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Abstract
The purpose of the paper is to present some inequalities for eigenvalues of positive
semidefinite matrices.
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1 Introduction
Throughout this paper, Mn denotes the space of n× n complex matrices and Hn denotes
the set of all Hermitian matrices in Mn. Let A,B ∈ Hn; the order relation A ≥ B means,
as usual, that A – B is positive semidefinite. We always denote the singular values of A by
s(A)≥ · · · ≥ sn(A). If A has real eigenvalues, we label them as λ(A)≥ · · · ≥ λn(A). Let ‖ · ‖
denote any unitarily invariant norm onMn. We denote by |A| the absolute value operator
of A, that is, |A| = (A∗A)  , where A∗ is the adjoint operator of A.
For positive real number a, b, the arithmetic-geometric mean inequality says that

√
ab ≤ a + b


.

It is equivalent to

(ab)m ≤
(
a + b


)m

, m = , , . . . . (.)

Let A,B ∈ Mn be positive semidefinite. Bhatia and Kittaneh [] proved that for all m =
, , . . . ,

λj
(
(AB)m

) ≤ λj

(
A + B


)m

. (.)

This is amatrix version of (.). Formore information onmatrix versions of the arithmetic-
geometric mean inequality, the reader is referred to [–] and the references therein.
It is easy to see that the arithmetic-geometric mean inequality is also equivalent to

(
a/b/

)/ ≤ a + b


. (.)

As pointed out in [, p.], although the arithmetic-geometric mean inequalities can be
written in different ways and each of them may be obtained from the other, the matrix
versions suggested by them are different.
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In this note, we obtain a refinement of (.) and a log-majorization inequality for eigen-
values. As an application of our result, we give a matrix version of (.).

2 Main results
We begin this section with the following lemma, which is a question posed by Bhatia and
Kittaneh [] (see also [, ]) and settled in the affirmative by Drury in [].

Lemma . Let A,B ∈Mn be positive semidefinite. Then

sj(AB) ≤ sj
(
A + B


)

.

As a consequence of Lemma ., we have

∥∥|AB|/∥∥ ≤ 

‖A + B‖. (.)

It is a matrix version of the arithmetic-geometric mean inequality. By properties of the
matrix square function, we know that this last inequality is stronger than the assertion

‖AB‖ ≤
∥∥∥∥
(
A + B


)∥∥∥∥,
which is due to Bhatia and Kittaneh [] and is also a matrix version of (.).

Theorem . Let A,B ∈Mn be positive semidefinite. Then for all m = , , . . . ,

λj
(
(AB)m

) ≤ λj

(
A + B +A/B/ + B/A/



)m

. (.)

Proof By Lemma ., we have

λj
((
AB)m)

=
(
λj

(
AB))m

=
(
λj

(
ABA

))m
=

(
sj(AB)

)m
≤ sj

(
A + B


)m

= λj

(
A + B


)m

. (.)

Replacing A, B by A/, B/ in (.), we have

λj
(
(AB)m

) ≤ λj

(
A + B +A/B/ + B/A/



)m

.

This completes the proof. �
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Remark . Let A,B ∈Mn be positive semidefinite. Note that

 ≤ (A/ – B/)


=
A + B


–
A + B +A/B/ + B/A/


.

Therefore, the inequality (.) is a refinement of the inequality (.).

Remark . Form = , by (.), we have

λj(AB) ≤ λj

(
A + B


)

. (.)

Form = , by (.), we have

λj
(
AB) ≤ λj

(
A + B


)

. (.)

In view of the inequalities (.) and (.), one may ask whether it is true that

λj
(
AmBm) ≤ λj

(
A + B


)m

(.)

for all m = , , . . . . The answer is no. For m = , the inequality (.) is refuted by the fol-
lowing example:

A =

[
 –
– 

]
, B =

[
 –
– 

]
.

Theorem . Let A,B ∈Mn be positive semidefinite. Then

k∏
j=

∣∣∣∣λj

(
A

(
AvB–v +A–vBv



)
B
)∣∣∣∣ ≤

k∏
j=

λj

(
A + B


)

.

Proof By Weyl’s inequality, Horn’s inequality and Lemma ., we have

k∏
j=

∣∣λj(AXB)
∣∣ = k∏

j=

∣∣λj(XAB)
∣∣

≤
k∏
j=

sj(XAB)

≤
k∏
j=

sj(X)sj(AB)

≤
k∏
j=

sj(X)
k∏
j=

sj
(
A + B


)

. (.)

Putting

X =
AvB–v +A–vBv


,  ≤ v≤ ,
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in (.) gives

k∏
j=

∣∣∣∣λj

(
A

(
AvB–v +A–vBv



)
B
)∣∣∣∣ ≤

k∏
j=

sj
(
AvB–v +A–vBv



) k∏
j=

sj
(
A + B


)

. (.)

In response to a conjecture by Zhan [], Audenaert [] proved that if  ≤ v ≤ , then

sj
(
AvB–v +A–vBv



)
≤ sj

(
A + B


)
. (.)

The special case where v = 
 was obtained earlier in [, ] and the special case where

v = 
 was obtained earlier in []. It follows from (.) and (.) that

k∏
j=

∣∣∣∣λj

(
A

(
AvB–v +A–vBv



)
B
)∣∣∣∣ ≤

k∏
j=

λj

(
A + B


)

.

This completes the proof. �

Remark . As an application of Theorem ., we now present a matrix version of (.).
Taking v = 

 in this last inequality, we have

k∏
j=

∣∣λj
(
A/B/)∣∣ ≤

k∏
j=

sj
(
A + B


)

and so

k∏
j=

sj
(
A/B/) ≤

k∏
j=

sj
(
A + B


)/

,

which is equivalent to

k∏
j=

sj
(∣∣A/B/∣∣/) ≤

k∏
j=

sj
(
A + B


)
.

Since weak log-majorization is stronger than weak majorization, we have

k∑
j=

sj
(∣∣A/B/∣∣/) ≤

k∑
j=

sj
(
A + B


)
.

By Fan’s dominance theorem [, p.], we get

∥∥∣∣A/B/∣∣/∥∥ ≤ 

‖A + B‖. (.)

This is a matrix version of (.).
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Next, we give another proof of the inequality (.). Araki [] (also see []) obtained
the following log-majorization inequality:

k∏
j=

sj
((
Ap/BpAp/)q/p) ≤

k∏
j=

sj
(
Aq/BqAq/),  < p ≤ q. (.)

Putting

p =


, q = 

in (.) gives

k∏
j=

sj
((
A/B/A/)/) ≤

k∏
j=

sj
(
ABA

)/,
and so

k∑
j=

sj
(∣∣A/B/∣∣/) ≤

k∑
j=

sj
(|AB|/).

By Fan’s dominance theorem [, p.], we get

∥∥∣∣A/B/∣∣/∥∥ ≤ ∥∥|AB|/∥∥. (.)

It follows from (.) and (.) that

∥∥∣∣A/B/∣∣/∥∥ ≤ 

‖A + B‖.
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