun D/’Ll D,u2 o D,un S(O)’

1
s(x) = Zﬁx’“x”z

n=0

- xM1 5(0) DT DT ...DT

Kn?

9]

1
a — Pyl w2 | M
GM(X)_ZOn!(n_I_Z)x XX X DMIDMZ
n=
- Dy, Gfm(O). (20)
The bilinear fields s, (x)sg(0) can be re-arranged into the
following form in the Dirac spinor space:

1 1
Sa(¥)5p(0) = — 7 8apS (0)s (x) — Z(V“)aﬁf(O)VMS(X)

Lo 1 _

=30 )apF (00005 () + 2 (7" ¥5)apT O)uyss (x)

1

3 ¥5)apT (0)iyss (x). @1)

The vacuum condensates (5gs;oGs), gf (55)2, and (5s)
(ngG) in the full s-quark propagator originate from the
vacuum expectations of the operators 5(0)a”’ D% DP5(0),
5(0)y*D*DP D*5(0), and 5(0)D*DP D*D75(0), respec-
tively. We take into account the formulas [Da, Dg] =
—igGopand D* G4 =—g; (iyut“u + dyut®d + Syuts),
then the terms with n > 4 in the Taylor expansion of the s (x)

Footnote 1 continued
£00 0 (oF), with

k=0, é 1, g etc. In this article, we take the truncatlons n < 10
and k < 1, and factorize the higher dimensional operators into non-
factorizable low dimensional operators with the same quantum numbers
of the vacuum. Taking the following replacements:

counted by the orders of the fine constant o5 (1) =

On (X > AG, 1) = (O (5,5, GG, 1)),

we obtain the correlation functions at the level of quark—gluon degrees
of freedom. For example,

()7 8i;x(@x(©0)  §;x2%(0)gso A(0)x (0)
i J _ 9 _9ij
x')x’(0) = D o3
NI _Sijlss) 8ijx* (5850 Gs)

12 192
For simplicity, we often take the following replacements:
S (x. 7. x. AS) > SZ (x.5.5.G4)
Sij (x, %, x. AS) = Sij (x.5.5,GS),
On (X: x: AG) = (On (5.5, Gg)),

directly in the calculations by neglecting some intermediate steps, and
resort to the routine taken in this article.

and 5(x) are of the order O(af) with k& > 1, and have no
contribution in the present truncation. The operators g, G/, e
8sDyG”, B2 and ng“ Gb in the full Q-quark propagator are
of the order (’)(af) with k = %, 1, and 1, respectively. The
terms with n > 1 in the Taylor expansion of the GZ (x) are
of the order O(af) with k& > 1, and have no contribution
in the present truncation. In this article, we take the trunca-
tion O(af) with k < 1, the operators therefore the vacuum
condensates have the dimensions less than or equal to 10.
Once the analytical expressions are obtained, we can take
the quark—hadron duality below the continuum thresholds
so and perform a Borel transformation with respect to the
variable P2 = — p? to obtain the following QCD sum rules:

M, r s
AzY/z exp (—T—£> = / ds p(s) exp (—ﬁ) (22)

4m2Q
where
p(s) = po(s) + p3(s) + p4(s) + p5(s) + pe(s) + p7(s)
+p8(s) + mo(S) (23)

1-y

=2(s) = 704807 6fdy/dzyz(1—y—z)3(s

—m2Q> (293s2 — 190873 + 17m4Q)

yf 1-y

dy [ dzyz(1—y—
+2O480716,/ y/ eyzl=y=0%Gs
Yi Zi

Yf -
_,\4 3m m
—sz 512 6Q/dyfdz(y+2)

x(1—y—2)>2 (s - ng) (4s —sz) @4

_ 3
P70 = -2 /dy/dZ(y+Z)(1—y—z)

X(S""Q) (3S‘ o)

3 R
s (58 /dy/dzyz(l—y—z)

t 64074
x<115s —112st+17mQ)
Yf 1—y

6407r4 fdy/dzyz S—mQ>
y 1—

3ms ’ y

16714 dy/dz s—mQ (25)

Yi Zi
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m2 GG Yf I—y
J=2 0 Us
— 2 [®YYY[4, [ a
Pi () 153607t4< - >/ yf ‘
i Zi
Y
X<F+z_2>(l_y_Z)3

—2 2 —2
x {565 — 1777 + 105% (s — 7)) |

2

e\ ¢t F
m
0 [as
- EEYN [dy [ d
5]207‘[4< 7T >/ yf ‘
Vi Zi
z Yy N =2
X<y2+zz>(1 y—2) (s mQ)
1 o\ 7 ¢
(o7}
(YN 4y | 4
102407[4< T >/ y/ ¢ +2)
Vi i

x(1—y—2)>2 (185s2 — 208575 + 43m4Q)

| o\
A
(22N [ay [ 4
+5120n4< n >/ y/ b+
Yi

Zi

x(1—y—2) (s—sz)z, (26)

3mo(s5gs0Gs)
12874

yf -
/dy f dz(y+12)
X <Zs —n_1Q> )

yr 1—-y
/dy/dzyz 56s

—17m% + 10525 (s _ mQ)}

Yf

ms(SgsoGs) ~
T 64074 /dyy(l_y) (S_’"Q)
Yi

2 - Yf

3mst(sgSaGs)

+———F— [ dy.
64

I (s) =

_mg (sgsoGs)
©o640mt
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the subscripts 0, 3, 4, 5, 6, 7, §,

sions of the vacuum condensates, y; = 5 , Vi =
2

1= /1=4m? /s L ym?, = _ G+2m? P my

2 U ys_mZQ’ o — vz 20 T y(1-y)?

fy};f dy —el dy, fztfy dz — folfy dz when the § func-
tions & (s — n_12Q> and § (s — n~12Q) appear. In this article, we
carry out the operator product expansion to the vacuum con-
densates up to dimension 10, and assume vacuum saturation
for the higher dimensional vacuum condensates. The con-
densates (2GG), (5s) (£ GG), (55)?(£GG), (58,0Gs)?,
and gf(fs) are the vacuum expectations of the operators
of the order O(wy). The four-quark condensate gA (c}q)

comes from the terms (Sy,t*sg; D, G ), (s]D D D! 0 Si)
and (5; D, D, Dys;), rather than comes from the perturbatwe
corrections of (5s)2. The condensates (g?GGG), ("‘A‘ﬂﬁ)z,
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)(5gs0 Gs) have the dimensions 6, 8, 9, respectively,
but they are the vacuum expectations of the operators of the
order O(ag/ 2) O(az), (’)(oz?/ 2), respectively, and discarded.
We take the truncations n < 10 and k < 1 in a consis-
tent way, the operators of the orders O(af) with £ > 1
are discarded. Furthermore, the values of the condensates
(§3GGG), (289)2, (%0C) (50,6 Gs) are very small, and
they can be neglected safely. In Refs. [36,39,54-56], the
same truncations are taken to study the hidden-charmed and
hidden-bottom tetraquark states and molecular states with
the QCD sum rules, and to obtain the energy-scale formula,
such truncations work well.

Differentiating Eq. (22) with respect to 2 , then eliminat-
ing the pole residues Ay, z, we obtain the QCD sum rules for
the masses of the scalar, axial-vector and tensor D D and
B} B molecular states,

,/‘41(1[ de( 1/T2)10(S) exp (_%)
f4m2Q dsp(s) exp (—%)

<C(XGG
T

M3, = (46)

We can obtain the QCD sum rules for the D* D* and B* B*
molecular states with the simple replacements,

my — 0,

(55) = (qq).
(5g50Gs) — (q850Gq). (47)

For the tetraquark and molecular states, it is more rea-
sonable to refer to the Ax,y,z as the pole residues (not the
decay constants). We cannot obtain the true values of the
pole residues Ay,y,z by measuring the leptonic decays as
in the cases of the Ds(D) and J/¥(Y), Ds(D) — £v and
J/¥(Y) — eTe™, and have to calculate the Ax/y;z using
some theoretical methods. It is hard to obtain the true values.
In this article, we focus on the masses to study the molecular
states, and the unknown contributions of the perturbative cor-
rections to the pole residues in the numerator and denomina-
tor are expected to be canceled out with each other efficiently,
as we obtain the hadronic masses My, through a ratio; see
Eq. (46). Neglecting perturbative O(ay) corrections cannot
impair the predictive ability qualitatively.

3 Numerical results and discussions

The vacuum condensates are taken to be the standard val-
ues (Ggq) = —(0.24 +0.01 GeV)3, (55) = (0.8 +£0.1)(7q),
(qg:0Gq) = m§(qq), (5850 Gs) = m(5s), mg = (0.8 £
0.1) GeV?, (@) = (0.33GeV)* at the energy scale u =
1 GeV [62,63,67,68]. The quark condensates and mixed
quark condensates evolve with the renormalization group

4
equation, (Gg)() = (G)(Q) £ ]", G = 9)

@ Springer

4
@[22, (ag0Ga)w = G8:0Ga) Q)| £@]7,

2
(2,0 Gs) () = (2,0 Gs)(Q) [ 297
In the article, we take the M S masses m.(m.) = (1.275+
0.025) GeV, mp(mp) = (4.18 £ 0.03) GeV, and m;(n =
2 GeV) = (0.095+0.005) GeV from the Particle Data Group
[4], and take into account the energy-scale dependence of the
M S masses from the renormalization group equation,

4
o (1) 9
= 2GeV) | ——— | ,
mg () my(2Ge )|:Ol5(2GeV)]
12
as(pn) 1%
me(w) =mc(mc)[ - } ,
s(me)
12
as(p) |3
mp (L) Zmb(mb)[ : ]
ag(mp)
1 by logt
1— ===
o (n) = bot [ by t
bz(log t —logt — 1) + boby
where ¢t = log & A2’ by = %3123;” by = %, b, =

28573933, 4 32
% A = 213MeV, 296 MeV and 339 MeV

for the flavors ny = 5, 4, and 3, respectively [4].

In the conventional QCD sum rules [62,63], there are two
criteria (pole dominance and convergence of the operator
product expansion) for choosing the Borel parameter 72 and
threshold parameter so. We impose the two criteria on the
hidden-charmed (or bottom) molecular states, and search for
the optimal values.

In Refs. [36,39,54-56], we study the acceptable energy
scales of the QCD spectral densities in the QCD sum rules
for the hidden charmed (bottom) tetraquark states and molec-
ular states in detail for the first time, and suggest a formula

nw = \/ M% 1Y)z~ (21\/[[Q)2 to determine the energy scales
of the QCD spectral densities. The heavy tetraquark sys-
tem Q Qq’g could be described by a double-well potential
with two light quarks ¢’g lying in the two wells, respec-
tively. In the heavy quark limit, the Q-quark can be taken
as a static well potential, which binds the light quark ¢’
to form a diquark in the color antitriplet channel or binds
the light antiquark g to form a meson in the color sin-
glet channel (or a meson-like state in the color octet chan-
nel). Then the heavy tetraquark states are characterized by
the effective heavy quark masses My (or constituent quark
masses) and the virtuality V = \/M)z(/y/z — (ZMQ)2 (or
bound energy, being not as robust). The effective masses
My, just like the mixed condensates, appear as parame-
ters and their values are fitted by the QCD sum rules. The
effective masses My have uncertainties, the optimal val-
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Table 1 The Borel parameters,

continuum threshold Jre w(GeV)  T?(GeV?)  s0(GeV?)  Pole (%) My;z (GeV)  ryjz (GeV’W)
parameters, pole contributions, T 10.09 10.67 5
eneray scales, masses, and pole 01" (ccud) 1.6 2.5-29 20+1 43-68)  4.01700 3.977080 % 10
residues of the scalar, 1= (ccud) 1.7 2.8-3.2 20+1 (45-68)  4.047507 6.371098 x 1073
axial-vector, and tensor - +0.10 +0.47 2
molecular states. The symbolic 2+F (ccud) 1.6 2.6-3.0 20+1 (45-69)  4.017040 3.05041 x 10-
quark constituents are shownin 0¥+ (cgss) 1.8 2.8-3.2 2+1 (46-69)  4.1475%8 5.75T038 x 1072
the bracket . 10,05 10.60 5
1+~ (cess) 1.9 3.2-36 2+1 (48—68) 416700 8.8070:%9 x 10~
2+ (céss) 1.8 3.0-3.4 22+ 1 47-68) 4137008 4.347080 < 1072
0+t (bbud) 2.8 6.8—7.8 124 +2 44—65)  10.657003 2,071 x 107!
1+~ (bbud) 2.9 7.0-8.0 124 +2 45-65) 1067900 1.34%070 x 1072
2+ (bbud) 2.8 7.2-8.2 124 +2 (44—64)  10.667 009 1671033 x 107!
0+ (bbss) 2.9 7.0-8.0 126 +2 (45-66)  10.7070 08 2.49104L x 107!
1+ (bbss) 3.0 7.2-8.2 126 +2 @7-66)  10.73790 1.63%077 x 1072
2+ (bbss) 3.0 7.8—8.8 128 +:2 (48—66)  10.717008 2311033 x 107!

ues in the diquark—antidiquark systems are not necessarily
the ideal values in the meson—meson systems. The QCD
sum rules have three typical energy scales u?, T2, V2. It
is natural to take the energy scale, u> = V2 = O(T?).
The effective masses M, = 1.84 GeV and M, = 5.14 GeV
are the optimal values for the hadronic molecular states, and
can reproduce the experimental data M 3g72) = 3.87 GeV,
Mz, 39000 = 3.90GeV, Mz, 106100 = 10.61 GeV approx-
imately [36]. In this article, we take the effective masses
M, = 1.84GeV and M, = 5.14GeV, and the predic-
tions indicate that they are also the optimal values to repro-
duce the experimental values of the masses of the Z.(4020),
Z.(4025), Y (4140), and Z,(10650).

The energy-scale formula serves as additional constraints
on choosing the Borel parameters and threshold parame-
ters, as the predicted masses should satisfy the formula.
The optimal Borel parameters and continuum threshold
parameters therefore for the pole contributions and energy
scales of the QCD spectral densities are shown explicitly in
Table 1.

InFig. 1, the masses of the scalar D* D* and D} D molec-
ular states are plotted with variations of the Borel parameters
T2 and energy scales y for the continuum threshold param-
eters s(l))* 5 = 20 GeV? and sOD;_k pr = 22 GeV?, respec-
tively. From the figure, we can see that the masses decrease
monotonously with increase of the energy scales, the energy
scales u = (1.5-1.6)GeV and u© = (1.7-1.9) GeV can
reproduce the experimental values of the masses Mz, (4025)
(or Mz_(4020)) and My (4140), respectively. The formula p =
\/M)z(/Y/Z — (2Mp)? leads to the values u = 1.6 GeV and
u = 1.8GeV for the scalar D*D* and D}D¥ molecular
states, respectively. The agreement is excellent. The masses

My 3940) < Mz, 4025), the energy scale of the QCD spec-
tral density of the Y (3940) should be smaller than that of

the Z.(4025) according to the energy formula. From Fig. 1,
we can see that the predicted mass is larger than 3.95 GeV
even for the energy scale © = 1.8GeV, and we cannot
satisfy the relation /so & My 3940) + 0.5GeV with rea-
sonable My 3940y compared to the experimental data. Now
the X (3915) is listed in the Review of Particle Physics as
the x.0(2P) state with J*€ = 0%+ [4]. The present result
supports the assignment of the Particle Data Group. In Ref.
[15,16], we study the scalar D*D*, DjD;‘, B*B*, BS"B;k
molecular states with the QCD sum rules by carrying out the
operator product expansion to the vacuum condensates up to
dimension 10 and setting the energy scale to be © = 1 GeV.
The predicted masses are about (250-500) MeV above the
corresponding D* D*, D;‘D;‘, B*B*, and B;‘B;" thresholds.
If larger energy scales are taken, the conclusion should be
modified.

In Figs. 2, 3, the contributions of different terms in the
operator product expansion are plotted with variations of the
Borel parameters 72 for the energy scales and central values
of the threshold parameters shown in Table 1. The contri-
butions of the condensates do not decrease monotonously
with increase of dimensions. However, in the Borel windows
shown in Table 1, the D4, D7, D1g play a less important role,
D3 > |Ds| > D¢ > |Dg| for the J = 2 molecular states
and J =0 D;‘D;" molecular state, D3 > |Ds| > Dg for
the J = 1 molecular states, D3 > |Ds| ~ Dg > |Dg|
for the / = 0 D*D* and BB} molecular states, D3 >
Dg > |Ds| ~ |Dg| for the J = 0 B*B* molecular state,
the Dg, Dg, D1p decrease monotonously and quickly with
increase of the Borel parameters for the J = 0, 2 molecular
states, where the D; withi =0, 3, 4, 5, 6, 7, 8, 10 denote
the contributions of the vacuum condensates of dimensions
D = i, and the total contributions are normalized to be
1. The convergence of the operator product expansion does
not mean that the perturbative terms make dominant con-
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Fig. 1 The masses with
variations of the Borel
parameters 72 and energy scales
1, where the horizontal lines
denote the experimental values
of the masses of the Z.(4025),
Y (3940), and Y (4140),
respectively, (I) and (II) denote
the scalar D* D* and D} D
molecular states, respectively

Fig. 2 The contributions of
different terms in the operator
product expansion with
variations of the Borel
parameters Tz, where the 0, 3,
4,5,6,7, 8, 10 denotes the
dimensions of the vacuum
condensates, the J =0, 1,2
denote the angular momentum
of the molecular states, the (I)
and (IT) denote the D* D* and
D} D;‘ molecular states,
respectively
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Fig. 3 The contributions of 2.0 ——————1————T——1————1—1 20 —r—r—1+—71r1r 11T 7T
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tributions, as the continuum hadronic spectral densities are ~ 4MpdMgp = —udpu. (49)

approximated by pocp(s)O(s — sp) in the QCD sum rules
for the heavy molecular states, where the ppcp(s) denotes
the full QCD spectral densities; the contributions of the quark
condensates (g¢q) and (5s) (of dimension 3) can be very large.
In summary, the two criteria (pole dominance and conver-
gence of the operator product expansion) of the QCD sum
rules are fully satisfied, so we expect to make reasonable
predictions.

We take into account all uncertainties of the input param-
eters, and obtain the values of the masses and pole residues
of the scalar, axial-vector and tensor molecular states, which
are shown explicitly in Figs. 4, 5 and Table 1.

The uncertainties of the effective masses M and energy
scales u have the correlation,

If we take the uncertainty §u = 0.3GeV, the induced
uncertainties are M, ~ 0.07GeV, SM;, ~ 0.04GeV,
5My/zb ~ 100 MeV, SMy/Z( ~ 50MeV, 5My/z/My/Z ~
1 %, 0Ay)z,/Ayz. = 10 % and SAy,z, /Ay, z, ~ 20 %; see
Table 2. The uncertainties §My;z/My,;7 < SAiy;z/ry;z,
we obtain the hadronic masses My, 7 through aratio; see Eq.
(46), the energy-scale dependence of the hadronic masses
My 7 originate from the numerator and denominator are can-
celed out with each other efficiently, the predicted masses
are robust. On the other hand, if we take the uncertainties
of the experimental values of the masses of the Z.(4020),
Z.(4025), Y (4140), Z,(10650) as the input parameters
[5,22,43,44], the allowed uncertainties are |5 4| < 0.1 GeV,
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Fig. 4 The masses with 2T 7T 77T T T T 7 5.4 L L N HL A LA R B B
variations of the Borel so0f\ — Central value; | ] 520 — Central value; |
parameters T2, where the agh _ - - - Upper bound; | - = - Upper bound; | -
horizontal lines denote the asl' N J=0() | Lowerbound; | 1 a4slb = V|- Lower bound; | ]
experimental values of the r —-—-D=6.

masses of the Z.(4025),

M(GeV)

Y(3940), and Y (4140), the

M(GeV)

J =0, 1, 2 denote the angular : _____________ ]
momentum of the molecular 8
states, the (I) and (IT) denote the 36| - . -
D*D* and D} D} molecular 34l ] 36 ]
states, respectively. The D = 8 gol v v v gl v v v vy
and D = 6 denote the vacuum 18 20 22 24 26 28 30 32 34 36 18 20 22 24 26 28 30 32 34 36
condensates are taken into TZ(GeV2) TZ(GeVZ)
account up to dimensions 8 and
6, respectlvely T T T T T Sdr——T—T T T T T T T T T
—— Central value; | 7 521 —— Central value; | T
- - -Upper bound; | 5.0 - — - Upper bound; | 4
----- Lower bound; | ] 48k J=0(I) |------Lower bound; | ]
gets B E Il e
(\D, - n g . =0.
= =Py lfpuifylipylp s _‘ =
34 4 36 4
32 L " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 34 PO I U TSN (U SN SR U NN U TS NN N
18 20 22 24 26 28 30 32 34 36 18 20 22 24 26 28 30 3.2 34 36 38 40
TA(GeV?) TA(GeV?)
5.4 LA S S A B B B B Sdr—T—T T T T T T T T T
52 f‘\ —— Central value; | ] 521 —— Central value; | ]
5.0 o =1an 0 -Upper bound; | 5.0 - — - Upper bound; | 4
48 L - ( ) ----- Lower bound; i 48k Y =N e Lower bound; .
~ --—-D=6. ~
% 46 i < % 46
O 44 n O 44
2 42 b oo oo TeTs = 42[
aof T ] 40
381 4 38} 4
36 ] 36l ]
[ 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1

g4l
18 20 22 24 26 28 30 32 34 36 38

T’ (GeV?)

M, « 0.03GeV, M, <« 0.02GeV. In Refs. [17,18,38,
50], the authors study the D*D*, D¥ D}, B* B* molecular
states by choosing the M S masses mg(mg) and the vacuum
condensates (Gq) u—1Gev, (7850 Gq) u=1 Gev, etc. In this arti-
cle, we calculate the QCD spectral densities at a special
energy scale p consistently, the energy scales w are deter-
mined by the parameters Mg, which have very small allowed
uncertainties. The correlation functions I1(p) can be written
as

S0 o]
M(p) = / dSPQL@;Mu/dsPQL(S;M), (50)
s—p s—p
4m (1) %0

through dispersion relation at the QCD side, and they are
scale independent,

@ Springer

o O T S T
18 20 22 24 26 28 30 32 34 36 3.8 4.0
T’(GeV?)

4.0

d
—T(p) =0,

51
m (5D
which does not mean
d T
a4 / dspQL(s’“) =0, (52)
du s — p?
4m ()

due to the following two reasons inherited from the QCD
sum rules:

e Perturbative corrections are neglected, the higher dimen-
sional vacuum condensates are factorized into lower
dimensional ones; therefore the energy-scale dependence
of the higher dimensional vacuum condensates is
modified;
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Fig. 5 The masses with 12.0 ————————————————— 12.0 —— T
variations of t2he Borel "e —— Central value; | 7] "8 —— Central value;
parameters 7%, where the 116 by J=0 (1) |7~ ~Upperbound; | - e J=1() |7~ Upper bound;
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T’ (GeV?)

e truncations sg set in, the correlation between the thresh-
old 4m2Q(,u) and continuum threshold s¢ is unknown, the
quark—hadron duality is an assumption.

We cannot obtain energy-scale independent QCD sum rules,
but we have an energy-scale formula to determine the energy
scales consistently.

The present predictions M lj)fg* (4.011‘8:(1)2) GeV,
J=1 +0.07 J=0 +0.09
Ml = (4.04700) Gev. M0, = (40140(3) Gev

are consistent with the experimental values Mz_025)
(4026.3 2.6 = 3.7) MeV, Mz o) = (4022.9 £ 0.8 £
2.7)MeV from the BESIII collaboration [43,44]. More
experimental data on the spin and parity are still needed

T’ (GeV?)

to identify the Z.(4020) and Z.(4025) unambiguously. In
Ref. [50], K. P. Khemchandani et al. carry out the oper-
ator product expansion up to dimension 6 and obtain the

values M7=2 = (3946 +104) MeV, M/=1 = (3950
+105) MeV, M= = (3943 4+ 104) MeV. The central

* )k
values are smallé)r Lt)han ours about 50 MeV. In the calcu-
lations, we observe that the vacuum condensates of dimen-
sions 7, 8, 10 play an important role in determining the Borel
windows, and warrant platforms for the masses and pole
residues. The conclusion survives in the QCD sum rules for
the tetraquark states and molecular states consist of two heavy
quarks and two light quarks. There appear terms of the orders
(9(%), O(#), O(%) in the QCD spectral densities, if we
take into account the vacuum condensates whose dimensions
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Table 2 The uncertainties

originate from the uncertainty of Jre w (GeV) sMp (GeV) My 7z (GeV) Shyyz/hy)z (%)

the energy scale S = 0.3 GeV 0+ (céud) 1.6+0.3 +0.07 +007 49
1+ (ccud) 1.740.3 +0.07 +0.06 0
2 (ccud) 1.6+0.3 +0.07 +0.08 "
0F (ccs5) 1.840.3 +0.07 005 1
1+~ (ccs3) 1.94+03 +0.08 +0.0s +6
2%+ (cess) 1.8+0.3 +0.07 005 +
0"+ (bbud) 28403 +£0.04 014 +18
177 (bbud) 29£03 +£0.04 o2 +19
2 (bbud) 2.8+0.3 +0.04 +0.3 +
07+ (bbss) 29403 +£0.04 012 +16
177 (bbs5) 3.0£03 +0.04 ol +18
2+ (bbs5) 3.0+0.3 +0.04 ol +3

are larger than 6 [36,39,54-56]. The terms associate with
%, %, % in the QCD spectral densities manifest them-
selves at small values of the Borel parameter T2, we have
to choose large values of the 72 to warrant convergence of
the operator product expansion and appearance of the Borel
platforms. In the Borel windows, the higher dimension vac-
uum condensates play a less important role. In summary,
the higher dimension vacuum condensates play an important
role in determining the Borel windows therefore the ground
state masses and pole residues, so we should take them into
account consistently. In Figs. 4, 5, we also plot the masses
by taking into account the vacuum condensates up to dimen-
sion 6 and 8, respectively. From the figures, we can see that
neglecting the vacuum condensates of the dimensions 7, 8,
10 cannot lead to platforms flat enough so as to extract robust
values.

The present predictions M Z)f%* = (4.13f8:g§) GeV,
J=1 +0.05 J=0 +0.08
My = (4165587) Gev, M0, = (4.1423(%) Gev

are consistent with the experimental value Myuj40) =
(4143.0 & 2.9 4+ 1.2) MeV from the CDF collaboration [5].
The CMS collaboration fitted the peaking structure in the
J /¥ ¢ mass spectrum to a S-wave relativistic Breit—Wigner
line-shape with a statistical significance exceeding 5o [8].
We can tentatively assign the Y (4140) to the scalar D} D¥
molecular state, while there lack experimental candidates for
the axial-vector and tensor D} D molecular states. We can
search for the axial-vector and tensor D D molecular states
in the J /¢ mass spectrum and measure the angular corre-
lation to determine the spin and parity.

The present predictions M {;—i = (10.66f8:(1)3) GeV,
J=1 +0.09 J=0 +0.15
My = (106720 Gev. M} 0, = (10654343 Gev

are consistent with the experimental value Mz, 10650) =
(10652.2+1.5) MeV from the Belle collaboration [22], while
the Belle data favors the JPC = 17~ assignment. We can

@ Springer

tentatively assign the Z,(10650) to the axial-vector B* B*
molecular state, while there lack experimental candidates for
the scalar and tensor B* B* molecular states. We can search
for the scalar and tensor B* B* molecular states in the Y¢
mass spectrum and measure the angular correlations to deter-
mine the spin and parity.

There also lack experimental candidates for the BB}
molecular states, we can search for them in the T¢ mass
spectrum and measure the angular correlations to determine
the spin and parity.

In Refs. [39,54,55], we resort to the same routine to
study the heavy tetraquark states, the predicted masses favor
assigning the Z.(4020) and Z.(4025) to the 1t~ or 27+
tetraquark states, and the Z,(10650) to the 11~ tetraquark
state. A hadron cannot be identified unambiguously by the
mass alone [38], soitis interesting to explore possible assign-
ments in the scenario of molecular states. The predicted
masses of the heavy molecular states also favor assigning
the Z.(4020) and Z.(4025) to the 17~ or 27 molecu-
lar states, the Z;(10650) to the 17~ molecular state. The
Z:(4020), Z.(4025), Z,(10650) maybe have both tetraquark
and molecule components, which should be interpolated
by the tetraquark-type currents and molecule-type currents,
respectively. In the present work and Refs. [36,39,54-56],
we obtain the pole residues (or the current-hadron coupling
constants), which can be taken as basic input parameters
to study the strong decays of the heavy tetraquark states
or molecular states with the three-point QCD sum rules.
Then we obtain more knowledge to identify the Z.(4020),
Z.(4025), Zp(10650). In the scenario of meta-stable Fesh-
bach resonances, the Z.(4025) and Z;(10650) are taken as
the h.(2P)w — D*D* and ;1 p — B* B* hadrocharmonium-
molecule mixed states, respectively, where the xpip is a
P-wave system [69]. The hadrocharmonium system admits
bound states giving rise to a discrete spectrum of levels, a res-
onance occurs if one of such levels falls close to some open-
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charm (open-bottom) threshold, as the coupling between
channels leads to an attractive interaction and favors the for-
mation of a meta-stable Feshbach resonance. We can borrow
some ideas from the meta-stable Feshbach resonances, the
couplings between the tetraquark states and molecular states
leads to an attractive interaction and favors the formation of
the Z.(4020), Z.(4025), Z;(10650), as they couple poten-
tially both to the tetraquark-type and molecule-type currents.

4 Conclusion

In this article, we calculate the contributions of the vacuum
condensates up to dimension 10 and discard the perturbative
corrections in the operator product expansion, and we study
the J€ = 0TF, 17~ and 2"+ D*D*, D} D¥, B*B*, B} B}
molecular states in detail with the QCD sum rules. In the

calculations, we use the formula o = \/ M3 vz (2Mp)?

suggested in our previous work to determine the energy scales
of the QCD spectral densities. The present predictions favor
assigning the Z.(4020) and Z.(4025) to the JFC = 0+,
1t~ or 2t+ D*D* molecular states, the Y (4140) to the
JPC = 0t D#D} molecular state, the Z;(10650) to the
JPC = 17~ B*B* molecular state, and they disfavor assign-
ing the Y (3940) to the (/¢ = 07*) molecular state. The
present predictions can be confronted with the experimental
data in the future at BESIII, LHCb, and Belle-1I. The pole
residues can be taken as basic input parameters to study the
relevant processes of the /¢ = 07+, 17~ and 2+ molec-
ular states with the three-point QCD sum rules.
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