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1 Introduction
Suppose that p > , 

p + 
q = , f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+), ‖f ‖p = (

∫ ∞
 f p(x) dx)


p >

, ‖g‖q > . We have the following well-known Hardy-Hilbert integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

where the constant factor π
sin(π/p) is best possible. If am, bn ≥ , a = {am}∞m= ∈ lp, b =

{bn}∞n= ∈ lq, ‖a‖p = (
∑∞

m= ap
m)


p > , ‖b‖q > , then we still have the discrete variant of

the above inequality with the same best constant π
sin(π/p) as follows:

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Inequalities () and () are important in the analysis and its applications (cf. [–]).
In , by introducing an independent parameter λ ∈ (, ], Yang [] gave an extension

of () at p = q =  with the kernel 
(x+y)λ . In  and , Yang [, ] gave some best

extensions of () and () as follows.
If λ,λ,λ ∈ R, λ + λ = λ, kλ(x, y) is a non-negative homogeneous function of degree

–λ, with

k(λ) =
∫ ∞


kλ(t, )tλ– dt ∈ R+,
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φ(x) = xp(–λ)–, ψ(y) = yq(–λ)–, f (x), g(y) ≥ ,

f ∈ Lp,φ(R+) =
{

f ;‖f ‖p,φ :=
(∫ ∞


φ(x)

∣
∣f (x)

∣
∣p dx

) 
p

< ∞
}

,

g ∈ Lq,ψ (R+), ‖f ‖p,φ ,‖g‖q,ψ > , then we have the following inequality:

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is best possible. Moreover, if kλ(x, y) stays finite and
kλ(x, y)xλ–(kλ(x, y)yλ–) is decreasing with respect to x >  (y > ), then for am, bn ≥ ,

a ∈ lp,φ =

{

a;‖a‖p,φ :=

( ∞∑

n=

φ(n)|an|p
) 

p

< ∞
}

,

b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , we have

∞∑

m=

∞∑

n=

kλ(m, n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

where the constant factor k(λ) is still best possible.
Clearly, for λ = , k(x, y) = 

x+y , λ = 
q , λ = 

p , () reduces to (), while () reduces to ().
In , Hong [] first published a multidimensional Hilbert integral inequality by using

the transfer formula, which is an extension of (). Some other related results are given by
[–], which provided some new methods to study these kinds of inequalities.

In this paper, by using the transfer formula and applying the method of weight func-
tions and the technique of real analysis, we give a multidimensional Hilbert-type inte-
gral inequality with multi-parameters and the best possible constant factor related to the
gamma function. The equivalent forms and the reverses are obtained. Furthermore, we
also consider the operator expressions and a few particular results related to the kernels
of non-homogeneous and homogeneous.

2 Some lemmas
If m, n ∈ N (N is the set of positive integers), α,β > , we set

‖x‖α :=

( m∑

k=

|xk|α
) 

α (
x = (x, . . . , xm) ∈ Rm)

,

‖y‖β :=

( n∑

k=

|yk|β
) 

β (
y = (y, . . . , yn) ∈ Rn).

Lemma  If s ∈ N, γ , M > , 	(u) is a non-negative measurable function in (, ], and

DM :=

{

x ∈ Rs
+;  < u =

s∑

i=

(
xi

M

)γ

≤ 

}

,
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then we have the following transfer formula (cf. []):

∫
· · ·

∫

DM

	

( s∑

i=

(
xi

M

)γ
)

dx · · · dxs

=
Ms
s( 

γ
)

γ s
( s
γ

)

∫ 


	(u)u

s
γ – du, ()

where 
(·) is the gamma function defined by


(t) :=
∫ ∞


e–vvt– dv (t > ).

In view of (), since Rs
+ = limM→∞ DM , we have

∫
· · ·

∫

Rs
+

	

( s∑

i=

(
xi

M

)γ
)

dx · · · dxs

= lim
M→∞

Ms
s( 
γ

)
γ s
( s

γ
)

∫ 


	(u)u

s
γ – du. ()

By (), (i) for

{
x ∈ Rs

+;‖x‖γ ≥ 
}

= lim
M→∞

{

x ∈ Rs
+;


Mγ

≤ u =
s∑

i=

(
xi

M

)γ

≤ 

}

,

setting 	(u) =  (u ∈ (, 
Mγ )), it follows that

∫
· · ·

∫

{x∈Rs
+;‖x‖γ ≥}

	

( s∑

i=

(
xi

M

)γ
)

dx · · · dxs

= lim
M→∞

Ms
s( 
γ

)
γ s
( s

γ
)

∫ 


Mγ

	(u)u
s
γ – du; ()

(ii) for

{
x ∈ Rs

+;‖x‖γ ≤ 
}

= lim
M→∞

{

x ∈ Rs
+;  < u =

s∑

i=

(
xi

M

)γ

≤ 
Mγ

}

,

setting 	(u) =  (u ∈ ( 
Mγ ,∞)), we have

∫
· · ·

∫

{x∈Rs
+;‖x‖γ ≤}

	

( s∑

i=

(
xi

M

)γ
)

dx · · · dxs

= lim
M→∞

Ms
s( 
γ

)
γ s
( s

γ
)

∫ 
Mγ


	(u)u

s
γ – du. ()
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Remark  For δ ∈ {–, }, s ∈ N, γ , M > , setting Eδ := {u > ; uδ ≥ 
Mδγ }, in view of ()

and (), it follows that

∫
· · ·

∫

{x∈Rs
+;‖x‖δ

γ ≥}
	

( s∑

i=

(
xi

M

)γ
)

dx · · · dxs

= lim
M→∞

Ms
s( 
γ

)
γ s
( s

γ
)

∫

Eδ

	(u)u
s
γ – du. ()

Lemma  For δ ∈ {–, }, s ∈ N, γ , ε > , we have

∫

{x∈Rs
+;‖x‖δ

γ ≥}
‖x‖–s–δε

γ dx =

s( 

γ
)

εγ s–
( s
γ

)
. ()

Proof By (), for δ ∈ {–, }, it follows that
∫

{x∈Rs
+;‖x‖δ

γ ≥}
‖x‖–s–δε

γ dx

=
∫

· · ·
∫

{x∈Rs
+;‖x‖δ

γ ≥}

{

M

[ s∑

i=

(
xi

M

)γ
] 

γ
}–s–δε

dx · · · dxs

= lim
M→∞

Ms
s( 
γ

)
γ s
( s

γ
)

∫

Eδ

(
Mu/γ )–s–δεu

s
γ – du

= lim
M→∞

M–δε
s( 
γ

)
γ s
( s

γ
)

∫

Eδ

u
–δε
γ – du

v=Mγ u=
M–δε
s( 

γ
)

γ s
( s
γ

)

∫

{v>;vδ≥}

(
M–γ v

) –δε
γ –M–γ dv

=

s( 

γ
)

γ s
( s
γ

)

∫

{v>;vδ≥}
v

–δε
γ – dv =


s( 
γ

)
εγ s–
( s

γ
)
.

Hence, we have (). �

Definition  For m, n ∈ N, α,β ,λ,λ > , λ + λ = λ, η > –, δ ∈ {–, }, x = (x, . . . , xm) ∈
Rm

+ , y = (y, . . . , yn) ∈ Rn
+, we define two weight functions ω(λ, y) and � (λ, x) as follows:

ω(λ, y) := ‖y‖λ
β

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ


‖x‖m–δλ

α

dx, ()

� (λ, x) := ‖x‖δλ
α

∫

Rn
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ


‖y‖n–λ

β

dy. ()

By (), we find

ω(λ, y) = ‖y‖λ
β

∫

Rm
+

| ln( ‖y‖β

Mδ [
∑m

i=( xi
M )α ]δ/α )|η

(max{Mδ[
∑m

i=( xi
M )α]δ/α ,‖y‖β})λ

× 

Mm–δλ [
∑m

i=( xi
M )α]

m–δλ
α

dx · · · dxm
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= ‖y‖λ
β lim

M→∞
Mm
m( 

α
)

αm
( m
α

)

×
∫ 



| ln( ‖y‖β

Mδuδ/α )|η
(max{Mδuδ/α ,‖y‖β})λ

u m
α – du

Mm–δλ u
m–δλ

α

= ‖y‖λ
β lim

M→∞
Mδλ
m( 

α
)

αm
( m
α

)

∫ 



| ln( ‖y‖β

Mδuδ/α )|ηu
δλ
α –

(max{Mδuδ/α ,‖y‖β})λ du

v=M‖y‖ –
δ u/α

=

m( 

α
)

αm–
( m
α

)

∫ ∞



| ln vδ|ηvδλ–

(max{vδ , })λ dv. ()

Setting t = vδ in (), for δ = ±, by simplification, it follows that

ω(λ, y) =

m( 

α
)

αm–
( m
α

)

∫ ∞



| ln t|ηtλ–

(max{t, })λ dt

=

m( 

α
)

αm–
( m
α

)

[∫ 


(– ln t)ηtλ– dt +

∫ ∞



(ln t)ηtλ–

tλ
dt

]

=

m( 

α
)

αm–
( m
α

)

∫ 


(– ln t)η

(
tλ– + tλ–)dt

u=– ln t=

m( 

α
)

αm–
( m
α

)

∫ 

∞
uη

[
e–u(λ–) + e–u(λ–)](–e–u)du

=

m( 

α
)

αm–
( m
α

)

∫ ∞



(
e–λu + e–λu)uη du

=

m( 

α
)

αm–
( m
α

)

(

λ

η


+

λ

η


)∫ ∞


e–vv(η+)– dv

=

m( 

α
)
(η + )

αm–
( m
α

)

(

λ

η


+

λ

η


)

. ()

Lemma  For m, n ∈ N, α,β ,λ,λ, λ̃, λ̃ > , λ + λ = λ̃ + λ̃ = λ, η > –, δ ∈ {–, }, we
have

ω(λ, y) = Kα(λ) :=

m( 

α
)
(η + )

αm–
( m
α

)

(

λ

η


+

λ

η


)
(
y ∈ Rn

+
)
, ()

� (λ, x) = Kβ (λ) :=

n( 

β
)
(η + )

βn–
( n
β

)

(

λ

η


+

λ

η


)
(
x ∈ Rm

+
)
, ()

w(̃λ, y) := ‖y‖λ̃
β

∫

{x∈Rm
+ ;‖x‖δ

α≥}
| ln(‖y‖β/‖x‖δ

α)|η
(max{‖x‖δ

α ,‖y‖β})λ


‖x‖m–δ̃λ
α

dx

= Kα (̃λ)
(
 – θ̃λ (y)

)
, ()

θ̃λ (y) :=
λ̃

–η
 + λ̃

–η



(η + )

∫ ‖y‖–
β



| ln t|ηtλ̃–

(max{t, })λ dt = O
(‖y‖– λ̃


β

) (
y ∈ Rn

+
)
. ()

Proof By (), we have (). By the same way, we can obtain ().
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In view of () and (), we find

w(̃λ, y) = ‖y‖λ̃
β lim

M→∞
Mδ̃λ
m( 

α
)

αm
( m
α

)

∫

{u>;uδ≥ 
Mδα

}

| ln( ‖y‖β

Mδuδ/α )|ηu
δ̃λ
α –

(max{Mδuδ/α ,‖y‖β})λ du

v=M‖y‖ –
δ u


α

=

m( 

α
)

αm–
( m
α

)

∫

{v>;vδ≥‖y‖–
β }

| ln vδ|ηvδ̃λ–

(max{vδ , })λ dv

t=vδ

=

m( 

α
)

αm–
( m
α

)

∫ ∞

‖y‖–
β

| ln t|ηtλ̃–

(max{t, })λ dt

=

m( 

α
)

αm–
( m
α

)

[∫ ∞



| ln t|ηtλ̃– dt
(max{t, })λ –

∫ ‖y‖–
β



| ln t|ηtλ̃– dt
(max{t, })λ

]

= Kα (̃λ)
(
 – θ̃λ (y)

)
.

Setting F(u) :=
∫ u


| ln t|ηtλ̃–

(max{t,})λ dt (u ∈ (,∞)), it follows that F(u) is continuous in (,∞).
Since

lim
u→+


uλ̃/

∫ u



| ln t|ηtλ̃–

(max{t, })λ dt

= lim
u→+


λ̃u(̃λ/)–

| ln u|ηuλ̃–

(max{u, })λ = lim
u→+

(– ln u)ηuλ̃/

λ̃
= ,

lim
u→∞


uλ̃/

∫ u



| ln t|ηtλ̃–

(max{t, })λ dt = ,

there exists a constant L >  such that

 <
∫ u



| ln t|ηtλ̃–

(max{t, })λ dt ≤ Lu
λ̃


(
u ∈ (,∞)

)
.

Then we have

 < θ̃λ (y) ≤ λ̃
–η
 + λ̃

–η



(η + )
L‖y‖– λ̃


β ,

namely, θ̃λ (y) = O(‖y‖– λ̃


β ) (y ∈ Rn
+). Hence, we have () and (). �

Lemma  As the assumptions of Definition , if p ∈ R\{, }, 
p + 

q = , f (x) = f (x, . . . , xm) ≥
, g(y) = g(y, . . . , yn) ≥ , then (i) for p > , we have the following inequality:

J :=
{∫

Rn
+

‖y‖pλ–n
β

(ω(λ, y))p–

[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|ηf (x)

(max{‖x‖δ
α ,‖y‖β})λ dx

]p

dy
} 

p

≤
[∫

Rm
+

� (λ, x)‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

; ()

(ii) for  < p < , or p < , we have the reverse of ().



Huang and Yang Journal of Inequalities and Applications  (2015) 2015:151 Page 7 of 13

Proof (i) For p > , by Hölder’s inequality with weight (cf. []), it follows that

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x) dx

=
∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

[‖x‖(m–δλ)/q
α

‖y‖(n–λ)/p
β

f (x)
][ ‖y‖(n–λ)/p

β

‖x‖(m–δλ)/q
α

]

dx

≤
[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

‖x‖(m–δλ)(p–)
α

‖y‖n–λ
β

f p(x) dx
] 

p

×
[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

‖y‖(n–λ)(q–)
β

‖x‖m–δλ
α

dx
] 

q

=
(
ω(λ, y)

) 
q ‖y‖

n
p –λ
β

×
[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

‖x‖(m–δλ)(p–)
α

‖y‖n–λ
β

f p(x) dx
] 

p
. ()

Then by Fubini’s theorem (cf. []), we have

J ≤
{∫

Rm
+

[∫

Ri
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

‖x‖(m–δλ)(p–)
α

‖y‖n–λ
β

f p(x) dx
]

dy
} 

p

=
{∫

Rm
+

[∫

Rn
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ

‖x‖(m–δλ)(p–)
α

‖y‖n–λ
β

dy
]

f p(x) dx
} 

p

=
[∫

Rm
+

� (λ, x)‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

. ()

Hence, () follows.
(ii) For  < p < , or p < , by the reverse Hölder inequality with weight (cf. []), we

obtain the reverse of (). Then by Fubini’s theorem, we still can obtain the reverse of
(). �

Lemma  As the assumptions of Lemma , then (i) for p > , we have the following inequal-
ity equivalent to ():

I :=
∫

Rn
+

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x)g(y) dx dy

≤
[∫

Rm
+

� (λ, x)‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

×
[∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy

] 
q

; ()

(ii) for  < p < , or p < , we have the reverse of () equivalent to the reverse of ().
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Proof (i) For p > , by Hölder’s inequality (cf. []), it follows that

I =
∫

Rn
+

‖y‖
n
q –(n–λ)
β

(ω(λ, y))

q

[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x) dx

]

× [(
ω(λ, y)

) 
q ‖y‖(n–λ)– n

q
β g(y)

]
dy

≤ J

[∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy

] 
q

. ()

Then by () we have ().
On the other hand, assuming that () is valid, we set

g(y) :=
‖y‖pλ–n

β

(ω(λ, y))p–

[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|ηf (x)

(max{‖x‖δ
α ,‖y‖β})λ dx

]p–

, y ∈ Rn
+.

Then it follows that

Jp
 =

∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy.

If J = , then () is trivially valid; if J = ∞, then by (), () keeps the form of equality
(= ∞). Suppose that  < J < ∞. By (), we have

 <
∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy = Jp

 = I

≤
[∫

Rm
+

� (λ, x)‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

×
[∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy

] 
q

< ∞.

Dividing out Jp–
 in the above inequality, it follows that

J =
[∫

Rn
+

ω(λ, y)‖y‖q(n–λ)–n
β gq(y) dy

] 
p

≤
[∫

Rm
+

� (λ, x)‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

,

and then () follows. Hence, () and () are equivalent.
(ii) For  < p < , or p < , by the same way, we have the reverse of () equivalent to the

reverse of (). �

3 Main results and operator expressions
Setting functions

�(x) := ‖x‖p(m–δλ)–m
α , 	(y) := ‖y‖q(n–λ)–n

β

(
x ∈ Rm

+ , y ∈ Rn
+
)
,

we have the following.
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Theorem  Suppose that m, n ∈ N, α,β ,λ,λ > , λ + λ = λ, η > –, δ ∈ {–, }, p ∈
R\{, }, 

p + 
q = , f (x) = f (x, . . . , xm) ≥ , g(y) = g(y, . . . , yn) ≥ ,

 < ‖f ‖p,� =
[∫

Rm
+

‖x‖p(m–δλ)–m
α f p(x) dx

] 
p

< ∞,

 < ‖g‖q,	 =
[∫

Rn
+

‖y‖q(n–λ)–n
β gq(y) dy

] 
q

< ∞.

(i) For p > , we have the following equivalent inequalities with the best possible constant
factor K (λ):

I =
∫

Rn
+

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x)g(y) dx dy < K(λ)‖f ‖p,�‖g‖q,	 , ()

J :=
{∫

Rn
+

‖y‖pλ–n
β

[∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x) dx

]p

dy
} 

p

< K(λ)‖f ‖p,�, ()

where we define the constant factor as follows:

K(λ) :=
(
Kβ (λ)

) 
p
(
Kα(λ)

) 
q

=
(


n( 
β

)
βn–
( n

β
)

) 
p
(


m( 
α

)
αm–
( m

α
)

) 
q
(


λ

η


+

λ

η


)


(η + ).

(ii) For  < p < , or p < , we still have the equivalent reverses of () and () with the
same best constant factor K(λ).

Proof (i) For p > , by the conditions, we can prove that () takes the form of strict in-
equality. Otherwise, if () takes the form of equality for y ∈ Rn

+, then there exist constants
A and B, which are not all zero, satisfying

A
‖x‖(m–δλ)(p–)

α

‖y‖n–λ
β

f p(x) = B
‖y‖(n–λ)(q–)

β

‖x‖m–δλ
α

a.e. in x ∈ Rm
+ . ()

If A = , then B = , which is impossible; if A �= , then () reduces to

‖x‖p(m–δλ)–m
α f p(x) =

B‖y‖q(n–λ)
β

A‖x‖m
α

a.e. in x ∈ Ri
+ ,

which contradicts the fact that  < ‖f ‖p,� < ∞. In fact, by (), it follows that
∫

Rm
+

‖x‖–m
α dx =

∞. Hence, () takes the form of strict inequality. So does (). By () and (), we have
().

In view of () (putting ω(λ, y) = ), we still have

I ≤ J
[∫

Rn
+

‖y‖q(n–λ)–n
β gq(y) dy

] 
q

. ()
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Then by () and (), we have (). It is evident that by Lemma  and the assumptions,
() and () are also equivalent.

For  < ε < pλ
 , we set f̃ (x), g̃(y) as follows:

f̃ (x) :=

{
,  < ‖x‖δ

α < ,

‖x‖δ(λ– ε
p )–m

α , ‖x‖δ
α ≥ ,

g̃(y) :=

{
,  < ‖y‖β < ,

‖y‖(λ– ε
q )–n

β , ‖y‖β ≥ .

Then, for λ̃ = λ – ε
p ∈ ( λ

 ,λ) (⊂ (,λ)), by () we find

‖̃f ‖p,�‖̃g‖q,	 =
(∫

{x∈Rm
+ ;‖x‖δ

α≥}
‖x‖–m–δε

α dx
) 

p
(∫

{y∈Rn
+;‖y‖β≥}

‖y‖–n–ε
β dy

) 
q

=

ε

(

m( 

α
)

αm–
( m
α

)

) 
p
(


n( 
β

)
βn–
( n

β
)

) 
q

,

 ≤
∫

{y∈Rn
+;‖y‖β≥}

‖y‖–n–ε
β O

(‖y‖– λ̃


β

)
dy

≤ L

∫

{y∈Rn
+;‖y‖β≥}

‖y‖–n–(ε+ λ̃
 )

β dy =
L


n( 
β

)

(ε + λ̃
 )βn–
( n

β
)

≤ L

n( 

β
)

(ε + λ
 )βn–
( n

β
)

< ∞ (L > ),

and then by () and () it follows that

Ĩ :=
∫

Rn
+

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f̃ (x)̃g(y) dx dy

=
∫

{y∈Rn
+;‖y‖β≥}

‖y‖–n–ε
β w(̃λ, y) dy

= Kα (̃λ)
∫

{y∈Rn
+;‖y‖β≥}

‖y‖–n–ε
β

(
 – O

(‖y‖– λ̃


β

))
dy

=

ε

Kα (̃λ)
(


n( 
β

)
βn–
( n

β
)

– εOλ ()
)

.

If there exists a constant K ≤ K(λ), such that () is valid when replacing K(λ) by K ,
then in particular we have


m( 
α

)
αm–
( m

α
)

(η + )

(

λ̃

η


+

λ̃

η


)(

n( 

β
)

βn–
( n
β

)
– εOλ ()

)

≤ ε̃I < εK ‖̃f ‖p,�‖̃g‖q,	 = K
(


m( 
α

)
αm–
( m

α
)

) 
p
(


n( 
β

)
βn–
( n

β
)

) 
q

,

and then K(λ) ≤ K(ε → +). Hence K = K(λ) is the best possible constant factor of ().
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By the equivalency, we can prove that the constant factor K(λ) in () is best possible.
Otherwise, we would reach a contradiction by () that the constant factor K(λ) in ()
is not best possible.

(ii) For  < p < , or p < , by the same way, we still can obtain the equivalent reverses of
() and () with the same best constant factor. �

As the assumptions of Theorem , for p > , in view of J < K(λ)‖f ‖p,�, we give the fol-
lowing definition.

Definition  We define a multidimensional Hilbert-type integral operator

T : Lp,�
(
Rm

+
) → Lp,	–p

(
Rn

+
)

as follows:
For f ∈ Lp,�(Rm

+ ), there exists a unique representation Tf ∈ Lp,	–p (Rn
+), satisfying

(Tf )(y) :=
∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x) dx

(
y ∈ Rn

+
)
. ()

For g ∈ Lq,	 (Rn
+), we define the following formal inner product of Tf and g as follows:

(Tf , g) :=
∫

Rn
+

∫

Rm
+

| ln(‖y‖β/‖x‖δ
α)|η

(max{‖x‖δ
α ,‖y‖β})λ f (x)g(y) dx dy. ()

Then by Theorem , for p > ,  < ‖f ‖p,�,‖g‖q,	 < ∞, we have the following equivalent
inequalities:

(Tf , g) < K(λ)‖f ‖p,�‖g‖q,	 , ()

‖Tf ‖p,	–p < K(λ)‖f ‖p,�. ()

It follows that T is bounded with

‖T‖ := sup
f ( �=θ )∈Lp,�(Rm

+ )

‖Tf ‖p,	–p

‖f ‖p,�
≤ K(λ).

Since the constant factor K(λ) in () is best possible, we have

‖T‖ = K(λ) =
(


n( 
β

)
βn–
( n

β
)

) 
p
(


m( 
α

)
αm–
( m

α
)

) 
q
(


λ

η


+

λ

η


)


(η + ). ()

4 Some corollaries
We also set functions

�̃(x) := ‖x‖p(m–λ)–m
α , �̂(x) := ‖x‖p(m–λ)–m

α

(
x ∈ Rm

+
)
.

For δ = – in Theorem , setting F(x) = ‖x‖λ
αf (x), by simplification, we have the following.
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Corollary  Suppose that m, n ∈ N, α,β ,λ,λ > , λ + λ = λ, η > –, p ∈ R\{, },

p + 

q = , F(x) = F(x, . . . , xm) ≥ , g(y) = g(y, . . . , yn) ≥ ,  < ‖F‖p,�̃,‖g‖q,	 < ∞. (i) For
p > , we have the following equivalent inequalities with the non-homogeneous kernel and
the best possible constant factor K(λ):

∫

Rn
+

∫

Rm
+

| ln(‖x‖α‖y‖β )|η
(max{,‖x‖α‖y‖β})λ F(x)g(y) dx dy < K(λ)‖F‖p,�̃‖g‖q,	 , ()

[∫

Rn
+

‖y‖pλ–n
β

(∫

Rm
+

| ln(‖x‖α‖y‖β )|ηF(x)
(max{,‖x‖α‖y‖β})λ dx

)p

dy
] 

p
< K(λ)‖F‖p,�̃; ()

(ii) for  < p < , or p < , we still have the equivalent reverses of () and () with the same
best constant factor K(λ).

For δ =  in Theorem , we have the following.

Corollary  Suppose that m, n ∈ N, α,β ,λ,λ > , λ + λ = λ, η > –, p ∈ R\{, },

p + 

q = , f (x) = f (x, . . . , xm) ≥ , g(y) = g(y, . . . , yn) ≥ ,  < ‖f ‖p,�̂,‖g‖q,	 < ∞. (i) For
p > , we have the following equivalent inequalities with the homogeneous kernel of degree
–λ and the best possible constant factor K (λ):

∫

Rn
+

∫

Rm
+

| ln(‖y‖β/‖x‖α)|η
(max{‖x‖α ,‖y‖β})λ f (x)g(y) dx dy < K(λ)‖f ‖p,�̂‖g‖q,	 , ()

{∫

Rn
+

‖y‖pλ–n
β

[∫

Rm
+

| ln(‖y‖β/‖x‖α)|ηf (x)
(max{‖x‖α ,‖y‖β})λ dx

]p

dy
} 

p
< K(λ)‖f ‖p,�̂; ()

(ii) for  < p < , or p < , we still have the equivalent reverses of () and () with the same
best constant factor K(λ).
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