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Abstract
In this paper, we present some inequalities involving k-gamma and k-beta functions
via some classical inequalities like the Chebychev inequality for synchronous
(asynchronous) mappings, and the Grüss and the Ostrowski inequality. Also, we give a
new proof of the log-convexity of the k-gamma and k-beta functions by using the
Hölder inequality.
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1 Introduction
In this section, we present some fundamental relations for k-gamma and k-beta functions
introduced by the researchers [–]. The second and third section is devoted to the appli-
cations of some integral inequalities like the Chebychev, Grüss, and Ostrowski inequali-
ties. In the last section, we prove the log-convexity of the k-gamma and k-beta functions.
Recently, Diaz and Pariguan [] introduced the generalized k-gamma function as

�k(x) = lim
n→∞

n!kn(nk)
x
k –

(x)n,k
, k > ,x ∈ C \ kZ– ()

and also gave the properties of said function. The �k is one parameter deformation of the
classical gamma function such that �k → � as k → . The �k is based on the repeated
appearance of the expression of the following form:

α(α + k)(α + k)(α + k) · · · (α + (n – )k
)
. ()

The function of the variable α given by the statement (), denoted by (α)n,k , is called the
Pochhammer k-symbol. We obtain the usual Pochhammer symbol (α)n by taking k = .
The definition given in () is the generalization of �(x) and the integral form of �k is given
by

�k(x) =
∫ ∞


tx–e–

tk
k dt, Re(x) > . ()

From (), we can easily show that

�k(x) = k
x
k –�

(
x
k

)
. ()
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The same authors defined the k-beta function as

βk(x, y) =
�k(x)�k(y)
�k(x + y)

, Re(x) > ,Re(y) > , ()

and the integral form of βk(x, y) is

βk(x, y) =

k

∫ 


t
x
k –( – t)

y
k – dt. ()

From the definition of βk(x, y) given in () and (), we can easily prove that

βk(x, y) =

k
β

(
x
k
,
y
k

)
. ()

Also, the researchers [–] haveworked on the generalized k-gamma and k-beta functions
and discussed the following properties:

�k(x + k) = x�k(x), ()

(x)n,k =
�k(x + nk)

�k(x)
, ()

�k(k) = , k > , ()

�k(x) = a
x
k

∫ ∞


tx–e–

tk
k a dt, a ∈R, ()

�k(αk) = kα–�(α), k > ,α ∈R, ()

�k(nk) = kn–(n – )!, k > ,n ∈N, ()

�k

(
(n + )

k


)
= k

n–


(n)!
√

π

nn!
, k > ,n ∈N. ()

Using () and (), we see that, for x, y >  and k > , the following properties of the k-beta
function are satisfied (see [, ] and []):

βk(x + k, y) =
x

x + y
βk(x, y), ()

βk(x, y + k) =
y

x + y
βk(x, y), ()

βk(xk, yk) =

k
β(x, y), ()

βk(mk,mk) =
[(m – )!]

k(m – )!
, m ∈N, ()

βk(x,k) =

x
, βk(k, y) =


y
. ()

Note that when k → , βk(x, y) → β(x, y).

2 Main results: inequalities via the Chebychev integral inequality
In this section, we prove some inequalities which involve k-gamma and k-beta functions
by using some natural inequalities []. The following result is known in the literature as
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the Chebychev integral inequality for synchronous (asynchronous) functions. Here, we
use this result to prove some k-analog inequalities.

Lemma . Let f , g,h : I ⊆R →R be such that h(x)≥  for all x ∈ I and h, hfg , hf , and hg
are integrable on I . If f , g are synchronous (asynchronous) on I , i.e.,

(
f (x) – f (y)

)(
g(x) – g(y)

) ≥ (≤)  for all x, y ∈ I, ()

then we have the inequality (see [, ])

∫
I
h(x)dx

∫
I
h(x)f (x)g(x)dx≥ (≤)

∫
I
h(x)f (x)dx

∫
I
h(x)g(x)dx. ()

This lemma can be proved by using the Korkine identity [],

∫
I
h(x)dx

∫
I
h(x)f (x)g(x)dx –

∫
I
h(x)f (x)dx

∫
I
h(x)g(x)dx

=



∫
I

∫
I
h(x)h(y)

(
f (x) – f (y)

)(
g(x) – g(y)

)
dxdy. ()

Theorem . If m, n, p, and q are positive real numbers satisfying the condition

(p –m)(q – n)≤ (≥) , ()

then, for the k-beta function, we have the inequality

βk(m,n)βk(p,q) ≥ (≤)βk(p,n)βk(m,q), k > . ()

Proof For k > , consider the mappings f , g,h : [, ] → [,∞) given by

f (x) = x
p–m
k , g(x) = ( – x)

q–n
k and h(x) = x

m
k –( – x)

n
k –.

Now, differentiation of f and g gives

f ′(x) =
(p –m)

k
x

p–m
k –, g ′(x) =

(n – q)
k

( – x)
q–n
k –, x ∈ (, ).

As k > , so using () and (), we see that the mappings f and g are synchronous (asyn-
chronous) having the same (opposite) monotonicity on [, ] and h is non-negative on
[, ]. Thus, using the Chebychev integral inequality for the functions f , g , and h defined
above, we have


k

∫ 


x

m
k –( – x)

n
k – dx · 

k

∫ 


x

m
k –( – x)

n
k –x

p–m
k ( – x)

q–n
k dx

≥ (≤)

k

∫ 


x

m
k –( – x)

n
k –x

p–m
k dx · 

k

∫ 


x

m
k –( – x)

n
k –( – x)

q–n
k dx.
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This implies


k

∫ 


x

m
k –( – x)

n
k – dx · 

k

∫ 


x

p
k –( – x)

q
k – dx

≥ (≤)

k

∫ 


x

p
k –( – x)

n
k – dx · 

k

∫ 


x

m
k –( – x)

q
k – dx.

Applying (), we get the required inequality (). �

Corollary . For positive real numbers m, n, p, and q, we have

�k(p + n)�k(q +m)≥ (≤)�k(p + q)�k(m + n), k > . ()

Proof Using () and inequality (), we have

�k(m)�k(n)
�k(m + n)

�k(p)�k(q)
�k(p + q)

≥ (≤)
�k(p)�k(n)
�k(p + n)

�k(m)�k(q)
�k(m + q)

⇒ �k(p + n)�k(q +m) ≥ (≤)�k(p + q)�k(m + n). �

Corollary . For m,p > , the following inequality holds for the k-beta function:

βk(m,p) ≥ [
βk(p,p)βk(m,m)

] 
 , k > . ()

Proof Setting q = p and n =m in Theorem ., we get

(p –m)(q – n) = (p –m) ≥ .

Thus, Corollary . follows. We have

βk(p,p)βk(m,m) ≤ βk(p,m)βk(m,p) =
[
βk(m,p)

]. �

Remarks . By () and (), we can deduce the following inequality for the k-gamma
function:

�k(p +m) ≤ [
�k(p)�k(m)

] 
 . ()

Setting p = s and m = t in (), we get

�k

(
s + t


)
≤ √

�k(s)�k(t).

From the above result, we conclude that for two positive numbers s and t, the geometric
mean of �k(s) and �k(t) is greater than or equal to �k (arithmetic mean of s and t).

Now, the Chebychev inequality is used for an infinite interval. For this purpose, see the
following theorem employing the inequality [].

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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Theorem. Letm, p, and r be positive real numbers such that p > r > –m. If r(p–m–r)≥
(≤) , then

�k(m)�k(p) ≥ (≤)�k(p – r)�k(m + r), k > . ()

Proof For k > , define the mappings f , g,h : [,∞)→ [,∞) given by

f (t) = tp–r–m, g(t) = tr and h(t) = tm–e–
tk
k .

If r(p –m – r) ≥ (≤) , holds and k > , then we can assert that the mappings f and g are
synchronous (asynchronous) ],∞[. Thus, using the Chebychev inequality for the interval
I = (,∞) along with the functions f , g , and h defined above, we can write

∫ ∞


tm–e–

tk
k dt

∫ ∞


tp–r–mtrtm–e–

tk
k dt

≥ (≤)
∫ ∞


tp–r–mtm–e–

tk
k dt

∫ ∞


trtm–e–

tk
k dt.

This implies

∫ ∞


tm–e–

tk
k dt

∫ ∞


tp–e–

tk
k dt ≥ (≤)

∫ ∞


tp–r–e–

tk
k dt

∫ ∞


tr+m–e–

tk
k dt.

By (), we get the required Theorem .. �

Corollary . If p, m, and r are positive real numbers satisfying the conditions of Theo-
rem ., then we deduce

βk(p,m) ≥ (≤)βk(p – r,m + r), k > .

Proof Using the property �k (p)�k (m)
�k (p+m) = βk(p,m) and from the inequality (), we can derive

Corollary .. �

Corollary . If k,p >  and q ∈R with |q| < p, then

�k(p) ≤
[
�k(p – q)�k(p + q)

] 
 . ()

Proof Settingm = p and r = q in Theorem ., we get r(p–m– r) = –q ≤  and inequality
() provides the desired Corollary .. �

Definition . Two positive real numbers a and b are said to be similarly (oppositely)
unitary if (see [])

(a – )(b – ) ≥ (≤) . ()

Theorem . If a,b >  are similarly (oppositely) unitary, then

�k(a + b + k – ) ≥ (≤)
ab�k(a)�k(b)

�k(k + )
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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Proof For k > , consider the mappings f , g,h : [,∞) → [,∞) defined by

f (t) = ta–, g(t) = tb– and h(t) = tke–
tk
k .

If the condition (a–)(b–) ≥ (≤)  holds and k > , then clearly themappings f and g are
synchronous (asynchronous) on [,∞). Thus, by the Chebychev integral inequality along
with the functions f , g , and h defined above, we have

∫ ∞


tke–

tk
k dt

∫ ∞


ta–tb–tke–

tk
k dt ≥ (≤)

∫ ∞


ta–tke–

tk
k dt

∫ ∞


tb–tke–

tk
k dt

and

∫ ∞


tke–

tk
k dt

∫ ∞


ta+b+k–e–

tk
k dt ≥ (≤)

∫ ∞


ta+k–e–

tk
k dt

∫ ∞


tb+k–e–

tk
k dt.

By the definition of the k-gamma function and then using (), we have

�k(k + )�k(a + b + k – ) ≥ (≤)�k(a + k)�k(b + k),

�k(a + b + k – ) ≥ (≤)
ab�k(a)�k(b)

�k(k + )
. �

Corollary . If the condition (a – )(b – ) ≥ (≤)  holds and k > , then we have

βk(a,b)≥ (≤)

ab

�k(k + )�k(a + b + k – )
�k(a + b)

. ()

Proof Obvious result from () and Theorem .. �

Remarks . The results proved here are k-analog of theorems as given in []. Using
k = , we have the results about classical gamma and beta functions.

Theorem . If a, b, and k are positive real numbers such that a and b are similarly
(oppositely) unitary, then

�k
(
(a + b)k

) ≥ (≤)
kab�k(ak)�k(bk)

(a + b)
. ()

Proof For k > , consider the mappings f , g,h : [,∞) → [,∞) defined by

f (t) = tak , g(t) = tbk and h(t) = tk–e–
tk
k .

If the conditions of Theorem . hold and k > , then clearly the mappings f and g are
synchronous (asynchronous) on [,∞). Thus, by the Chebychev integral inequality along
with the choice of the functions f , g , and h defined above, we have

∫ ∞


tk–e–

tk
k dt

∫ ∞


taktbktk–e–

tk
k dt ≥ (≤)

∫ ∞


taktk–e–

tk
k dt

∫ ∞


tbktk–e–

tk
k dt

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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and
∫ ∞


tk–e–

tk
k dt

∫ ∞


tak+bk+k–e–

tk
k dt ≥ (≤)

∫ ∞


tak+k–e–

tk
k dt

∫ ∞


tbk+k–e–

tk
k dt.

By the definition of the k-gamma function and then using () and (), we have

�k(k)�k(ak + bk + k)≥ (≤)�k(ak + k)�k(bk + k)

⇒ �k(a + b)k ≥ (≤)
kab�k(ak)�k(bk)

(a + b)
. �

Corollary . For all n ∈N and a,k > , prove that

n�k(nak) ≥ (ak)n–
[
�k(ak)

]n.
Proof Replacing b by a, a, a, . . . , (n – )a in the inequality (), we get

�k(ak)≥ a

k�k(ak)�k(ak),

�k(ak) ≥ a

k�k(ak)�k(ak),

...

�k(nak) ≥ (n – )a
n

k�k
(
(n – )ak

)
�k(ak).

By multiplying the above inequalities, we have the desired Corollary .. �

3 Main results via Grüss and Ostrowski inequalities
In , Grüss established an integral inequality which provides an estimation for the in-
tegral of a product in terms of the product of integrals []. Here, we use this inequal-
ity to prove some inequalities involving k-gamma and k-beta functions. We also use the
weighted version of the said inequality which allows us to obtain the inequalities directly
for k-gamma function. The following lemma is used to prove some k-analog inequalities.

Lemma . Let f and g be two functions defined and integrable on [a,b]. If m, M, n, and
N are given real constants such that m ≤ f (x) ≤M and n≤ g(x)≤N for all x ∈ [a,b], then

∣∣∣∣ 
b – a

∫ b

a
f (x)g(x)dx –


b – a

∫ b

a
f (x)dx


b – a

∫ b

a
g(x)dx

∣∣∣∣
≤ 


(M –m)(N – n), ()

and the constant 
 is the best possible (see []).

Theorem . Let p, q, r, s, and k be positive real numbers, then

∣∣βk(p + r + k,q + s + k) – kβk(p + k,q + k)βk(r + k, s + k)
∣∣

≤ 
k

p
p
k q

q
k

(p + q)
p+q
k

r
r
k s

s
k

(r + s)
r+s
k
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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Proof Consider the functions defined by

fp,q(x) = x
p
k ( – x)

q
k , fr,s(x) = x

r
k ( – x)

s
k , x ∈ [, ],k > .

For the application of the Grüss inequality, we have to find the minima and maxima of
fa,b(x) (a,b,k > ). Thus

d
dx

fa,b(x) =

k
x

a
k –( – x)

b
k –

[
a – (a + b)x

]
.

Here, we see that the solution of f ′
a,b(x) =  in the interval (, ) is x = a

a+b . Also, f
′
a,b(x) >

 on (,x) and f ′
a,b(x) <  on (x, ). We conclude that x is the maximum point in the

interval (, ) and consequently

ma,b = inf
x∈[,]

fa,b(x) =  =m (say) and

Ma,b = sup
x∈[,]

fa,b(x) = fa,b
(

a
a + b

)
=

a
a
k b

b
k

(a + b)
a+b
k

=M (say).

Hence, by the Grüss inequality, we get

∣∣∣∣
∫ 


fp,q(x)fr,s(x)dx –

∫ 


fp,q(x)dx

∫ 


fr,s(x)dx

∣∣∣∣ ≤ 

(Mp,q –mp,q)(Mr,s –mr,s)

⇒
∣∣∣∣
∫ 


x

p
k ( – x)

q
k x

r
k ( – x)

s
k dx –

∫ 


x

p
k ( – x)

q
k dx

∫ 


x

r
k ( – x)

s
k dx

∣∣∣∣

≤ 
k

p
p
k q

q
k

(p + q)
p+q
k

r
r
k s

s
k

(r + s)
r+s
k
.

Rearranging the terms on left-hand side and using () with simple algebraic computation,
we reach the required proof. �

Theorem . Let p, q, and k be positive real numbers, then prove that

∣∣∣∣βk(p + k,q + k) –
k

(p + k)(q + k)

∣∣∣∣ ≤ 
k

()

and an equivalent statement is given by

max

{
,

k – pq – pk – qk
k(p + k)(q + k)

}
≤ βk(p + k,q + k) ≤ k + pq + pk + qk

k(p + k)(q + k)
. ()

Proof Consider the functions defined by

f (x) = x
p
k , g(x) = ( – x)

q
k , x ∈ [, ],k > .

For minima and maxima of f (x) and g(x), we have

inf
x∈[,]

f (x) = inf
x∈[,]

g(x) = ; sup
x∈[,]

f (x) = sup
x∈[,]

g(x) = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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Also,

∫ 


f (x)dx =

k
p + k

;
∫ 


g(x)dx =

k
q + k

.

By using the Grüss inequality, we get

∣∣∣∣
∫ 


x

p
k ( – x)

q
k dx –

∫ 


x

p
k dx

∫ 


( – x)

q
k dx

∣∣∣∣ ≤ 

( – )( – ).

Using the definition of the k-beta function, we have

∣∣∣∣kβk(p + k,q + k) –
k

p + k
k

q + k

∣∣∣∣ ≤ 


⇒
∣∣∣∣βk(p + k,q + k) –

k
(p + k)(q + k)

∣∣∣∣ ≤ 
k

.

Algebraic computation provides the equivalent inequality (). �

Corollary . If we use (), the inequality () yields

∣∣∣∣�k(p + k)�k(q + k)
�k(p + q + k)

–
k

(p + k)(q + k)

∣∣∣∣ ≤ 
k

,

∣∣(p + k)�k(p + k)(q + k)�k(q + k) – k�k(p + q + k)
∣∣

≤ 
k

(p + k)(q + k)�k(p + q + k).

By using (), we get the following inequality:

∣∣�k(p + k)�k(q + k) – k�k(p + q + k)
∣∣ ≤ 

k
(p + k)(q + k)�k(p + q + k).

Now, we discuss the weighted version of the Grüss inequality which is used to generalize
the previous Theorems . and .. The weighted version is given in the following lemma
and generalized results in the form of propositions.

Lemma . Let f and g be two functions satisfying the conditions of Theorem . and
h : [a,b]→ [,∞) is such that

∫ b
a h(x)dx > , then

∣∣∣∣ ∫ b
a h(x)dx

∫ b

a
f (x)g(x)h(x)dx

–
∫ b

a h(x)dx

∫ b

a
f (x)h(x)dx

∫ b
a h(x)dx

∫ b

a
g(x)h(x)dx

∣∣∣∣
≤ 


(M –m)(N – n) ()

and the constant 
 is best possible.

Proof Similar to the classical one (see []). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/224
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Proposition . Let m, n, p, q, and k be positive real numbers and r, s > –k; then we have

∣∣βk(r + k, s + k)βk(m + p + r + k,n + q + s + k)

– βk(m + r + k,n + s + k)βk(p + r + k,q + s + k)
∣∣

≤ 
k

m
m
k n

n
k

(m + n)
m+n
k

p
p
k q

q
k

(p + q)
p+q
k

β
k (r + k, s + k). ()

Proof Straightforward by considering the choice of the following functions along with
Lemma . which generalizes Theorem .:

fm,n(x) = x
m
k ( – x)

n
k = f (x), fp,q(x) = x

p
k ( – x)

q
k = g(x),

fr,s(x) = x
r
k ( – x)

s
k = h(x), x ∈ [, ],k > . �

Proposition . Let p, q, and k be positive real numbers and r, s > –k, then

∣∣βk(r + k, s + k)βk(p + r + k,q + s + k) – βk(p + r + k, s + k)βk(r + k,q + s + k)
∣∣

≤ 
k

β
k (r + k, s + k). ()

Proof Using Lemma . by considering the choice of functions defined by

x
p
k = f (x), ( – x)

q
k = g(x), fr,s(x) = x

r
k ( – x)

s
k = h(x), x ∈ [, ],k > ,

we can prove Proposition ., which is the generalization of Theorem .. �

Theweighted version of the Grüss inequality allows us to obtain the inequalities directly
for k-gamma function (see the following theorem).

Theorem . Let a, b, and c are positive real numbers, then prove that
∣∣∣∣ 


a+b+c+

k
�k(a + b + c + )�k(c + ) –




a+b+c+

k
�k(a + c + )�k(b + c + )

∣∣∣∣

≤ 


(
a
e

) a
k ·

(
b
e

) b
k
�
k (c + ), k > . ()

Proof Let the mapping fa(t) = tae–
tk
k be defined on (,∞), then

f ′
a(t) = ta–e–

tk
k
[
a – tk

]
;

f ′
a(t) =  gives the unique solution t = a


k , which implies that fa is an increasing function

on (, t) and decreasing on (t,∞). Thus fa has a maximum value at t = a

k i.e., fa(a


k ) =

a
a
k /e

a
k . Using Lemma ., we get
∣∣∣∣ ∫ x

 fc(t)dt

∫ x


fa(t)fb(t)fc(t)dt –

∫ x
 fc(t)dt

∫ x


fa(t)fc(t)dt

∫ x
 fc(t)dt

∫ x


fb(t)fc(t)dt

∣∣∣∣
≤ 



(
sup
t∈[,x]

fa(t) – inf
t∈[,x]

fa(t)
)(

sup
t∈[,x]

fb(t) – inf
t∈[,x]

fb(t)
)
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which (for all x > ) is equivalent to
∣∣∣∣
∫ x


ta+b+ce–

tk
k dt

∫ x


tce–

tk
k dt –

∫ x


ta+ce–

tk
k dt

∫ x


tb+ce–

tk
k dt

∣∣∣∣

≤ 


(
a

a
k

e
a
k
– 

)(
b

b
k

e
b
k
– 

)(∫ x


tce–

tk
k dt

)

.

Since all the integrals involved here are convergent on [,∞), we have
∣∣∣∣
∫ ∞


ta+b+ce–

tk
k dt

∫ ∞


tce–

tk
k dt –

∫ ∞


ta+ce–

tk
k dt

∫ ∞


tb+ce–

tk
k dt

∣∣∣∣

≤ 


· a
a
k b

b
k

e
a+b
k

(∫ ∞


tce–

tk
k dt

)

. ()

Now, a simple change of variable tk = sk , above integrals can be changed into k-gamma
functions as

∫ ∞


ta+b+ce–

tk
k dt =





k

∫ ∞



sa+b+c


a+b+c

k
e–

sk
k ds =




a+b+c+

k
�k(a + b + c + ).

Similarly, we have
∫ ∞


ta+ce–

tk
k dt =




a+c+

k
�k(a + c + ) and

∫ ∞


tb+ce–

tk
k dt =




b+c+

k
�k(b + c + ).

From () along with the above results, we get Theorem .. �

Now, we mention here another inequality which is known in literature as the Ostrowski
inequality. The following lemmas contain the said integral inequality [] which is used to
prove the inequalities involving k-beta function.

Lemma . Let f : [a,b] → R be continuous on [a,b] and differentiable in (a,b), whose
derivative is bounded on (a,b) and let ‖f ′‖∞ = supt∈(a,b) |f ′(t)| < ∞. Then, for all x ∈ [a,b],
we have

∣∣∣∣f (x) – 
b – a

∫ b

a
f (t)dt

∣∣∣∣ ≤
[


+
(x – (a+b)

 )

(b – a)

]
(b – a)

∥∥f ′∥∥∞. ()

The constant 
 is sharp in the sense that it cannot be replaced by a smaller one and the

following lemma is the generalization of the inequality () which has been proved in [].

Lemma . Let u : [a,b]→R be a L-Lipschitzian mapping on [a,b], i.e.,

∣∣u(x) – u(y)
∣∣ ≤ L|x – y| for all x, y ∈ [a,b]. ()

Then, for all x ∈ [a,b], we have

∣∣∣∣
∫ b

a
u(t)dt – u(x)(b – a)

∣∣∣∣ ≤ L(b – a)
[


+
(x – (a+b)

 )

(b – a)

]
. ()

The constant 
 is best possible.
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Remarks . If we assume that f : [a,b]→R is differentiable on (a,b) and the derivative
f ′ is bounded on (a,b) we can put instead of L the infinity norm ‖f ′‖∞ obtaining the esti-
mation due to Dragomir-Wang in []. Now we are able to prove our result for the k-beta
function.

Theorem. If k >  and p,q > +k and x ∈ [, ], then we have the following inequality:

∣∣∣∣βk(p,q) –

k
x

p–k
k ( – x)

q–k
k

∣∣∣∣
≤max{p – ,q – } 

k
(p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k

[


+

(
x –




)]
. ()

Proof Consider the mapping lp,q : (, ) → R, defined by lp,q = x
p
k ( – x)

q
k , k > . For p,q >

 + k, differentiation gives

l′p,q(x) =

k
x

p–k
k ( – x)

q–k
k

[
p – (p + q)x

]
, x ∈ (, )

and

l′p–,q–(x) =

k
x

p–k–
k ( – x)

q–k–
k

[
p –  – (p + q – )x

]

=

k
lp–k–,q–k–

[
p –  – (p + q – )x

]
.

The solution of l′p–,q–(x) =  in the interval (, ) is x = p–
p+q– . Also, f

′
p–,q–(x) >  on (,x)

and f ′
p–,q–(x) <  on (x, ). This shows that x is the maximum point, so

Sup
x∈(,)

lp–,q–(x) = lp–,q–(x) =
(p – )

p
k –(q – )

q
k –

(p + q – )
p+q
k –

, p,q >  + k.

Consequently, for all x ∈ [, ], we have

∣∣l′p–,q–(x)∣∣ ≤ 
k
∣∣lp–k–,q–k–(x)∣∣ Sup

x∈(,)

∣∣(p – ) – (p + q – )x
∣∣

≤ max{p – ,q – } 
k
(p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k
.

Thus, for p,q >  + k, we get

∥∥l′p–,q–(x)∥∥∞ ≤max{p – ,q – } 
k
(p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k
. ()

Taking the function f (x) = lp–,q–(x), x ∈ [, ] and using the inequalities () and ()
along with Remarks ., we have

∣∣∣∣
∫ 


x

p
k –( – x)

q
k – dx – x

p
k –( – x)

q
k –( – )

∣∣∣∣
≤max{p – ,q – } 

k
(p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k

[


+

(
x –




)]
,
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∣∣∣∣βk(p,q) –

k
x

p
k –( – x)

q
k –

∣∣∣∣
≤max{p – ,q – } 

k
(p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k

[


+

(
x –




)]
. �

Corollary . The best inequality that can be obtained for p,q >  + k and x ∈ [, ] is

∣∣∣∣βk(p,q) –

k




p+q
k –

∣∣∣∣ ≤ 
k

max{p – ,q – } (p – )(p–k–)/k(q – )(q–k–)/k

(p + q – )(p+q–k–)/k
.

Proof Setting x = 
 , we get the desired result. �

Here, we use the Ostrowski inequality for the mappings of bounded variation [] in-
volving k-beta function. For this purpose, we need the following lemmas.

Lemma . Let u : [a,b] → R be a mapping of bounded variation on [a,b]. Then, for all
x ∈ [a,b], we have the inequality (see [])

∣∣∣∣
∫ b

a
u(t)dt – u(x)(b – a)

∣∣∣∣ ≤
[


(b – a) +

∣∣∣∣x – a + b


∣∣∣∣
] b∨

a
(u), ()

where
∨b

a(u) indicates the total variation of u and the constant 
 is the best possible.

Lemma . If u : [a,b]→R is continuous and differentiable on [a,b], u′ is continuous on
(a,b) and ‖u′‖ =

∫ b
a |u′(t)|dt < ∞, then, for all x ∈ [a,b], we have the inequality (see [])

∣∣∣∣
∫ b

a
u(t)dt – u(x)(b – a)

∣∣∣∣ ≤
[


(b – a) +

∣∣∣∣x – a + b


∣∣∣∣
]∥∥u′∥∥

. ()

Theorem . If k >  and p,q >  + k, x ∈ [, ], then we have the following inequality:

∣∣∣∣βk(p,q) –

k
x

p–k
k ( – x)

q–k
k

∣∣∣∣ ≤max{p – ,q – } 
k
βk(p – k,q – k)

[


+

∣∣∣∣x – 


∣∣∣∣
]
. ()

Proof Consider the mapping as in Theorem .. Now, we have

l′p–,q–(t) =

k
x

p–k–
k ( – x)

q–k–
k

[
p –  – (p + q – )t

]

=

k
lp–k–,q–k–

[
p –  – (p + q – )x

]
.

Also, |p –  – (p + q – )t| ≤ max{p – ,q – } for all t ∈ [, ], so

∥∥l′p–,q–∥∥ =

k

∫ 


lp–k–,q–k–(t)

∣∣p –  – (p + q – )t
∣∣dt

≤ 
k
max{p – ,q – }‖lp–k–,q–k–‖

⇒ ∥∥l′p–,q–∥∥ ≤max{p – ,q – }βk(p – k,q – k), p,q >  + k,k > .
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Now, applying the previous lemmas for u(t) = lp–,q–, x ∈ [, ], we conclude

∣∣∣∣
∫ 


lp–,q–(t)dt – x

p
k –( – x)

q
k –

∣∣∣∣ ≤
[


+

∣∣∣∣x – 


∣∣∣∣
] ∨



(lp–,q–)

≤ max{p – ,q – }βk(p – k,q – k)
[


+

∣∣∣∣x – 


∣∣∣∣
]
.

By definition of the k-beta function, we have the required Theorem .. �

Corollary . Let p,q > + k, then the best inequality that can be obtained from inequal-
ity () is

∣∣∣∣βk(p,q) –

k




p+q
k –

∣∣∣∣ ≤ 
k

max{p – ,q – }βk(p – k,q – k). ()

Proof Setting x = 
 in the inequality (), we get the desired result. �

4 Log-convexity of the k-gamma and k-beta functions
Many authors, see [–] and the references therein, have worked on convexity, log-
convexity, and exponential convexity of different functions including the Euler gamma
function. Lately, Diaz and Pariguan [] worked on the convexity of k-gamma function
and proved that the said function is logarithmically convex. They used the limit form
of k-gamma function for this purpose. Here, we give a new technique to prove the log-
convexity of the k-gamma function. Also, we prove the log-convexity of the k-beta func-
tion which is the k-analog result [].

Definition . In [], a function f : (a,b) → R is said to be convex if for any x, y ∈ (a,b)
and λ ∈ (, )

f
(
λx + ( – λ)y

) ≤ λf (x) + ( – λ)f (y). ()

The above definition shows that when we move from x to y, the line joining the points
(x, f (x)) and (y, f (y)) lies always above the graph of f .

Definition . If f >  and log f is convex, then f is called a log-convex function i.e.,
∀x, y ∈ I (an interval) and λ ∈ (, ), we have

log f
(
λx + ( – λ)y

) ≤ λ log f (x) + ( – λ) log f (y) = log
(
f λ(x)f (–λ)(y)

)
⇒ f

(
λx + ( – λ)y

) ≤ (
f λ(x)f (–λ)(y)

)
. ()

Lemma . (Hölder inequality) If p and q are positive real numbers satisfying the condi-
tion 

p +

q = , then for integrable functions f , g : [a,b]→R, we have

∣∣∣∣
∫ b

a
f (x)g(x)dx

∣∣∣∣ ≤
(∫ b

a
|f |p dx

) 
p
(∫ b

a
|g|q dx

) 
q
. ()

Proof The proof of the above inequality is available in []. �
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Theorem . For k > , prove that �k : (,∞) → R is log-convex or log�k is convex
(proved in [], but we give a new proof here).

Proof Let p and q be positive real numbers satisfying the condition 
p +


q = . By the defi-

nition of �k(x), we have

�k

(
x
p
+
y
q

)
=

∫ ∞


t(

x
p+

y
q–)e–

tk
k dt

=
∫ ∞


t(

x
p+

y
q–(


p+


q ))e–

tk
k ( p+


q ) dt

=
∫ ∞


t(

x
p–


p )e–

tk
kp t(

y
q–


q )e–

tk
kq dt

=
∫ ∞



(
tx–e–

tk
k
) 
p
(
ty–e–

tk
k
) 
q dt.

By Lemma ., we conclude that

�k

(
x
p
+
y
q

)
≤

(∫ ∞


tx–e–

tk
k dt

) 
p
(∫ ∞


ty–e–

tk
k dt

) 
q
.

This implies

�k

(
x
p
+
y
q

)
≤ (

�k(x)
) 
p
(
�k(y)

) 
q .

Let λ = 
p , ( – λ) = 

q , then λ ∈ (, ) and

�k
(
λx + ( – λ)y

) ≤ (
�k(x)

)λ(
�k(y)

)(–λ)

⇒ log
(
�k

(
λx + ( – λ)y

)) ≤ λ log�k(x) + ( – λ) log�k(y)

for x, y ∈ (,∞), log�k is convex i.e., �k is log-convex. �

Remarks . ByTheorem., the function�k is log-convex. Also, every log-convex func-
tion is convex [], so the k-gamma function is convex.

Theorem . For k > , prove that the function βk is logarithmically convex on (,∞) ×
(,∞) as a function of two variables.

Proof Let (p,q), (m,n) ∈ (,∞) and a,b ≥  with a + b = , we have

βk
[
a(p,q) + b(m,n)

]
= βk(ap + bm,aq + bn). ()

Using () on right-hand side of the inequality (), we get

βk
[
a(p,q) + b(m,n)

]
=


k

∫ 


t
ap+bm

k –( – t)
aq+bn

k – dt

=

k

∫ 


t
ap+bm

k –(a+b)( – t)
aq+bn

k –(a+b) dt
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=

k

∫ 


ta(

p
k –)( – t)a(

q
k –)tb(

m
k –)( – t)b(

n
k –) dt

=

k

∫ 



[
t
p
k –( – t)

q
k –

]a × [
t
m
k –( – t)

n
k –

]b dt.

Thus, we get

βk
[
a(p,q) + b(m,n)

] ≤ 
k
[
kβk(p,q)

]a[kβk(m,n)
]b = ka+b–

[
βk(p,q)

]a[
βk(m,n)

]b.
Here, λ = a, ( – λ) = b, then λ ∈ (, ), which shows the logarithmic convexity of βk on
(,∞). �
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