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Abstract
In this paper, we introduce a new viscosity approximation method by using the
shrinking projection algorithm to approximate a common fixed point of a countable
family of nonlinear mappings in a Banach space. Under quite mild assumptions, we
establish the strong convergence of the sequence generated by the proposed
algorithm and provide an affirmative answer to an open problem posed by Maingé
(Comput. Math. Appl. 59:74-79, 2010) for quasi-nonexpansive mappings. In contrast
with related processes, our method does not require any demiclosedness principle
condition imposed on the involved operators belonging to the wide class of
quasi-nonexpansive operators. As an application, we also introduce an iterative
algorithm for finding a common element of the set of common fixed points of an
infinite family of quasi-nonexpansive mappings and the set of solutions of a mixed
equilibrium problem in a real Banach space. We prove a strong convergence theorem
by using the proposed algorithm under some suitable conditions. Our results
improve and generalize many known results in the current literature.
MSC: 47H10; 37C25
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1 Introduction
Throughout this paper, the set of real numbers and the set of positive integers are denoted
by R and N, respectively. Let E be a Banach space with the norm ‖·‖ and the dual space E∗.
When {xn}n∈N is a sequence in the Banach space E, we denote the strong convergence
of {xn}n∈N to x ∈ E by xn → x and the weak convergence by xn ⇀ x. For any sequence
{x∗

n}n∈N in E∗, we denote the strong convergence of {x∗
n}n∈N to x∗ ∈ E∗ by x∗

n → x∗, the
weak convergence by x∗

n ⇀ x∗ and the weak-star convergence by x∗
n ⇀∗ x∗. The modulus

of convexity of a Banach space E is defined by

δ(ε) = inf

{
 –

‖x + y‖


: ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

for every ε with  ≤ ε ≤ . A Banach space E is said to be uniformly convex if δ(ε) >  for
every ε > . Let SE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if
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for each x, y ∈ SE , the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists. In this case, E is called smooth. If the limit (.) is attained uniformly in x, y ∈ SE , then
E is called uniformly smooth. The Banach space E is said to be strictly convex if ‖ x+y

 ‖ < 
whenever x, y ∈ SE and x �= y. It is well known that E is uniformly convex if and only if E∗

is uniformly smooth. It is also known that if E is reflexive, then E is strictly convex if and
only if E∗ is smooth; for more details, see []. The normalized duality mapping J : E → E∗

is defined by

J(x) =
{

f ∈ E∗ : 〈x, f 〉 = ‖x‖,‖x‖ = ‖f ‖}, ∀x ∈ E.

If a Banach space E admits a sequentially continuous duality mapping J from weak topol-
ogy to weak-star topology, then J is single-valued and also E is smooth; see for more details
[]. In this case, the normalized duality mapping J is said to be weakly sequentially contin-
uous, i.e., if {xn}n∈N ⊂ E is a sequence with xn ⇀ x ∈ E, then J(xn) ⇀∗ J(x) []. A Banach
space E is said to satisfy the Opial property [] if for any weakly convergent sequence
{xn}n∈N in E with weak limit x,

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

for all y ∈ E with y �= x. It is well known that all Hilbert spaces, all finite dimensional Banach
spaces, and the Banach spaces lp ( ≤ p < ∞) satisfy the Opial property; see, for example
[, ]. It is also known that if E admits a weakly sequentially continuous duality mapping,
then E is smooth and enjoys the Opial property; see for more details []. Let C a nonempty
subset of a real Banach space E and let T : C → E be a mapping. The set of fixed points of
T is denoted by F(T) and defined by

F(T) = {x ∈ C : Tx = x}.

Recall that a mapping T : C → E is called nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all
x, y ∈ C. The mapping T : C → E is called quasi-nonexpansive, if F(T) �= ∅ and

‖p – Tx‖ ≤ ‖p – x‖, ∀x ∈ C, p ∈ F(T).

Let C be a nonempty, closed, and convex subset of a Banach space E and x ∈ E. Then
there exists a unique nearest point z ∈ C such that ‖x – z‖ = infy∈C ‖x – y‖. We denote such
a correspondence by z = PCx. The mapping PC is called metric projection of E onto C.

Let C be a nonempty, closed, and convex subset of a Banach space E, let T be a mapping
from C into itself. A point p ∈ C is said to be a weakly asymptotic fixed point [] of T if there
exists a sequence {xn}n∈N in C which converges weakly to p and limn→∞ ‖xn –Txn‖ = . We
denote the set of all weakly asymptotic fixed points of T by F̂(T). A point p ∈ C is called a
strong asymptotic fixed point of T if there exists a sequence {xn}n∈N in C which converges
strongly to p and limn→∞ ‖xn – Txn‖ = . We denote the set of all strong asymptotic fixed
points of T by F̃(T). Recall that a mapping T : C → C is said to be relatively nonexpansive
if the following conditions are satisfied:
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() F(T) is nonempty;
() ‖p – Tv‖ ≤ ‖p – v‖, ∀p ∈ F(T), v ∈ C;
() F̂(T) = F(T).

A mapping T : C → C is said to be weakly relatively nonexpansive if the following condi-
tions are satisfied:

() F(T) is nonempty;
() ‖p – Tv‖ ≤ ‖p – v‖, ∀p ∈ F(T), v ∈ C;
() F̃(T) = F(T).

It is clear that any relatively nonexpansive mapping is a quasi-nonexpansive mapping. It is
also obvious that every relatively nonexpansive mapping is a weakly relatively nonexpan-
sive mapping, but the converse in not true in general. Below we show that there exists a
weakly relatively nonexpansive mapping which is not a relatively nonexpansive mapping.

Example . Let E = l, where

l =

{
σ = (σ,σ, . . . ,σn, . . .) :

∞∑
n=

‖σn‖ < ∞
}

, ‖σ‖ =

( ∞∑
n=

‖σn‖

) 


, ∀σ ∈ l,

〈σ ,η〉 =
∞∑

n=

σnηn, ∀δ = (σ,σ, . . . ,σn, . . .),η = (η,η, . . . ,ηn, . . .) ∈ l.

Let {xn}n∈N∪{} ⊂ E be a sequence defined by

x = (, , , , . . .),

x = (, , , , , . . .),

x = (, , , , , , . . .),

x = (, , , , , , , . . .),

· · ·
xn = (σn,,σn,, . . . ,σn,k , . . .)

· · · ,

where

σn,k =

{
 if k = , n + ,
 if k �= , k �= n + ,

for all n ∈N. Now, we define a mapping T : E → E by

T(x) =

{
n

n+ x, if x = xn;
–x, if x �= xn.

Then F(T) = {} and T is a weakly relatively nonexpansive mapping which is not a rela-
tively nonexpansive mapping. Next, we define a countable family of mappings Tj : E → E
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by

Tj(x) =

{
n

n+ x, if x = xn;
–j
j+ x, if x �= xn,

for all j ≥  and n ≥ . It is clear that F(Tj) = {} for all j ≥ . Choose j ∈ N, then for any
n ∈N

‖ – Tjxn‖ =
∥∥∥∥ n

n + 
xn

∥∥∥∥ ≤ ‖ – xn‖.

If x �= xn, then we have

‖ – Tjx‖ =
∥∥∥∥ j

j + 
x
∥∥∥∥ ≤ ‖ – x‖.

Therefore, Tj is a quasi-nonexpansive mapping. By similar arguments to Example . of
[], we can show that F̂(Tj) �= F(Tj) for all j ∈ N. This implies that

⋂∞
j= F̂(Tj) �= ⋂∞

j= F(Tj).
Thus {Tn}n∈N is a sequence of weakly relatively nonexpansive mappings which is not a
sequence of relatively nonexpansive mappings.

Let E be a Banach space and let E∗ be the dual space of E. Let g : E →R be a convex and
Gâteaux differentiable function. Then the Bregman distance [, ] corresponding to g is
the function Dg : E × E →R defined by

Dg(x, y) = g(x) – g(y) –
〈
x – y,∇g(y)

〉
, ∀x, y ∈ E, (.)

where ∇g(y) stands the value of the gradient ∇g of g at y. It is clear that Dg(x, y) ≥  for
all x, y ∈ E. In that case when E is a Hilbert space, setting g(x) = 

‖x‖ for all x ∈ E, we
obtain ∇g(x) = x for all x ∈ E and hence Dg(x, y) = 

‖x – y‖ for all x, y ∈ E. Let C be
a nonempty and convex subset of E. Then we know from [] that for x ∈ E and x ∈ C,
Dg(x, x) = miny∈C Dg(y, x) if and only if

〈
y – x,∇g(x) – ∇g(x)

〉 ≤ , ∀y ∈ C. (.)

Furthermore, if C is a nonempty, closed, and convex subset of a reflexive Banach space E
and g : E → R is a strongly coercive Bregman function, then for each x ∈ E, there exists a
unique x ∈ C such that

Dg(x, x) = min
y∈C

Dg(y, x).

The Bregman projection projg
C from E onto C is defined by projg

C(x) = x for all x ∈ E. It is
also well known that projg

C has the following property:

Dg
(
y, projg

C x
)

+ Dg
(
projg

C x, x
) ≤ Dg(y, x) (.)

for all y ∈ C and x ∈ E (see [] for more details).
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Remark . It is worth mentioning that the class of weakly relatively nonexpansive map-
pings introduced in the present paper is different from the class of Bregman weak relatively
nonexpansive mappings introduced in []. It is well known that in a Banach space E the
Bregman projection operator projg

C is a Bregman weak relatively nonexpansisive mapping
but it is not a quasi-nonexpansive mapping with respect to the norm of the space; see, for
example, [, ].

Moudafi [] introduced the following iterative process, which is called Moudafi’s vis-
cosity approximation: x = x ∈ C and

xn+ = αnf (xn) + ( – αn)Txn (.)

for all n ∈ N, where {αn}n∈N ⊂ [, ) and f : C → C is a contraction. See also []. It was
proved that this sequence converges strongly to a unique fixed point of PF f under similar
conditions to those in []. Suzuki [] considered the Meir-Keeler contractions, which is
an extended notion of contractions, and studied the equivalency of convergence of these
approximation schemes.

Let C be a nonempty, closed, and convex subset of a reflexive Banach space E. Let n ∈N

and Tn : C → C be a quasi-nonexpansive mapping. For given x ∈ C, let {xn}n∈N be gener-
ated by the algorithm

xn+ := αnf (xn) + ( – αn)Tn(xn), n ≥ , (.)

where {αn}n∈N ⊂ (, ) satisfies the following conditions: (i) limn→∞ αn = ; (ii)
∑∞

n= αn =
∞. Then {xn}n∈N is said to satisfy condition (A) if for any subsequence xnk ⇀ x and
xn+ – Tn(xn) →  implies that x ∈ F :=

⋂∞
n= F(Tn); for more details, see []. Moti-

vated by the above notation, we say that the sequence {xn}n∈N satisfies condition (B) if
for any subsequence xnk → x and xn+ – Tn(xn) →  implies that x ∈ F :=

⋂∞
n= F(Tn). It

is clear that if the sequence {xn}n∈N satisfies condition (B), then it satisfies condition (A),
however, the converse is not true in general. For instance, the sequence {xn}n∈N de-
fined in Example . satisfies condition (B) but it does not satisfy condition (A). Indeed,
limn→∞ ‖xn+ –Tnxn‖ = limn→∞ ‖ n+

n+ x– n
n+ x‖ = limn→∞ ‖ 

(n+)(n+) x‖ =  and the sequence
{xn}n∈N converges weakly to x but x /∈ ⋂∞

n= F(Tn).

Definition . Let E be a real Banach space and D be a closed subset of E. A mapping
T : D → D is said to be demiclosed at the origin if, for any sequence {xn}n∈N in D, the
conditions xn ⇀ x and Txn →  imply Tx = .

Let C and D be nonempty subsets of real Banach space E with D ⊂ C. A mapping QD :
C → D is said to be sunny if

QD
(
QDx + t(x – QDx)

)
= QDx

for each x ∈ E and t ≥ . A mapping QD : C → D is said to be a retraction if QDx = x for
each x ∈ C.

Recently, Zegeye and Shahzad [] proved the following fixed point theorem for quasi-
nonexpansive mappings in a Banach space.
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Theorem . Let K be a nonempty, closed, and convex subset of a real reflexive Banach
space E that has weakly continuous duality mapping Jφ for some gauge φ. Let Ti : K → K ,
i = , , . . . , be a family of quasi-nonexpansive mappings with F :=

⋂∞
i= F(Ti) �= ∅; which is

a sunny nonexpansive retract of K with Q a nonexpansive retraction. For given x ∈ K , let
{xn}n∈N be generated by the algorithm

xn+ := αnf (xn) + ( – αn)Tn(xn), n ≥ ,

where f : K → K is a contraction mapping with constant β ∈ (, ) and {αn}n∈N ⊂ (, )
satisfies the following conditions:

(i) limn→∞ αn = ;
(ii)

∑∞
n= αn = ∞.

Suppose that {xn}n∈N satisfies condition (A). Then {xn}n∈N converges strongly to a com-
mon fixed point x̄ = Q(f (x̄)) of a family Ti, i = , , . . . , as n → ∞. Moreover, x̄ is the unique
solution in F to the variational inequality

〈
f (x̄) – x̄, Jφ(y – x̄)

〉 ≤ , ∀y ∈ F .

Very recently, Maingé [] studied strong convergence theorems for quasi-nonexpansive
mappings and posed the following open problem in his final remark.

Question . Is there any strong convergence theorem of Moudafi’s type for quasi-
nonexpansive mappings without using the demiclosedness principle in a Banach space E?

Many problems in nonlinear analysis can be formulated as a problem of finding a fixed
point of a nonexpansive-type mapping. There exists an extensive literature regarding the
convergence analysis of iterative methods for approximation fixed points of several types
of mappings T , in the settings of Hilbert and Banach spaces (see, e.g., [–]). However,
to the best of our knowledge, there is no strong convergence result regarding the viscos-
ity approximation of a weakly relatively nonexpansive mapping in a Banach space. In this
paper, we first introduce a new viscosity approximation method based on the shrinking
projection algorithm to approximate a common fixed point of a countable family of non-
linear mappings in a Banach space. Under quite mild assumptions, we establish the strong
convergence of the sequence generated by the proposed algorithm. In contrast with other
related processes, our method does not require any demiclosedness principle condition
imposed on the involved operators belonging to the vide class of quasi-nonexpansive op-
erators. As an application, we also introduce an iterative algorithm for finding a common
element of the set of common fixed points of an infinite family of quasi-nonexpansive map-
pings and the set of solutions of a mixed equilibrium problem in a real Banach space. We
prove a strong convergence theorem by using the proposed algorithm under some suit-
able conditions. Our results improve and generalize many known results in the current
literature; see, for example, [, , ].

2 Preliminaries
In this section, we collect some lemmas which will be used in the proofs for the main
results in next sections.
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Lemma . [] Let C and D be nonempty subsets of a real Banach space E with D ⊂ C
and let QD : C → D be a retraction from C into D. Then QD is sunny and nonexpansive if
and only if

〈
z – QD(z), J

(
y – QD(z)

)〉 ≤ 

for all z ∈ C and y ∈ D, where J is the normalized duality mapping of E.

Lemma . [] Let E be a real Banach space and J be the normalized duality mapping
of E. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
,

for all x, y ∈ E.

Theorem . A Meir-Keeler contraction defined on a complete metric space has a unique
fixed point. We have the following result, given by Suzuki [], for Meir-Keeler contractions
defined on a Banach space.

Lemma . (Suzuki []) Let C be a nonempty convex subset of a Banach space E and
f : C → E be a Meir-Keeler contraction. Then, for every ε > , there exists r ∈ (, ) such
that ‖x – y‖ ≥ ε implies that ‖f (x) – f (y)‖ ≤ r‖x – y‖ for x, y ∈ C.

Let {Cn}n∈N be a sequence of nonempty, closed, and convex subsets of a reflexive Ba-
nach space E. We define a subset s-LinCn of E as follows: x ∈ s-LinCn if and only if there
exists {xn}n∈N ⊂ E such that {xn}n∈N converges strongly to x and such that xn ∈ Cn for all
n ∈ N. Similarly, a subset w-LsnCn of E is defined by the following: y ∈ w-LsnCn if and
only if there exist a subsequence {Cni}i∈N of {Cn}n∈N and a sequence {yi}i∈N ⊂ E such
that {yi}i∈N converges weakly to y and such that yi ∈ Cni for all i ∈ N. If C ⊂ E satisfies
C = s-LinCn = w-LsnCn, it is said that {Cn}n∈N converges to C in the sense of Mosco [],
and we write C = M-limn Cn. One of the simplest examples of Mosco convergence is a de-
creasing sequence {Cn}n∈N with respect to inclusion. The Mosco limit of such a sequence
is

⋂∞
n= Cn. For more details, see []. Tsukada [] proved the following theorem for the

metric projection in a Banach space.

Theorem . (Tsukada []) Let {Cn}n∈N be a sequence of nonempty, closed, and convex
subsets of a Banach space E. If C = M-limn Cn exists and is nonempty, then, for each x ∈ E,
{PCn x}n∈N converges strongly to PC x.

3 Strong convergence theorems
In this section, we prove a strong convergence theorem for approximating common fixed
points of weakly relatively nonexpansive mappings in a Banach space.

Theorem . Let C be a nonempty, closed and convex subset of a Banach space E and
{Tn}n∈N an infinite family of weakly relatively nonexpansive mappings from C into itself
with F :=

⋂∞
n= F(Tn) �= ∅ which is a sunny nonexpansive retract of C with Q a nonexpansive
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retraction. Let {xn}n∈N∪{} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,
C = D = C,
Cn+ = {z ∈ Cn : ‖z – Tnxn‖ ≤ ‖z – xn‖},
Dn+ = coCn+,
PDn+ xn = Tnxn,
xn+ = QDn+ f (xn) and n ∈N∪ {}.

(.)

Then there exists v ∈ C such that {xn}n∈N and {Tnxn}n∈N, converge strongly to QF f (v) = v.

Proof In the light of [, Proposition ], we see that the composed mapping QF f of C into
itself is a Meir-Keeler contraction on C. Theorem . implies that there exists a unique
fixed point v ∈ F of QF f . Since Dn is a closed and convex subset of E and ∅ �= Dn+ ⊂ Dn for
all n ∈ N, {xn}n∈N is well defined. On the other hand, the composed mapping Q⋂∞

n= Dn f is a
Meir-Keeler contraction on C, so in light of Theorem . there exists a unique fixed point
v ∈ ⋂∞

n= Dn of Q⋂∞
n= Dn f . Furthermore, setting zn = QDn f (v) for each n ∈ N and noting

that F ⊂ Dn+ ⊂ Dn for every n ∈ N, we immediately obtain
⋂∞

n= Dn = M-limn Dn. Thus,
by Theorem .,

zn → Q⋂∞
n= Dn f (v) = v. (.)

Next, we prove that xn → v as n → ∞. Suppose on the contrary that lim supn→∞ ‖xn –u‖ >
. Then there exists ε >  such that lim supn→∞ ‖xn – v‖ > . By the definition of Meir-
Keeler contraction, there exists δ >  with δ + ε < lim supn→∞ ‖xn – v‖ such that ‖x – y‖ <
δ + ε implies that ‖f (x) – f (y)‖ < ε for all x, y ∈ C. From Lemma ., there exists r ∈ (, )
such that ‖x – y‖ ≥ δ + ε implies that ‖f (x) – f (y)‖ ≤ r‖x – y‖ for every x, y ∈ C. Then, from
(.), we can choose n ∈ N such that ‖zn – v‖ < δ for each n ≥ n. As in the proof of [,
Theorem ], we consider the following two cases.

(i) There exists n ≥ n such that ‖xn – v‖ < δ + ε.
(ii) ‖x – y‖ ≥ δ + ε for every n ≥ n.
In case (i), we have ‖xn+ – zn+‖ ≤ ‖f (xn ) – f (v)‖ < ε since ‖xn – y‖ ≥ δ + ε. It follows

immediately that ‖xn+ – v‖ ≤ ‖xn+ – zn+‖ + ‖zn+ – v‖ < δ + ε. This means that

lim sup
n→∞

‖xn – v‖ ≤ δ + ε < lim sup
n→∞

‖xn – v‖.

This is a contradiction. In case (ii), we have ‖f (xn) – f (u)‖ ≤ r‖xn – u‖ for all n ≥ n. Thus
we get

‖xn+ – zn+‖ ≤ ∥∥f (xn) – f (v)
∥∥ ≤ r‖xn – v‖ ≤ r

(‖xn – zn‖ + ‖zn – v‖)

for every n ≥ n. This latter result together with (.) amounts to

lim sup
n→∞

‖xn – zn‖ = lim sup
n→∞

‖xn+ – zn+‖ ≤ r lim sup
n→∞

‖xn – zn‖ < lim sup
n→∞

‖xn – zn‖.

This is a contradiction. Therefore, we get

lim
n→∞ xn = v. (.)
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Since xn+ = QDn+ f (xn), we have 〈f (xn) – xn+, xn+ – y〉 ≥  for each y ∈ Dn+. Using F ⊂
Dn+, we get 〈f (xn) – xn+, xn+ – y〉 ≥  for every n ∈N and y ∈ F , which implies that

〈
f (v) – v, v – y

〉 ≥ 

for each y ∈ F . On the other hand, since PDn+ xn = Tnxn and xn+ ∈ Dn+, we have

‖xn – Tnxn‖ ≤ ‖xn – xn+‖.

It turns out that

lim
n→∞‖xn – Tnxn‖ = lim

n→∞‖xn – xn+‖ = .

It follows that v ∈ ⋂∞
n= F(Tn). Hence v is a strong limit of {xn}n∈N and {Tnxn}n∈N, which

completes the proof. �

Remark . () Theorem . extends and improves Theorem .. We did not use the demi-
closedness principle (the condition (A) of the sequence {xn}n∈N) in our discussion. Our
Theorem . is also valid in a wide class of general Banach spaces while Theorem . is
valid in Banach spaces having weakly sequentially duality mappings.

() We note also that the main result of the paper provides a positive answer to open
Question .. So, our Theorem . improves the main result of [] from a Hilbert space
to a Banach space.

4 Application to equilibrium problems
The equilibrium problem was first introduced by Fan in [] (see, also []). It is well
known that the equilibrium problem includes many important problems in nonlinear
analysis and optimization such as the Nash equilibrium problem, variational inequalities,
complementarity problems, vector optimization problems, fixed point problems, saddle
point problems, and game theory; see for example [] and its references. Existence re-
sults for solutions to equilibrium problems have been extensively studied, as can be seen
in [, ].

Let C be a nonempty, closed, and convex subset of a Banach space E. Let h : C × C →
R be a bifunction and let φ : C → R be a function. Consider the following equilibrium
problem: Find p ∈ C such that

h(p, y) ≥ , ∀y ∈ C. (.)

The mixed equilibrium problem is to find q ∈ C such that

h(q, y) + φ(y) ≥ φ(x), ∀y ∈ C. (.)

Problem (.) was first introduced by Ceng and Yao []. The solution set of (.) is de-
noted by MEP(h,φ). If φ ≡ , then the mixed equilibrium problem (.) reduces to the
equilibrium problem (.).

For solving the mixed equilibrium problem, let us assume that h : C × C → R satisfies
the following conditions:
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(A) h(x, x) =  for all x ∈ C;
(A) h is monotone, i.e., h(x, y) + h(y, x) ≤  for all x, y ∈ C;
(A) for all y ∈ C, h(·, y) is weakly upper semicontinuous;
(A) for all x ∈ C, h(x, ·) is convex.
In this section, we prove a strong convergence theorem concerning equilibrium prob-

lems in a Banach space. Let E be a smooth, strictly convex, and reflexive Banach space.
Let C be a nonempty, bounded, closed, and convex subset of E, let h be a bifunction from
C × C to R satisfying (A)-(A) and let φ be a lower semicontinuous and convex function
from C to R. For all r > , we define the mapping Tr : E → C as follows:

Tr(x) =
{

z ∈ C : h(z, y) + φ(y) +

r
〈
y – z, J(z – x)

〉 ≥ φ(z) for all y ∈ C
}

(.)

for all x ∈ E.

Lemma . [] Let E be a Banach space and C be a nonempty, bounded, closed, and
convex subset of E and h : C × C →R a bifunction satisfying (A)-(A) and MEP(h,φ) �= ∅.
For r > , let Tr : E → C be the mapping defined by (.). Then the following statements
hold:

() Tr(x) is nonempty for every x ∈ E;
() Tr is single-valued;
() 〈Trx – Try, J(Trx – x)〉 ≤ 〈Trx – Try, J(Try – y)〉, for all x, y ∈ E;
() F(Tr) = MEP(h,φ);
() MEP(h,φ) is nonempty, closed, and convex.

Theorem . Let E be a uniformly convex and smooth Banach space and let C be a
nonempty, bounded, closed, and convex subset of E. Let h be a bifunction from C × C to
R satisfying (A)-(A), let φ be a lower semicontinuous and convex function from C to R

and let {Tn}n∈N be a sequence of weakly relatively nonexpansive mappings of C into itself
such that F :=

⋂∞
n= F(Tn) ∩ MEP(h,φ) �= ∅ which is a sunny nonexpansive retract of C with

Q a nonexpansive retraction. For r > , let Tr : E → C be the mapping defined by (.).
Let {rn}n∈N be a sequence in (,∞) such that lim infn→∞ rn > . Let {xn}n∈N be a sequence
generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C chosen arbitrarily,
C = D = C,
Cn+ = {z ∈ Cn : ‖z – Tnxn‖ ≤ ‖z – xn‖}, n ≥ ,
Dn+ = coCn+,
PDn+ xn = Tnxn,
Qn+ = {z ∈ Qn : 〈Trn xn – z, J(xn – Trn xn)〉 ≥ }, n ≥ ,
xn+ = QDn+∩Qn+ f (xn) and n ∈N∪ {}.

(.)

Then there exists v ∈ C such that {xn}n∈N converges strongly to QF f (v) = v.

Proof We first show that the sequence {xn}n∈N is well defined. It is easy to verify that Dn ∩
Qn is closed and convex and F ⊂ Dn for all n ≥ . Since D = C, we also have F ⊂ D ∩ Q.
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Suppose that F ⊂ Dm– ∩ Qm– for m ≥ . It follows from Lemma .() that

〈
Trm xm – Trm u, J(Trm u – u) – J(Trm xm – xm)

〉 ≥  for all u ∈ F .

This implies that

〈
Trm xm – u, J(xm – Trm xm)

〉 ≥ ,

for all u ∈ F . Hence F ⊂ Qm. By mathematical induction, we get F ⊂ Dn ∩ Qn for each
n ≥  and hence {xn}n∈N is well defined.

Since QF is nonexpansive, the composed mapping QF f of C into itself is a Meir-Keeler
contraction on C; see [, Proposition ]. In view of Theorem ., there exists a unique
fixed point v ∈ F of QF f . Since Dn is a closed and convex subset of E and ∅ �= Dn+ ⊂ Dn for
all n ∈ N, {xn}n∈N is well defined. On the other hand, the composed mapping Q⋂∞

n= Dn f is a
Meir-Keeler contraction on C, so in view of Theorem . there exists a unique fixed point
v ∈ ⋂∞

n= Dn of Q⋂∞
n= Dn f . Furthermore, setting zn = QDn f (v) for each n ∈ N and noting

that F ⊂ Dn+ ⊂ Dn for every n ∈ N, we immediately obtain
⋂∞

n= Dn = M-limn Dn. Thus,
by Theorem .,

zn → Q⋂∞
n= Dn f (v) = v. (.)

By the same arguments, as in the proof of Theorem ., we can prove that xn → v as
n → ∞.

Next, we show that v ∈ MEP(h,φ). By the construction of Qn, we see from (.) that
Trn xn = PQn xn. Since xn+ ∈ Qn, we obtain

‖xn – Trn xn‖ ≤ ‖xn – xn+‖,

which together with (.) leads to

lim
n→∞‖xn – Trn xn‖ = .

From the assumption lim infn→∞ rn > , we also have

lim
n→∞


rn

∥∥J(xn –rn xn)
∥∥ = lim

n→∞

rn

∥∥(xn –rn xn)
∥∥ = . (.)

Since xn → v, we also have Trn xn → v as n → ∞. By the definition of Trn , for each y ∈ C,
we deduce that

h(Trn xn, y) + φ(y) +

rn

〈
y – Trn xn, J(Trn xn – xn)

〉 ≥ φ(Trn xn).

By (A), (.), and the weakly lower semicontinuity of φ, we have

h(v, y) + φ(y) ≥ φ(v), ∀y ∈ C.

This shows that v ∈ MEP(h,φ) and hence v ∈ F =
⋂∞

n= F(Tn) ∩ MEP(h,φ). �
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Remark . The main result of [] gave a strong convergence theorem to approximate
fixed point of an infinite family of nonexpansive mappings, while the main result of the
present paper gives a strong convergence theorem to approximate common fixed points
of an infinite family of weakly relatively nonexpansive mappings in a uniformly convex
Banach space. We note that the proof of Theorem . (lines -, where the authors
used the nonexpansivity of the mapping T ) in [] is not valid in our discussion. So our
result extends and improves the corresponding results of [].

Remark . () In Theorem ., we present a strong convergence result for a system of
equilibrium problems with new algorithms and new control conditions. This is comple-
mentary to the main results of [–]. In addition, our scheme in Theorem . has an
advantage that it does not require any demiclosedness principle condition imposed on the
involved operators belonging to the wide class of quasi-nonexpansive operators. Indeed,
we propose different approaches, based on shrinking projection algorithms, to solve the
equilibrium problem in a Banach space. So, our Theorem . improves the main results
of [–].
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