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1. Introduction
Ramanujan was in a class by himself as an intuitive mathematician and provided many

results that have kept generations of mathematicians busy to prove them rigorously

(see [1,2]). Given the accuracy of his intuition it may be wondered why it is worth the

effort of proving the remaining results rigorously. Of course, it is worth while as the

next intuition may prove wrong (see [[2], p. 188(11.3)]). More importantly, the domain

of applicability of the correct results needs to be specified. A case in point is the inter-

polation formula and the master theorem arrived at intuitively by Ramanujan and

proved by Hardy, now known as the Hardy-Ramanujan master theorem [[3], p. 189].

For the interpolation formula, which is used in proving the master theorem, Hardy

proved it using the domain (0, π) for the parameter A that appeared in the proof. He

remarked that it may be true for the value A = π as well but that he ‘did not have

time for any more subtle argument’ (see [[2], p. 191]), seeming to imply that this

extension was unimportant and/or too complicated. The proof does not seem to have

appeared anywhere else in the literature since. However, it turns out that this con-

straint seriously limits the domain of applicability of the theorem as most of the com-

monly used functions do require A = π. In this article, we prove the result rigorously

for A Î (0, π] and then extend the theorem beyond its original context. More pre-

cisely, Hardy considered the space of analytic functions [[2], p. 189] as follows. Take

0 <δ < 1 and H(δ): = {s = s + iτ: s ≥ -δ} as the half space. Suppose that 0 < A <π and

� = �(A,P, δ) := {φ(s} : ∣∣φ(s)∣∣ ≤ CePσ+A|τ |, s ∈ H(δ)}. (1:1)

The space ℜ is called the Hardy space of analytic functions that restricts the para-

meter A to lie in (0, π). Consider a function j Î ℜ and define [[2], p. 189]
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�(x) :=
1
2π i

c+i∞∫
c−i∞

π

sinπ s
φ(−s)x−s (0 < c < δ) . (1:2)

The integrand in (1.2) is majorized, for all positive x, by a constant multiple of

e−(π−A)|τ |e−Pcx−c, (1:3)

and the integral (1.2) converges uniformly in an interval 0 <x ≤ x0 ≤ X < ∞. Therefore,

the function F(x) is regular, and represented by the integral (1.2), for all positive x.

For completeness we state the ‘canonical’ form of the theorem, the Hardy-Ramanu-

jan master theorem: If in some neighborhood of x = 0,

�(x) =
∞∑
n=0

(−1)nφ(n)xn

n!
, (1:4)

for some analytic function j(s) (s > -δ), then

∞∫
0

�(x)xs−1dx =
∞∫
0

( ∞∑
n=0

(−1)nφ(n)xn

n!

)
xs−1dx = �(n)φ(−n). (1:5)

By Cauchy’s theorem (see [2,4] for example) for (1.2), we obtain the series represen-

tation

�(x) =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
φ(−s)x−s =

∞∑
n=0

(−1)nφ(n)xn
(
φ ∈ �, 0 < x < e−P

)
,(1:6)

which is another form of the Hardy-Ramanujan’s master theorem. This leads to the

Ramanujan interpolation formula

∞∫
0
xs−1{φ(0) − φ(1)x + φ(2)x2 − ...}dx = π

sinπ s
φ(−s). (1:7)

Since, for j(x) = sin πx the left hand side (LHS) in (1.7) is zero while the right hand

side is -π, it is clear, as indicated by Hardy (see [[2], p. 188]), that the formula (1.7) is

not applicable as such, there must be a constraint on j(s). The Hardy class ℜ = ℜ(A,

P, δ) does not accommodate functions of common interest. We give applications of

the master theorem by introducing a larger class of functions using Mellin and Weyl

transforms. It may be noted that the Riemann zeta function

ζ (s) :=
∞∑
n=1

1
ns

(s := σ + iτ , σ > 1) , (1:8)

was originally introduced by Euler (for real s) who proved that [[5], p. 1]

ζ (s) =
∏
p

(1 − p−s)−1 (where p runs through all primes), (1:9)

which plays an important role in the study of prime numbers. Riemann proved that

the zeta-function has a meromorphic continuation to the complex plane and satisfies

the Riemann functional equation (see [[5], p. 13 (2.1.1)])
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ζ (s) = 2(2π)−(1−s) cos
(π

2
(1 − s)

)
�(1 − s)ζ (1 − s). (1:10)

The zeta function has simple zeros at s = -2, -4, -6, ..., called the trivial zeros. All the

other zeros, called the non-trivial zeros, of the function are symmetric about the criti-

cal line s = 1/2, in the critical strip 0 ≤ s ≤ 1. The multiplicity of these non-trivial

zeros (in general) is not known. Riemann conjectured that the non-trivial zeros of the

function lie on the critical line s = 1/2. This conjecture is called the Riemann hypoth-

esis. Define

χ(s) := 2(2π)−(1−s) cos
(π

2
(1 − s)

)
�(1 − s). (1:11)

Then the functional equation (1.11) can be rewritten as

ζ (s) = χ(s)ζ (1 − s). (1:12)

Using the identity

π

sinπ s
= �(s)�(1 − s), (1:13)

for the gamma function, we can rewrite the function c(s) as

χ(s) =
π
s−
1
2�

(
1
2

− 1
2
s
)

�

(
1
2
s
) . (1:14)

For basic definitions, historical background and results involving gamma and zeta

functions, we refer to the standard references [1-3,5-12]. We have shown applications

of the general lemma by considering the functions that involve the gamma, the Rie-

mannzeta and the c(s) functions.
The plan of the article is as follows: we briefly review the aspects of the Mellin and

Weyl transforms that we need to use in the next section. We introduce the notation

for the Weyl transform of a function that is found helpful in stating the master theo-

rem and other related results precisely. We prove a general lemma in Section 3 that

shows the existence of the inverse Mellin transform (IMT) of a class of functions

accommodating the case A = π. Some applications of the general result are also

shown. We define three classes of functions in Section 4 that are suitable for Hardy-

Ramanujan’s master theorem for different intervals of the variable x appearing in the

series representation of the IMT. Some special cases of the theorem are discussed in

Section 5. Different forms of Ramanujan’s master theorem are shown to follow from

the general lemma in the Section 6. Some concluding remarks are given in the final

section.

2. Preliminaries
The function spaces H(�; l) and H(∞; l) are defined as follows: A function f ÎC∞(0, ∞) is

said to be a member of H(�; l) if
1. f(t) is integrable on every finite subinterval [0, T] (0 <T < ∞) of R+

0 := [0,∞) ,

2. f(t) = O(t-l) (t ®0+),
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3. f(t) = O(t-�) (t ®∞).

Furthermore, if the above relation f(t) = O(t-�) (t ®∞) is satisfied for every exponent

κ ∈ R+
0 , then the function f(t) is said to be in the class H(∞; l) . It is to be noted that

H(∞; l) ⊂H(�; l) (∀κ ∈ R+
0 ). Clearly, we have

f (t) = e−bt ∈ H(∞, 0) (b > 0) . (2:1)

The Mellin transform of f ÎH(�; l) is defined by [[13], p. 83],

fM(s) := M[f (t); s] :=
∞∫
0
f (t)ts−1dt (s = σ + iτ , λ < σ < κ) . (2:2)

The Weyl transform (or Weyl’s fractional integral) of order s of ω Î H(�; l) is
defined by (see [[3], Vol. II, p. 181] and [[14], p. 237]),

(s; x) := W−s[ω(t)](x) :=
1

�(s)
M[ω(t + x); s]

=
1

�(s)

∞∫
0

ω(t + x)ts−1dt =
1

�(s)

∞∫
x

ω(t)(t − x)s−1dt
(s = σ + iτ , 0 < σ < κ, x ≥ 0) . (2:3)

For s ≤ 0, we define the Weyl transform (or Weyl’s fractional derivative) of order s

of ω Î H(�; 0) as follows (see [[14], p. 241]):

(s; x) := W−s[ω(t)](x) := (−1)n
dn

dxn
((n + s; x)), (0 ≤ n + σ < k) , (2:4)

where n is the smallest positive integer greater than or equal to -s provided that

ω(0) is well defined and that

(0; x) := ω(x). (2:5)

We can rewrite Weyl’s fractional derivative (2.4) alternately as

(−s; x) := Ws[ω(t)](x) = (−1)n
dn

dxn
(W−(n−s)[ω(t)](x))

=: (−1)n
dn

dxn
((n − s; x))

(σ > 0, 0 ≤ n − σ < k) , (2:6)

where n is the smallest positive integer greater than or equal to s. In particular for

s = n (n = 0, 1, 2, 3, ...) in (2.6), we obtain

(−n; x) := Wn[ω(t)](x) := (−1)n
dn

dxn
((0; x)) = (−1)n

dn

dxn
(ω(x)). (2:7)

Notice that {Ws} (s Îℂ) is a multiplicative group [[14], p. 245] and satisfies

W−(μ+s)[ω(t)](x) = W−μ[(s; t)](x) = (s + μ; x]. (2:8)

Following the above terminology, we obtain

(0; x) =
∞∑
n=0

(−1)n(−n; 0)xn

n!

(
ω ∈ H(κ; 0), 0 ≤ σ < k, x ≥ 0

)
. (2:9)

Weyl transform notation is helpful for obtaining a precise formulation of the Hardy-

Ramanujan master theorem and Ramanujan’s interpolation formula.
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3. An extended form of the Hardy class for Ramanujan’s master theorem
Let b Î (0, 1] and F(s) (s <b) be an analytic function which is not identically zero at all

the non-positive integers, s = 0, -1, -2, -3, ..., and∣∣F(s)�(s)∣∣ = O(|τ |ε(σ−b)) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < b, ε ≥ ε0 > 0) .(3:1)

Define

fM(s) := �(s)F(s) (σ < b) , (3:2)

f (z) :=
1
2π i

∫
C

fM(s)z−sds (z 	= 0) , (3:3)

where C denotes a loop in the complex s plane that encircles the poles s = 0, -1, -2,

-3, ... of Γ(s) (in the positive sense) that passes through 0 <s <b with end points at infi-

nity in s < 0. We refer to [[13], p. 90] for the representation of the loop. If the loop C

approaches ∞ in the direction ± θ0 say, where
1
2

π < θ0 ≤ π , then the logarithm of the

modulus of the integrand on C (where s = Reiθ) in (3.3) behaves like εR cosθ0 log(R) +

O(R) ®-∞ as R ® ∞. Consequently, (3.3) defines f(z) without any restriction on arg(z)

and thereby represents an analytic continuation of the line integral

f (z) :=
1
2π i

c+i∞∫
c−i∞

fM(s)z−sds (
∣∣arg(z)∣∣ <

1
2

π , z 	= 0, 0 < c1 ≤ c ≤ c2 < b). (3:4)

Note that the loop C in (3.3) is bent back into the vertical path s = Re(s) = c (0 <c1

≤ c ≤ c2 <b), (3.3) is valid for
∣∣arg z∣∣ <

1
2

π and hence the integral is convergent only

when z = x > 0 and 0 <c1 ≤ c ≤ c2 <b. Therefore, the line integral

f (x) :=
1
2π i

c+i∞∫
c−i∞

fM(s)x−sds (x > 0, 0 < c1 ≤ c ≤ c2 < b) , (3:5)

is well defined. Hence, we have proved the following lemma.

Lemma (3.1) Let b Î (0, 1] and F(s) (s <b) be an analytic function not identically

zero at all the non-positive integers at s = 0, -1, -2, -3, ..., and∣∣F(s)�(s)∣∣ = O(|τ |ε(σ−b)) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < b, ε ≥ ε0 > 0). (3:6)

Then the inverse Mellin transform (3.5) is well defined and it can be evaluated by

using Cauchy’s residue theorem [[4], p. 84].

Remark (3.1) In the above lemma we note that fM(s): = Γ(s)F(s) (0 <s <b) is the well

defined Mellin transform which is analytic in the strip. Therefore, following the nota-

tion of Section 2 we note that

fM(s) := �(s)F(s) = �(s)F(s; 0) (0 < σ < b) , (3:7)

where,

∞∫
0
F(0; x)xs−1dx = �(s)F(s; 0) (0 < σ < b). (3:8)

Chaudhry and Qadir Journal of Inequalities and Applications 2012, 2012:52
http://www.journalofinequalitiesandapplications.com/content/2012/1/52

Page 5 of 13



Taking the inverse Mellin transform of both sides in (3.8), we find

F(0; x) :=
1
2π i

c+i∞∫
c−i∞

�(s)F(s; 0)x−sds (0 < c < b). (3:9)

Since F(s; 0) (s <b) is analytic function which is not identically zero at all the non-

positive integers at s = 0, -1, -2, -3, ..., and∣∣�(s)F(s; 0)∣∣ = O(|τ |ε(σ−b)) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < b, ε ≥ ε0 > 0), (3:10)

therefore, according to the above lemma, the inverse Mellin transform (3.9) is well

defined. Application of Cauchy’s theorem to (3.9) gives that

F(0; x) =
∞∑
n=0

(−1)nF(−n; 0)xn

n!
(0 ≤ x < ∞). (3:11)

Equations (3.8) and (3.11) yield

∞∫
0
xs−1

( ∞∑
n=0

(−1)nF(−n; 0)xn

n!

)
dx = �(s)F(s; 0) (0 < σ < b), (3:12)

which is the Hardy-Ramanujan master theorem.

It is worth remarking that (3.12) can be extended further as

F(s; x) =
∞∑
n=0

(−1)nF(s − n; 0)xn

n!
(0 ≤ x < ∞, 0 ≤ σ < b) , (3:13)

provided F(s; x) (s <b) is analytic for all x ≥ 0 and
∣∣�(s)F(s; x)∣∣ = O(|τ |ε(σ−b)) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < b, ε ≥ ε0 > 0, x ≥ 0). (3:14)

The asymptotic restriction (3.10) can be modified by allowing the series (3.11) to

converge only in a finite interval 0 <x <e-p (see [[2], p. 189]), which is generally the

case when the Riemann zeta function is involved. However, then the representation

(3.12) is meaningless as the series will be divergent on the infinite interval 0 <x < ∞.

To be precise, three type of asymptotic relations where the IMT (3.9) is well defined

and the corresponding series converges in different intervals of the variable x are

needed.

Suppose that F(s; 0) (s <b) is analytic function which is not identically zero at all the

non-positive integers at s = 0, -1, -2, -3, ..., and∣∣�(s)F(s; 0)∣∣ ≤ CBσ e−A|τ |

(|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < b),
(3:15)

where A, B and C are positive constants. In this case, we note that as∣∣∣∣∣∣∣
1
2π i

q+i∞∫
q−i∞

�(s)F(s; 0)x−sds

∣∣∣∣∣∣∣ = O
(∣∣∣ x
B

∣∣∣m)
(q = −m − 1

2
, m → ∞), (3:16)

which shows that the IMT (3.9) is absolutely convergent when 0 <x <B. However,

(3.9) remains well defined and uniformly convergent when 0 <x0 ≤ x ≤ X < ∞. Hence,
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the IMT (3.9) defines a regular function of x (0 <x < ∞) which also has the series

representation

F(0; x) =
∞∑
n=0

(−1)nF(−n; 0)xn

n!
(0 < x < B). (3:17)

In order to state Ramanujan’s master theorem precisely and give the series represen-

tation (3.17) in the finite and infinite intervals of x, we need three classes of functions

that are introduced in the next section.

4. The classes of functions suitable for the master theorem
We define three classes of functions suitable for the Hardy-Ramanujan formula. Our

approach is different from Hardy’s, as we define our classes by introducing an asymp-

totic relation satisfied by the product Γ(s) F(s; 0). This facilitates the determination of a

particular function to which the Hardy-Ramanujan formula is applicable.

Definition A meromorphic function F(s; 0) is said to be a member of the class Q∞(ε,

δ) (ε, δ > 0) if:

(a) F(s; 0) (s < ∞) is analytic;

(b)
∣∣�(s)F(s; 0)∣∣ ≤ C|τ |ε(σ−δ) (s <δ).

(c) F(s; 0) is not identically zero at all the non-positive integers at s = 0, -1, -2, -3, ....

Definition A meromorphic function F(s; 0) is said to be a member of the class QP(ε,

δ) (ε, δ > 0) if:

(a) F(s; 0) (s <δ) is analytic,

(b)
∣∣�(s)F(s; 0)∣∣ ≤ Ce−Pσ−ε|τ | (s <δ).

(c) F(s; 0) is not identically zero at all the non-positive integers at s = 0, -1, -2, -3, ....

Definition A meromorphic function F(s; 0) is said to be a member of the class R∞(ε,

δ) (ε, δ > 0) if:

(a) F(s; 0) (s <δ) is analytic,

(b)
∣∣�(s)F(s; 0)∣∣ ≤ C|τ |σ e−ε|τ | (s <δ).

(c) F(s; 0) is not identically zero at all the non-positive integers at s = 0, -1, -2, -3, ....

Theorem (4.1) Every F(s; 0) Î Q∞(ε, δ) (or F(s; 0) Î R∞(ε, δ)) satisfies (3.11), (3.12).

Theorem (4.2) Every F(s; 0) Î QP(ε, δ) satisfies (3.17) for B = ep.

5. Some applications of the Hardy-Ramanujan master theorem
We now give examples that include functions that do not belong to Hardy’s class for

which Ramanujan’s master theorem is applicable. As Γ(s) Γ(1-s) = π/sin(πs), using

Hardy’s notation we have

φ(−s) = F(s; 0)/�(1 − s) and (π/ sin(π s))φ(−s) = �(s)F(s; 0),

(see (1.6)). Therefore, it is natural to introduce classes of functions based on the

asymptotic representations of the product Γ(s)F(s; 0) as we have done in Section 4.

Example (5.1) Let

�(s)F(s; 0) := �(s)ζ (s) (0 < σ < 1). (5:1)

Then, we note that F(s, 0): = ζ(s) (-∞ <s < 1) is analytic and for 0 < θ ≤ θ0 <
π

2
and

(see [[9], pp. 135-136])
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∣∣�(s)F(s, 0)∣∣ ≤ C(2π)σ e
−(

π

2
−θ)|τ |

(|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1). (5:2)

Therefore, F(s; 0) := ζ (s) ∈ Qlog(1/2π)

(π

2
− θ0, 1

)
. Hence, according to the lemma

(3.1), the IMT

F(0; x) =
1
2π i

c+i∞∫
c−i∞

�(s)ζ (s)x−sds (0 < c < 1), (5:3)

is well defined. The integrand in (5.3) has simple poles at s = 0, -1, -2, .... Using Cau-

chy’s residue theorem, we get

F(0; x) =
∞∑
n=0

(−1)nζ (−n)xn

n!
(0 < x < 2π), (5:4)

that can be simplified further as (see [[6], p. 264-266] and [[9], p. 136])

F(0; x) =
1

ex − 1
− 1

x
=

∞∑
n=0

(−1)nζ (−n)xn

n!
(0 < x < 2π). (5:5)

Example (5.2) Let

�(s)F(s; 0) := �(s)�(1 − s) =
π

sinπ s
(0 < σ < 1). (5:6)

Here the function F(s; 0) = Γ(1-s) (s < 1) is analytic and∣∣�(s)F(s; 0)∣∣ = ∣∣�(s)�(1 − s)
∣∣ ≤ Ce−π |τ | (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1), (5:7)

which shows that F(s; 0): = Γ(1-s) Î Q0(π, 1). Therefore, according to the lemma

(3.1), the IMT

F(0; x) =
1
2π i

c+i∞∫
c−i∞

�(s)�(1 − s)x−sds =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
x−sds (x > 0, 0 < σ1 ≤ c ≤ σ2 < 1), (5:8)

is well defined. Using the Cauchy’s residue theorem we find

F(0; x) =
1

1 + x
=

∞∑
n=0

(−1)n

n!
�(1 + n)xn =

∞∑
n=0

(−1)nxn (0 < x < 1), (5:9)

It is worth pointing out that Ramanujan’s master theorem stated as

∞∫
0

xs−1

( ∞∑
n=0

(−1)n�(1 + n)
n!

xn
)
dx = �(s)�(1 − s) =

π

sinπ s
(0 < σ < 1), (5:10)

is not meaningful, as the series in (5.9) and (5.10) is divergent if x > 1. However, the

IMT (5.8) is well defined that has the series representation (5.9). The series representa-

tion in (5.10) must be replaced by the analytic continuation on the LHS of (5.9).

Example (5.3) We now give an example of a function where Ramanujan’s master

theorem is applicable but the function does not belong to Hardy’s class of functions.
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Consider F(s; 0) := sin
(π s
2

)
. Then we note that

∣∣∣�(s) sin(π s
2
)
∣∣∣ = O(|τ |σ−

1
2 ) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1/2). (5:11)

Hence, according to the above lemma (3.1), the line integral

F(0; x) :=
1
2π i

c+i∞∫
c−i∞

�(s) sin
(π s
2

)
x−sds (x > 0, 0 < c1 ≤ c ≤ c2 < 1/2), (5:12)

is well defined. From Cauchy’s residue theorem, the integral (5.11) can be evaluated

by taking the sum of the residues at the simple poles at s = -1, -3, -5, ... leading to a

closed form f(x) = sin x. Hence, we have the Mellin transform representation

M[sin x; s] :=

∞∫
0

sin x
x1−s

dx =�(s) sin
(π s
2

)
(0 < σ < 1/2). (5:13)

We note that F(s; 0) ÎQ∞(1, 1/2). Following Jordan’s lemma, the integral (5.13)

remains convergent for 0 <s < 1 which shows that (3.9) is valid in the strip 0 <s < 1.

Note that in this example we have A = π and

φ(−s) = F(s; 0)/�(1 − s) = sin
(π s
2

)
/�(1 − s) which shows that j does not belong to

Hardy’s class of functions.

Example (5.4) We give a second example of a function where Ramanujan’s master

theorem is applicable but the function does not belong to Hardy’s class of functions.

The applicability of the Ramanujan’s master theorem is assured by the lemma (3.1).

Consider F(s; 0) =
1

�(1 − s)
(s < 1/2). Then (see [[7], p. 6(1.45)])

∣∣∣∣ �(s)
�(1 − s)

∣∣∣∣ = O(|τ |2(σ−
1
2
)
) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1/2). (5:14)

Hence, according to the above lemma, the integral

F(0; x) :=
1
2π i

c+i∞∫
c−i∞

�(s)
�(1 − s)

x−sds

(x > 0, 0 < c1 ≤ c ≤ c2 < 1/2),

(5:15)

is well defined. From Cauchy’s residue theorem, the integral (5.15) can be evaluated

by taking the sum of the residues at the simple poles at s = 0, -1, -2, ... leading to

F(0; x) =
∞∑
n=0

(−1)nxn

(n!)2
, (5:16)

which has the closed form F(0; x) = J0(2
√
x) . Again we have A = π and

φ(−s) = F(s; 0)/�(1 − s) = 1/(�(1 − s))2, (5:17)
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which shows that j does not belong to Hardy’s class of functions. However, F(s; 0)

ÎQ∞(2, 1/2).

Example (5.5) We give another example of a function involving ratio of the Riemann

zeta functions where our lemma (3.1) assures the application of Ramanujan’s master

theorem but the function does not belong to Hardy’s class of functions. Consider

F(s; 0) :=
ζ (s)

�(1 − s)ζ (1 − s)
(s < 1/2). Then (see [[5], p. 81])

∣∣∣∣ �(s)ζ (s)
�(1 − s)ζ (1 − s)

∣∣∣∣ = O(|τ |σ−
1
2 ) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1/2). (5:18)

Hence, according to the above lemma, the integral

F(0; x) :=
1
2π i

c+i∞∫
c−i∞

�(s)ζ (s)
�(1 − s)ζ (1 − s)

x−sds (x > 0, 0 < c1 ≤ c ≤ c2 < 1/2),(5:19)

is well defined. From Cauchy’s residue theorem, the integral (5.16) can be evaluated

by taking the sum of the residues at the simple poles at s = -1, -3, ... leading to

F(0; x) =
∞∑
n=0

(−1)nζ (−n)xn

(n!)2ζ (1 + n)
. (5:20)

The series (5.19) can be simplifies further by using Riemann functional equation

(1.11) to give the closed form

F(0; x) =
∞∑
n=0

(−1)nζ (−n)xn

(n!)2ζ (1 + n)
=

1
π
sin

(πx
2

)
. (5:21)

Once again we have

φ(−s) = F(s; 0)/�(1 − s) = ζ (s)/ζ (1 − s)(�(1 − s))2, (5:22)

which shows that j does not belong to Hardy’s class of functions. However, F(s; 0)

ÎQ∞(1, 1/2).

Example (5.6) Consider

F(s; 0) :=
ζ (1 − s)
�(s)ζ (s)

(σ < 1/2). (5:23)

Then we note that (see [[5], p.81])

∣∣�(s)F(s; 0)∣∣ = ∣∣∣∣ ζ (s)
ζ (1 − s)

∣∣∣∣ = ∣∣χ(s)∣∣ = O(|τ |σ−
1
2 ) (|τ | → ∞, −∞ < σ1 ≤ σ ≤ σ2 < 1/2). (5:24)

Hence, according to the lemma (3.1), the IMT

F(0; x) =
1
2π i

c+i∞∫
c−i∞

ζ (1 − s)
ζ (s)

x−sds (0 < c < 1/2, x ≥ 0), (5:25)

is well defined. The integral (5.23) can be evaluated by Cauchy’s residue theorem which

has the closed form (see [[13], p. 91(3.3.6)]), F(0; x) = 2cos(πx). Once again the function
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φ(−s) = F(s; 0)/�(1 − s) = ζ (1 − s)/ζ (s)�(s)�(1 − s), (5:26)

which shows that j does not belong to Hardy’s class of functions. However, F(s; 0)

ÎQ∞(1, 1/2).

6. Different forms of the Hardy-Ramanujan master theorem
The Hardy-Ramanujan master theorem can be represented in different forms by con-

sidering special cases of the function F(s; 0) (see [[2], p. 186]) in the above lemma and

in theorems (4.1) and (4.2). These special cases were stated as formulas/theorems by

Ramanujan. These are special cases of the master theorem. We state them in the form

of theorems for the sake of completeness.

Theorem (6.1) Let

F(s; 0) := �(1 − s)G(s), (6:1)

be in one of the above three classes. Then, we have

1
2π i

c+i∞∫
c−i∞

�(s)�(1 − s)G(s)x−sds =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
G(s)x−sds

=
∞∑
n=0

(−1)nG(−n)xn

(0 < c < 1) . (6:2)

Theorem (6.2) Let

F(s; 0) := �(1 − s)G(s)H(1 − s) (6:3)

be in one of the above three classes. Then, we have

1
2π i

c+i∞∫
c−i∞

�(s)�(1 − s)G(s)H(1 − s)x−sds =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
G(s)H(1 − s)x−sds

=
∞∑
n=0

(−1)nG(−n)H(1 + n)xn (0 < c < 1).

(6:4)

Theorem (6.3) (Extension of Ramanujan’s Formulas)

Let F(s; 0) G(1-s; 0) be in one of the three classes. Then

F(0; x) ◦ G(0; x) :=

∞∫
0

F(0, xt)G(0, t)dt =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
F(s; 0)G(1 − s; 0)x−sds

=
∞∑
n=0

(−1)nF(−n; 0)G(1 + n; 0)xn.

(6:5)

Proof Since we have

M[f (x) ◦ g(x); s] = fM(s)gM(1 − s) ,

which implies that

M[F(0; x) ◦ G(0; x); s]

= �(s)�(1 − s)F(s; 0)G(1 − s; 0) =
π

sinπ s
F(s; 0)G(1 − s; 0) .

(6:6)
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Taking the IMT in (6.6), we arrive at (6.5).

Remark (6.4) It may be noted that the result (6.4) can be regarded as an extension

of Ramanujan’s Formulas (D.1) and (D.2) (see [[2], p. 186]). Putting F(0; x) = cos x and

F(s; 0) = cos
(π s

2

)
in (6.6), we obtain

cos(x) ◦ G(0; x) :=

∞∫
0

cos(xt)G(0; t)dt =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
cos

π s

2
G(1 − s; 0)t−sds

=
∞∑
n=0

(−1)nG(1 + 2n; 0)x2n,

(6:7)

which is (D.1) (see [[2], p. 187]).

Putting F(0; x) = sin x and F(s; 0) = sin
(π s

2

)
in (6.6), we obtain

sin(x) ◦ G(0; x) :=

∞∫
0

sin(xt)G(0; t)dt =
1
2π i

c+i∞∫
c−i∞

π

sinπ s
sin

π s
2
G(1 − s; 0)x−sds

=
∞∑
n=0

(−1)nG(2 + 2n; 0)x2n+1,

(6:8)

which is (D.2).

7. Concluding remarks
Rigorous proofs are needed not only to be absolutely sure of the validity of the result

but also to clearly define the range of its validity. This is, of course, necessary for

actual application of the result. Even more importantly, the clear statement of the lim-

itations delineates the precise reason for those limitations and hence provides the

direction to be taken to proceed beyond those limits. Ways may then be found of

‘bypassing’ those limitations or of going around the limitations by extending the

domain of the variables and thereby entering a different domain from the original, as

done in analytic continuation. This has been the philosophy behind the present work.

In this article, we have provided a rigorous proof of the Hardy-Ramanujan theorem

for a wider class of functions than was previously available. In fact, Hardy had noted

that the theorem should apply to a wider class of functions but had then provided the

extension. He does not appear to have provided the required extension later either. It

may be thought that this indicates that he felt that the extension was not worth pursu-

ing but, as we have pointed out here, many functions that are likely to be used in the

application of the master theorem and Ramanujan’s formula lie outside the domain of

classes defined by Hardy. As such, the need for that extension was there but had not

been provided. As we show, the rigorous proof for the wider class leads to even more

general applicability of the theorem.

It would be worth seeing if the theorem could be extended still further. This exten-

sion is being explored separately. It appears that an extension may be possible.

Abbreviations
IMT: inverse Mellin transform; LHS: left hand side.
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