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Abstract. We present an overview of a new warm fluid model that inconesrdeading-order
kinetic corrections to the cold fluid model without makingyarear-equilibrium assumptions. In
the gquasi-static limit we obtain analytical expressiomndiie momentum spread and show excellent
agreement with solutions of the full time-dependant equmatilt is shown that over a large range of
initial plasma temperatures, the fields are relativelymsgése to the pressure force. We discussion
implications of this work for model validation.

A WARM FLUID MODEL

We have recently derived a warm fluid model [1] that treatswidth of the phase-
space distribution asymptotically. This model is partelyl appropriate for studying
the interaction of a short, intense laser pulse with a cotdlistonless plasma. By
exploiting the assumption of small momentum spread, we toactsa closed set of
moment equations without appealing to a collisional clestm this model, the phase
space distribution is characterized by the moments

n(r,t)=/d3p f(r,p,b),
P(r,t)=%/d3ppf(r,p,t), (1)
ﬂij(r,t)zé/d:"p (B —P)(p;—P)) f(r,p.t).

Evolution equations for the moments are derived startiognfthe Hamiltonian formu-
lation of the Vlasov—Maxwell equations:

of={f,H}, GE={E,H}, and B={B,H}. (2)
whereH is the Hamiltonian
1
_ 2 [A43, 43 e 2 2
H=mc /drd pyf+8n/dr <|E| +]B|), (3)

and{-,-} is the non-canonical Poisson bracket. We preform a reductiche Vlasov—
Maxwell bracket to yield a bracket involving only the momeily assuming that all



functionals off can be written as functionals of the moments. Using the chd@) the
bracket is transformed to an expression involving only motsieThe Hamiltonian is
then approximated using the small momentum-spread asgumgtd the equations of
motion for the moments are obtained from the reduced brackbe usual way.

The moment bracket is naturally closed and satisfies thébdatmmtity and hence the
reduced theory is Hamiltonian. One can show that all Casiafitise full system map to
Casimirs of the moment system. The definition of the momentddés not completely
determinef; many distinct distribution functions can lead to the saraki@s for the
moments. By working to lowest order i, the equations of motion aiedependent
of the precise form of the distribution function. Therefotbkis theory represents a
broad class of possible forms fdr. In all cases, the Hamiltonian structure of the
Vlasov equation is preserved by the moment system. Henisethbory can be seen
as maximally preserving the phase-space structure of theovilsystem. Moreover, this
model is an asymptotic approximation to the Vlasov—Maxwsgtem withT /mc? as
the control parameter. Thus, from this model, we obtain gdgtic approximations to
solutions of the full Vlasov—Maxwell equations.

The moments satisfy

on+0-nu=0,

dtP+u~DP:q(E+%><B>—%D-p, 4)
Pki Pkj

F(akpj _djpk) +7(‘9kpi _aipk>7
wherey, = (1+P?/n?c?)Y/2, p, = P, + gA /cis the canonical momentum,

u - e (g M +~'_3Pinijp' Nk (5)
K ypm 2y2mec 2 it ) yEmic?’

andp;; = n/(yom) [&; — PR/ (ygmPc?)] Ny, is the pressure tensor. Since this model is
collisionless, the pressure is not forced to be isotropas 'tmgeneralpij has significant
off-diagonal terms. Note, due to thermal inertia, the fluitvection velocityu is not
simply P/(y,m) nor is it, in general, parallel t8. The fieldsE andB are determined
Maxwell’s equations from the plasma currgnt gnu. The corresponding evolution

equations are given by = {E H } andé,B = {B,H }.

WARM QUASI-STATIC RESPONSE

While in general (4) appear only amenable to numerical smiytif one assumes the
plasma response to be quasi-static [2] then considerablgteal progress can be made.
We assume that the plasma is underdekse- kp) and that the laser is non-evolving
(i.e., the propagation distance is a fraction of the dephetength). We consider the
case of a plasma that is initially in thermal equilibrium kva low temperature (such
as a laser-produced channelg., the plasma is initially taken to be isotropic with a
temperature on the order of 10 to 20 eV [3-5] and to have nbggitpulk motion. Thus



we have the initial conditiorh'lij = mTOcSIJ- implying I'Iij/(mzcz) ~ 107°, allowing us
to safely neglect the force due to pressure in the momentwratieq. Additionally, one
can show that in the quasi-static limity = O(I), which implies we can ignore the
terms involving pressure in tHé equations of motion. In this limif;1 is driven by the
cold, quasi-static fields. Using these approximations aaasforming to the comoving
coordinates(t,z) — (t,§ =t —z/c), the momentum spread equations become

(1_32)55r|xz:nxxagﬁx+nxzaEBZa (6)

wheref3 = u/c. These equations can be solved analytically to give

I_I)(X:mT,
Bx n
I'IXZ:mTom = mTon—OBx, (7)

2
e () @A

To compare our results with the traditional relativistiemmodynamic approach,
we force the pressure to be isotropic (as would be the cas®liision-dominate

fluid). We then have;; = &;nT /y, andr;; = mT [6,1- +P Pj/(mzcz)} . These assump-

tions lead to a simple adiabatic equation of state. Ranomentum degrees of free-
dom, T (y,/n)?/N = constant, and this implies

n 2/N Pin
=) (37t “

wheren, andT, are, respectively, the unperturbed density and tempexatur

Figure 1 shows (a) the density wave, and (d) the longituditedtric field driven by
a resonant Gaussian laser pulse with frequengy- 20wp and dimensionless vector
potentiala, = 1 computed using the cold quasi-static model. Fig. 1(b) shtv behav-
ior of I for an initial temperature of 15 eV and (c) shows the corredgpw pressure.
The behavior of1, is in qualitative agreement with the thermodynamics of dalzatic
process. This solution exhibits significant anisotropyhi@ momentum spread and little
“heating.” Consequently, in this regime, self-trapping [&fogrons in the wake (leading
to dark current) should not be important. Thus, providedniteal plasma temperature
Is sufficiently small, it should be possible to operate arlgb@sma accelerator without
excessive dark current, even at large wake amplitude. Siroig. 1(e) are the compo-
nentsll from (8),i.e., with the assumption that the pressure is isotropic, whitg Eff)
shows the isotropic pressure. The clear differences betwesse results indicate that
the assumption of local equilibrium is not justified for tltigse and, indeed, leads to
mis-characterization of phase space. In particular, comgd-ig. 1(c) with Fig. 1(f)
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FIGURE 1. Quasi-static plasma response to a resonant Gaussian ldasempth frequencyy, = 20wy
and dimensionless vector potentigl= 1: (a) density modulation; (tl7|ij from (7); (C)pij corresponding
to M in (a); (d) longitudinal electric field; (d)lij from (8), assuming an isotropic pressure; and (f) pressure
assuming isotropy.
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FIGURE 2. Comparison of the quasi-static solutions to numericaltgmig of the full time-dependant
equations for the parameters of Fig. 1: (a)— n%)/ny; and (b) (Mz — N%)/m. The initial plasma
temperature was 15 eV.

we see that the isotropy assumption overstates the traesf@ce and understates the
longitudinal force.

Figure 2 shows a comparison of the quasi-static results sotbtions of the full
time-dependent equations. The warm-fluid equations whaked for the parameters
of Fig. 1. After the wake was fully-developed, the vectorgmiial, A, was recovered
from By and the quasi-static equations where then solved usiras the driver. Shown



in Fig. 2(a) is the difference in quasi-static and time-defat density while Fig. 2(b)
shows the difference in longitudinal momentum spread. &lvare see the agreement
is quite good. That the difference in the predictions for khegitudinal momentum
spread is much larger than the difference in the densitiggesis the quasi-static model
somewhat under-predicts heating within the laser.

SHORT PULSE EXAMPLES

We now turn to solutions of the full time-dependent equatidfigure 3 shows the fields
and bulk plasma motion for initial plasma temperatures oe¥5 150 eV, 1500 eV
and 15 keV. For this range of initial temperatures, the ordjiceable effect on the
plasma response is a slight phase shift [most easily seemparomg Fig. 3(a) and
Fig. 3(d)]. In the low amplitude case, this phase-shift agre@ith the Bohm-Gross [6]
dispersion relation modified by the effects of thermal iiff7]. The corresponding
longitudinal momentum spreadll, is shown in Fig. 4. Except for the overall scale
the variousll, curves are nearly identical. The reason for this is cleagneor an
initial plasma temperature of 15 keV, the pressure forceegigible and the field are
essentially unchanged from the those of the cold plasmaitidddlly the non-linear
terms inf1 are also negligible, leaving the equation of motionffhy effectively scale-
Invariant with respect to the initial temperature.
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FIGURE 3. Fields and bulk plasma motion obtained by solving (4) nuoadli for the parameters of
Fig. 1. Initial plasma temperature: (a) 15 eV; (b) 150 eV; 18P0 eV; and (d) 15 keV. Fields shown
atwpt = 120.
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FIGURE 4. Longitudinal momentum spreafll,;/m, obtained by solving (4) numerically for the pa-
rameters of Fig. 1. Initial plasma temperature: (a) 15 eY 180 eV; (c) 1500 eV; and (d) 15 keV. Results
are shown atuyt = 120.

DISCUSSION

We saw in Fig. 3 that the bulk plasma response, the density wave and longitudinal
electric field, were relatively unchanged over a large raoigitial plasma tempera-
tures. This is part of a larger observation that typicallpverlooked: The low-order
moments of the distribution function and, in particulae glectric and magnetic fields
in the Vlasov—Maxwell system are largelysensitive to the details of phase-space. In
part this is due to the fields coupling to lowest order momelmsaddition, even at
large temperatures, the pressure force is small comparte tlaser and wake fields.
Large-scale aspects of phase space do indeed affect thdidddik a trapped particle
bunch of high charge will clearly alter the wake field, but ke will nonetheless be
rather insensitive to the particle distribution within thench. On the other hand, the
microscopic details of phase-space directly affect imgarphenomena such as particle
trapping [8]. In the context of code “Validation and Verifica” (a theme of the compu-
tational working group at this workshop), the implicatidrtloese observations is clear:
When attempting to model kinetic effects in a plasm#a PIC or by other means), it
IS inappropriate to use the quality of the macroscopic fieklgn overall indication of
the faithfulness with which phase-space is reproducedwidren fluid, with its asymp-
totic relation to the full Vlasov—Maxwell system, providasalytical expressions for the
moments of the phase-space distribution in a parametameethiat is of direct inter-
est to the current (and future) generation of laser-plastparenents. As such it is an
excellent “benchmark” for numerical kinetic models suchP#s.

In the case of large mean-free-patle., negligible two-particle correlations, the



Vlasov equation has a firm theoretical foundation. It enjaygorous derivation from

the exacN-particle distribution (the Klimontovich distribution [and thus is an exact
consequence of the Lorentz force. Consequently, one exjretite appropriate regime,
any discrepancy between experimental results and siraolatodels to be the result of
1) measurement uncertainty and 2) numerical artifactserstmulation model. Given

this, comparing large scale simulation codes to asympsulations of the Vlasov

equation is a necessary step to assess the impact of the Tie former can be

understood by performing sensitivity scans.

CONCLUSIONS

We have developed a warm, relativistic, fluid theory coesisiwith representing the
kinetic distribution function by second-order momentsisTimodel has a number of
interesting features: thermal inertia results in no sinelationship between the average
momentum and the advection velocity; the thermodynamidargely non-relativistic
even though the average momentum can be arbitrarily lamyg;tlzere are no near-
equilibrium assumptions. In the quasi-static case we hlawe/s that there is extremely
good agreement with the full model.

We have examined the plasma response to a short, intense gnudlsfound little
heating within the laser pulse. There is qualitative agesgnwith thermodynamic
arguments for an adiabatic proceBl; increases where the plasma is compressed and
decreases where the plasma is rarified. Moreover, evenifptarge initial temperature,
the density and longitudinal electric field are nearly ideaitto the cold case.
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