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1 Introduction
Let D be a bounded homogeneous domain in C", H (D) the class of all holomorphic
functions on D. For ¢, a holomorphic self-map of D, the linear operator defined by

Co(f)=fog, feH(D)

is called the composition operator with symbol ¢. The study of composition opera-
tors is fundamental in the study of Banach and Hilbert spaces of holomorphic func-
tions. We refer to the books [1] and [2] for an overview of some classical results on
the theory of composition operators.

Let K (z, z) be the Bergman kernel function of D, and the Bergman metric H,(u, u)
in D is defined by

n

1 Z 9% logK(z,z)

H.(u, u) = Uil
()=, o0z,

jl=1
where z = (zy, ..., z,) € D and u = (uy,...,u,) € C". A function fe H (D) is said to

be a Bloch function if Bf = i‘elg Qr(2) is finite, where

)~ sup (D@

ueCm\{0} H;/Z(u, u) ’
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L)
(V) (R)u =< Vf(z), u >= Y 85 (z)ur. By fixing a base point zy € D, the Bloch space
k=1 9%k

B(D) of all Bloch functions on D is a Banach space under the norm
Il flilz =1f(z0)] + B#[3]. For convenience, we assume the bounded homogeneous domain
D to contain the origin and take z, = 0. In [3], Timoney proved that the space H™ (D)
of bounded holomorphic functions on a bounded homogeneous domain D is a sub-
space of B(D) and for each f € H®(D), || fllz < Cp || fllco, where Cpis a constant
depending only on the domain D and I flloo = i‘elg If (2]

Let U"be the unit polydisk of C Timony [3] showed that f € B(D) if and only if

(1 —lzl*) < oo,

(Z)

ze U"

and |f(0)| +sup Py 1l I

characterlzatlon was the startlng point for introducing o-Bloch spaces. For o > 0, the
o -Bloch space B*(U") is defined as follows.

(z)|(1 — |zk|?) is equivalent to the Bloch norm | f||5. This

(Z)

zeU”

B (U") = {f e H(U") :

(1 - )" < oo}.

Recently, Li and Liu [4] introduced the notation of general weighted Bloch spaces
(Stevi¢ called these the logarithmic Bloch-type spaces in [5]) in polydisk. For & > 0, a
function fe H (U") is said to belong to the general weighted Bloch space Bﬁ,g(U") if

2
1 — |z|*)* 1o < 00
(L= lad)os ) e

(Z)

ze U"

It is easy to show that Bﬁ,g(U") is a Banach space with the norm

I fllsg,, = (Z) (1 — lzel*)* 108

— lz|?’

Composition operators on various Bloch-type spaces have been studied extensively by
many authors. For the unit disk U ¢ C, Madigan and Matheson [6] proved that Cjis
always bounded on B(U). They also gave some sufficient and necessary conditions that
Cyis compact on B(U). Since then, there were many authors generalizing the results in
[6] to the unit ball, polydisk and other classical symmetric domains, see, for example,
[7-17]. At the same time, there were also many papers dealing with the composition
operators between Bloch-type spaces and bounded holomorphic function spaces, refer
to [18,19] and the references therein for the details. Specially, Li and Liu [4] stated and
proved the corresponding boundedness and compactness characterizations for Cyfrom
H™(U") to 1Og(U") But there is a little gap in the proof [[4], line 17, p. 1637]. In this
paper, we apply methods developed by Montes-Rodriguez [9] to give some estimates of
the norm and essential norm of Cyfrom H™(U") to 10g(U") Recall that the essential
norm ||T|.of a bounded operator T between Banach spaces X and Y is defined as the
distance from T to the space of compact operators from X to Y. Notice that ||T]|.= 0 if
and only if T is compact, so that estimates on ||7||.lead to conditions for 7 to be
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compact. For convenience, we define ||T||.= ||T|| = e for any unbounded linear opera-
tor 7. As an application of our estimates, we obtain the main results in [4] with new
proofs. In addition, we also show the equivalence of the compactness and weak
compactness of Cp : H*(U") — By (U").

Throughout the remainder of this paper, C will denote a positive constant, the exact

value of which will vary from one occurrence to the others.

2 The norm of C,

In this section, we give the following estimate of the norm of C, : H*(U") — B, (U"),
Theorem 1. Let o > 0 and ¢ = (¢4, ..., $,) be a holomorphic self-map of the unit

polydisk U", then

sup Z an (1 - |Zk|2)a2 lOg 2 ) S I C HOO(un) N Blog(un) I
el oy BZk — (@1(2)] 1 — |z
(1 —lal?)” 2
< 1+sup ‘ 1 .
zeUm ,; 3Zh( ) —(@(2)? 1 — |zl?

Here and in the sequel, the symbol A< B(or B 2 A) means that A <CB for some positive
constant C independent of A and B. A ~ B means that A < B and B< A.

A, — |z2)” 2
Proof. For the lower estimate: || C, : H*(U") — By (U") || X sup Z BAE ( Ve )2 log 5
= 31}1 = l@i(=)] 1— |zl

If | Cp - H®(U") — B, (U") ||l= 00, then the result is trivially true. Now suppose
Cy - H*(U") — By, (U") is bounded. For any fixed w e U"and ke {1, ..., n}, take the

following test function

(1 = (e (w)® )“

f(=) =
(1 = (pr(w)z)”
Then, fe H” (U") and ||f ||-< 2% Fix any d € (0, 1). If |¢u(w)| = 6, then

00 > || Cp : H*(U") — B (U") IZ1l Cof Il

log

> supy |70 "))( )‘(1 510 2
zelin j=1 — |zl
- sup¥ f( @° |- es,
zel" j=1 — I3l
n — w d o
= sup Y |agr(w) ( '(“’k( ) D,m % 2)| (1 = I2]2)" log ,
zeln j=1 (1 — gp(w)er(2)) 0z; 1 — |z
" (1= [w)* | 3¢y
> o w
_]gl: ¢k( ) 1—|((pk(W)|2 8Z] ( ) 1_|wj|2
n 1 — |lw:|? o
23| M) g 2
=11 0% 1 — |(¢r(w)l 1 — |wjl
If |¢r (w)| <0, then
= [oge | (1= w?)” 2 3¢ e
2 a5, ) L= (o) B 1=y 0z; (“’)'(1 )" log |y p

j=1

=1 Cozellgy, < I Cp = H(U") = B, (U") Il zelloo =l Cp = H*(U") — B, (U") || < oo.

log
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That is, for any w e U”,

n 21&
¢ (1 — lwl?)

Dol w) plog S

1 93 1 — |(¢r(w)l = lwjl

” C HOO(UH) g Blog(un) ”

Since k € {1, .., n} is arbitrary, so

9 1— |wj?)* 2
sup 3 || () tog 2 Sy e - B 1.
wetr o= 192 711 = |(¢r(w)] = |wjl
o (") —» n u 3<p1 (1- ‘ZHZ)H 2
For the upper estimate: II C, : H*(U") — By (U") II< 1+zseuz?;§1|32k \ ou(a)? %8 1 —
1 —|z1?)" 2
We also assume sup Z | O (z )I( 2l )2 log , <09, since for the other
zeln i1 02 1 — |gi(2)] 1 — |z
case nothing needs to be proven. For any fe H™(U"),
oo o 2
> |-y, 2
k=1 k
of R1%)] N
< ZZ W) @ (1= ) log |
k=1 I=1 = l2xl
>l > [ra| A g
< 3|7 wen|a-m@n Y | @) ¢ o8
=1 ll=1 —l@R))? 71— |zl
n o
d¢ 1— |zl 2
S X, ‘( ) L | 11
Pyt k loi(2)1? k
n o
91 ‘ (1 — lzel?)
S z Il flloos
Iz%:l 991 - lp(2))> 1= lal? -

where || fllg <Il flloo is used in the last line above.

Since
(foe) « 2
I Cofllsz, = 52 (2)| (1 — |z|*)* log L - g2
(1= lzl?)”
< 1+ SUP ‘ og I flloo-
el o 3Zk( ) — lo(z)? 1— |z|? *

Taking the supremum over all fe H™(U") with || f||e < 1, we have

I Cy s H(U") — Byt (U™) IS 1+ sup Z

' (1 —lzel?)* 2
zel® k=

g ’
216 | e P

azk

which completes the proof.

The following corollary is obtained immediately from Theorem 1.

Corollary 2. Let ¢ = (¢, ..., ¢,) be a holomorphic self-map of U" and o > 0. Then,
Cy : H®(U") — By, (U")is bounded if and only if

3<ﬂ1 ‘ (1—|zl?)” 2
og , <00
—l@R)> T 1=zl
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3 The essential norm of C,
This section mainly gives the following estimate of the essential norm of C, from
H=(U") to Bj (U").

Theorem 3. Let ¢ = (¢4, ..., ,,) be a holomorphic self-map of U" and o > 0, then

I Cp : H*(U") — Big(U")lle ~ lim sup
80 dist(p(2), aun)«skl 1

3</>l ’(1 IZkI) 2
3z, loi(z )I 1— |z

Proof. For the lower estimate:

” C HOO(Un) g Blog(un)”e Z hm sup

3(p 1 — |z)? 2
0d1st(rp(z) Bll")<5kl 1

e e L I

It is trivial when Cgis unbounded. So we assume that C,is bounded. By Corollary 2,

9 1 — |z,|?)*
@ ‘( |2kl ”) g LS =1, ., n 1
azk (@) 71— lad

Take fin(z) =2'(m > 2), then ||f,,||~ = 1 and f,,(z) converge to zero uniformly on
any compact subset of U”. So | Kfmlz, = 0 for any compact operator
Hoo(un) — Blog(U”), Then

I Co = Kl limsup || (Cp = K)fuli, =limsup || Cofulz,
— 00

Do - ryioe T

m—o0 zelm )

9
> lim sup sup Z (fm

m—>00 zeAn 41

|0 mrye,

_ L7} (2)
= lim sup su| E me™ 1z 2)|(1 — |2*)* 1o
it P L A e P
091 (1 — |z )a -1 2
= lim sup su lo: m|(o1(2)|™ (1 — |(¢1(2)]
msup sup ;1 sz( )' )R R (@@ (1 =1 (2)7)

> lim sup sup Z llmmfmln mlp1(2)" (1 = |(¢1(2) %),

m—00  zeAy 3y

3</J1 (1 Izl ) 2
9 %8 1 |l
Zk — 1 (3)1° = |zl

1/2

where A,,={ze U" r,,< |61(2)| € 1y 4 1} T = (m+1 . Since y = mx™ (1 - x%),

x € [0, 1), is increasing on [0, r,] and decreasing on [r,, 1),
m—1
y From (2), we have

gelinmkol(z)v”’l(l 1@ =(,",) 2 M —2@m—> oo

ICo—KIZ hmsupsupz

m—o0 zeA, k=1

9 1 — |z |2)" 2
@1 ‘ ( |z ) log .
e 721¢ | e Y

It is from (1) that

lim sup =q<oo, Vl=1,...,n

aw ’(1 J2l?)”
5_)0dtst((p(z)6U”)<6; ]

g
3z loiz)” 1= |zl

Then, for any ¢ > 0, there is dy € (0, 1) such that

3901( )‘ (1 —lzl?)

og >a;— &,
3zk —lo@1F 71— lal?
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whenever dist (¢(z), oU") <do. Again r,,1 1, so for m large enough,

sup Z

‘ A=kl 2
z€A, k=1

01
@ or B -

0z,

> dy — €.

So ||Cy— K|| 2 ay — . Since K is arbitrary,
I Cp : HX(U") — B (U")lle Z a1 — e.
Similarly, considering the functions f(2) = 2", [ = 2, .., n, we also have

I Cp - HX(U") = Biog (UMl 2 a1 —&.

Thus,

I Gyt HE(U") — Bis (UM)]le 2 Za; sy

= lim sup
‘S"Odlst(tp(z)dl]")<6k] 1

d‘ﬂl ‘ (1 —lal)” 2
o, —lai(z )I 1 —|z]?

Again ¢ is arbitrary, and we obtain the desired lower estimate.
For the upper estimate:

] 1-— “ 2
l C HDO(Un) - Blog(un)”e < lim sup (pl ‘ ( |Zk| ) ! 2°
30 dist(p(z),0U" )<5k1 * |9z, — (@1(2)1? 1 — |zl
3 1—z 2 . .
If lim sup Zkl 1 Iaf;( )|(1 I«J;EZ))I 08 1_jz)2 = %, then the estimate is trivial
8=0 dist(p(2),0U") <8
001 () (1—lail?)” 2
too. Now we suppose lim sup > kiet Loy (2) log = 00, then
PP 80 gist(p(2),0Um) <8 02 1—li(e) 1 — |z|?

Cp - HX(U") — Blog(U") is bounded by Corollary 2. Define the operators K,,(m > 2)

as follows

Knf(2) = f (mr; 1z) .

It is easy to see that K,,: H~(U") — H™(U") is compact since K,,,maps every bounded
sequence in H™(U") converging to zero on compact subsets of U"to the sequence con-
verging to zero in norm of H™(U"). In addition, ||I - K,,,: H~(U") —» H™(U")|| < 2.
Therefore, CpKm : H*(U") — By, (U") is compact. Then

I Cp - H=(U") — B (U")lle <1l Cp = CoKum || = I| Co(I = Ku) |l
= sup | C(p(I_Km)f”Bﬁ,g = sup |(I —Ku)f((0))]
Iflec=<1 Iflec=<1
n
a(l - m)f dgn 5 2
+ sup su z)| (1 — |z¢|7)% lo =1 + 1.
wilzdg; o P o @ (= lal)log | 1, =hi+l
Where I = sup [(I —Kun)f(¢(0))I and

Ifllo<1
L = sup supZ 10 (0(2)) 3 (211 = lai?)* log | 2 .
Ifllo<1zel" k=1
Fix 0 € (0, 1) and let G, = {z € U™ dist(¢(z), oU") <6}, G, = U"\G, = {z € U": dist
(¢(z), oU™) > 6}, which is a compact subset of 1"
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(I Km)f ) 2
I, = sup su 2)|(1 — |z]7)% lo
2 WJ;ZE&;I (¢ ()) ()( kl%) I
Km " 2
v s sup 3K o) 2o (1 apyriog | DL e
Iflo<12€Ga 1y |z |

Where
e ”fSHU]ile;l(P 3Zk ‘(1 |glozilz))| o 1_:Tzk|2 8(1 m)f( ()| (1 = lei(=)1?)
012661 15
: I\fsltzljggkl 1 32( )‘(1 |('|OZ}EI:))| lo 1*2|Zk|2 (I —Ku)fls
SHfﬁﬂlilfé‘c‘fk“ az()‘(l |(|pz;2|2))| log | > 1 =Kl

dor (1= lal? 2
<ap) aZk()‘( ) 1og o =Kol

2€Gi 1, loi(=)1? 1- |z

< g |Zk|2) 5 |
ffc?,;; oz 3|l 1— |(¢I(Z)| 81

And
(1= lal?)” 2 a0 Km)f
- 1 -
& ||fT|l;op<1zs£k, f azk( )' — (@i(2))? %8 Iz;¢|2| (e(@)I(1 = I(@(z)1*)

n o1 — Kn)f ‘

5 sup sup oz .
;Hf”aoﬁllecz 0 ( ( ))

It is clear that the sequence of operators {I - K,,},,satisfies n}ngO(I — Kin)f =0 for
each fe H (U”"), and the space H(U") endowed with the compact open topology Tis a
Fréchet space. Further, D;: (H (U"), t) — (H (U"), t) defined by Djf = 1s a contion-

uous linear operator. Therefore, by the Banach-Steinhaus theorem, the sequence {D;°
(I = K,,))},nconverges to zero uniformly on compact subsets of (H (U”), 7 ). Since, by
Montel’s normal theorem, the closed unit ball of H™(U") is a compact subset of (H
("), =), we conclude that

lim sup sup 91— m)f

M=% || <12€C, ow,

(p(z))|=0,1=1, ..., n

Thence, J, — 0 (as m —> ).
Similarly, we know that L= fsup I(I — K)f(¢(0))| = 0, (as m — o).

Ifllee =
Consequently,
| Cp: H®(U") — Blog(U")He < 11m SUP | Co(I — Kin) |l

< llrn supl; +limsup/; +limsupJ,
m—00 m—0o0o m— o0

S sup
dist(p(2),0U")<8 j 14

31 Z)' (1= lzl?)”
0z | 1—g(z)I? T L= lakl*
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Thus

| Cp : H®(U") — B]OE(U")IIQ < lim sup

awz ‘(1 l2l?)” 2
50 dist (g (2), 0Um )<ak, 1

lo .
BZk @P P 1 lal?

The proof is complete.

As an application, we have the following corollary.

Corollary 4. Let ¢ = (¢, ..., Pn) be a holomorphic self-map of U"and o > 0. Then the
following are equivalent.

(1) Cp - H*(U") — By, (U")is compact.

(2) Cp - H®(U") — By, (U")is weakly compact.

2

) im i 2 Z @I \lzz;(lz))l 81 _pp =0

Proof. (1)= (2) is obvious, and (3)= (1) follows immediately from Theorem 3. So it
suffices to prove (2)= (3). Now assume that C, : H*(U") — Bﬁ)g(U") is weakly com-
pact. If (3) is not true, then there is a sequence {Z} Cl/"and ¢, > 0 such that w'= ¢(2)
— oll"(as j — o) together with

¢ J
azk( )

(1— 122" . log 2
(@@ T1-122

>

k=1

for each j > 1. Since Cgis weakly compact, Cyis bounded. Then, by Corollary 2,

A== 2

dor
b . log S
1 — |gi(d)] 1 — |2, |2

0z,

k1=1

Extracting a subsequence of {7}, if needed, we may assume that ;12?0 lo1(2)] exists for

every [ and
9 1- 122" 2
1. 2l _) , log . —ap €0, 00), (asj— 00).
o[ 1= (@@ 1— 13

From (3), there are ky and [, such that a;,,, > 0, i.e.,

3 (1- 12, 1)) 2
¥l z ko ~, log . = ap, > 0. (4)
92k, - | 1= |(¢1, ()] 1— g 2
. 1—[w] |?
If |w’lo| — 1, define fj(z) = :/ . Then, the sequence {f}},c H™(U") is bounded
1—2z, o

and converges to zero uniformly on any compact subset of U/”. That is, {f;} weakly con-
verges to zero in H™(U"). Because H”(U") has Dunford-Pettis property (See Theorem
5.3 in [20] for H™(U), and note the proof there works also for H™(UI")), the weak com-
pactness of Cp : H*(U") — By (U") implies that || Cofjllz:, — 0(as j — oc). But this

is impossible since using (4) we may estimate that for each j > 1,

Page 8 of 10
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; 2
I CofillBe (@) (1 —1|2,1*)*1o ,
elill By, = (@) ( k) gl—|z]k|2
af}' 0@ : 2
z ()] (1= |2.]2)% 1o )
awlo(‘”( D @] -aryos
=| |Z _|z]'|2)0‘ 0(]) 2
e, @) S1-id
8901 4 1) 2
> |w, 0 °" 7 log . = apy, > 0.
—le, @ 1 e

If |w§0| — p < 1 Since w— oU", there is [; € {1, ..., n}\{lo} such that |”/i1| — 1L
If there exists k; such that

— g, 1) | 2

d¢1,
.y log .
1—lg, (@7 "1 -1z,

j
8Zkl “ )

— dng, >0,

then as in the last paragraph above we obtain the desired contradiction using the

following test functions:
1w,

gi(z) =
1—2, u/l]

Thus, we may assume that
i o
a-@En | 2

j
@ (o, @) 21— 12,2

a
‘ oh — 0, (asj — 00), (5)

0z,

for each k. We now define the test functions /;as follows

1— w2
hi(z) = (a, +2) !

1 —leu/l']

Then, ||/]|. < 1 and kconverge to zero uniformly on any compact subset of U”. But
for any j large enough

I Cohjlle, >

log —

d(hjow)
3 Z
k=1 ]

i 2
1—12,12)%log )
o) 1- 132

1 aq,
‘wl 12 0z,

I , =
o8 —|z§,|2 2

k=1

2 )+ (], + 2 b @)

=Za

k=1

>Z(1_

2 Z(l — |2 12)
k=1

El )
@1, @)
0z,

2
1-122)°1 )
[1(1 = I2,1*)* log L
(1 |k|) 2

wzo j
& — |w) |2 o8, _ 12,2

I, + 211 ‘”"

WID il
oz (¢)|1og

2
1- 13,2

vV

(1-1g, 1) log

2
1- |2, |2
(1-12, 1)
1— (g1, (@)1

7N
0zg,

vV

(/)| log

—> Algky > 0,

2
1—1g, 12
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the inequalities in the third and fourth lines above follow from (5), and the last line
is due tolg;,(d)] = p < 1 This contradicts again | Cohjllz — 0, which completes the

proof.
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