Wang and Wu Journal of Inequalities and Applications 2011, **2011**:46 http://www.journalofinequalitiesandapplications.com/content/2011/1/46

Journal of Inequalities and Applications

RESEARCH Open Access

Norms and essential norms of composition operators from \mathbf{H}^{∞} to general weighted Bloch spaces in the polydisk

Maofa Wang^{1*} and Huanqin Wu²

Abstract

Let U'' be the unit polydisk of \mathbb{C}^n and ϕ a holomorphic self-map of U''. $H^\infty(U'')$ and $\mathcal{B}^\alpha_{\log}(U^n)$ denote the space of bounded holomorphic functions and the space of general weighted Bloch functions defined on U'', respectively, where $\alpha>0$. This paper gives some estimates of the norm and essential norm of the composition operator C_ϕ induced by ϕ from $H^\infty(U'')$ to $\mathcal{B}^\alpha_{\log}(U^n)$. As applications, some characterizations of the boundedness and compactness of C_ϕ from $H^\infty(U'')$ to $\mathcal{B}^\alpha_{\log}(U^n)$ are obtained. Moreover, we also characterize the weak compactness of the composition operator C_ϕ . **MSC(2000):**

Primary 47B33; Secondary 32A37

Keywords: Composition operator, General weighted Bloch space, Essential norm, Boundedness, Weak compactness

1 Introduction

Let D be a bounded homogeneous domain in \mathbb{C}^n , H (D) the class of all holomorphic functions on D. For ϕ , a holomorphic self-map of D, the linear operator defined by

$$C_{\varphi}(f) = f \circ \varphi, \quad f \in H(D),$$

is called the composition operator with symbol ϕ . The study of composition operators is fundamental in the study of Banach and Hilbert spaces of holomorphic functions. We refer to the books [1] and [2] for an overview of some classical results on the theory of composition operators.

Let K(z, z) be the Bergman kernel function of D, and the Bergman metric $H_z(u, u)$ in D is defined by

$$H_z(u, u) = \frac{1}{2} \sum_{j,k=1}^n \frac{\partial^2 \log K(z, z)}{\partial z_j \partial \overline{z_k}} u_j \overline{u_k},$$

where $z=(z_1,...,z_n)\in D$ and $u=(u_1,...,u_n)\in \mathbb{C}^n$. A function $f\in H(D)$ is said to be a Bloch function if $\beta_f=\sup_{z\in D}Q_f(z)$ is finite, where

$$Q_f(z) = \sup_{u \in \mathbb{C}^n \setminus \{0\}} \frac{|(\nabla f)(z)u|}{H_z^{1/2}(u, u)},$$

^{*} Correspondence: mfwang. math@whu.edu.cn ¹School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, PR China Full list of author information is available at the end of the article

 $(\nabla f)(z)u = \langle \nabla f(z), \bar{u} \rangle = \sum_{k=1}^n \frac{\partial f}{\partial z_k}(z)u_k$. By fixing a base point $z_0 \in D$, the Bloch space $\mathcal{B}(D)$ of all Bloch functions on D is a Banach space under the norm $\|f\|_{\mathcal{B}} = |f(z_0)| + \beta_f[3]$. For convenience, we assume the bounded homogeneous domain D to contain the origin and take $z_0 = 0$. In [3], Timoney proved that the space $H^{\infty}(D)$ of bounded holomorphic functions on a bounded homogeneous domain D is a subspace of $\mathcal{B}(D)$ and for each $f \in H^{\infty}(D)$, $\|f\|_{\mathcal{B}} \leq C_D \|f\|_{\infty}$, where C_D is a constant depending only on the domain D and $\|f\|_{\infty} = \sup_{z \in D} |f(z)|$.

Let U^n be the unit polydisk of \mathbb{C}^n . Timony [3] showed that $f \in \mathcal{B}(D)$ if and only if

$$\sup_{z\in U^n}\sum_{k=1}^n\left|\frac{\partial f}{\partial z_k}(z)\right|\left(1-|z_k|^2\right)<\infty,$$

and $|f(0)| + \sup_{z \in U^n} \sum_{k=1}^n |\frac{\partial f}{\partial z_k}(z)| (1 - |z_k|^2)$ is equivalent to the Bloch norm $||f||_{\mathcal{B}}$. This characterization was the starting point for introducing α -Bloch spaces. For $\alpha > 0$, the α -Bloch space $\mathcal{B}^{\alpha}(U^n)$ is defined as follows.

$$\mathcal{B}^{\alpha}(U^n) = \left\{ f \in H(U^n) : \sup_{z \in U^n} \sum_{k=1}^n \left| \frac{\partial f}{\partial z_k}(z) \right| (1 - |z_k|^2)^{\alpha} < \infty \right\}.$$

Recently, Li and Liu [4] introduced the notation of general weighted Bloch spaces (Stević called these the logarithmic Bloch-type spaces in [5]) in polydisk. For $\alpha > 0$, a function $f \in H(U^n)$ is said to belong to the general weighted Bloch space $\mathcal{B}_{\log}^{\alpha}(U^n)$ if

$$\sup_{z\in U^n}\sum_{k=1}^n\left|\frac{\partial f}{\partial z_k}(z)\right|(1-|z_k|^2)^\alpha\log\frac{2}{1-|z_k|^2}<\infty.$$

It is easy to show that $\mathcal{B}_{\log}^{\alpha}(U^n)$ is a Banach space with the norm

$$|| f ||_{B_{\log}^{\alpha}} = |f(0)| + \sup_{z \in U^n} \sum_{k=1}^n \left| \frac{\partial f}{\partial z_k}(z) \right| (1 - |z_k|^2)^{\alpha} \log \frac{2}{1 - |z_k|^2}.$$

Composition operators on various Bloch-type spaces have been studied extensively by many authors. For the unit disk $U \subset \mathbb{C}$, Madigan and Matheson [6] proved that C_{ϕ} is always bounded on $\mathcal{B}(U)$. They also gave some sufficient and necessary conditions that C_{ϕ} is compact on $\mathcal{B}(U)$. Since then, there were many authors generalizing the results in [6] to the unit ball, polydisk and other classical symmetric domains, see, for example, [7-17]. At the same time, there were also many papers dealing with the composition operators between Bloch-type spaces and bounded holomorphic function spaces, refer to [18,19] and the references therein for the details. Specially, Li and Liu [4] stated and proved the corresponding boundedness and compactness characterizations for C_{ϕ} from $H^{\infty}(U^n)$ to $\mathcal{B}^{\alpha}_{\log}(U^n)$. But there is a little gap in the proof [[4], line 17, p. 1637]. In this paper, we apply methods developed by Montes-Rodriguez [9] to give some estimates of the norm and essential norm of C_{ϕ} from $H^{\infty}(U^n)$ to $\mathcal{B}^{\alpha}_{\log}(U^n)$. Recall that the essential norm $||T||_e$ of a bounded operator T between Banach spaces X and Y is defined as the distance from T to the space of compact operators from X to Y. Notice that $||T||_e = 0$ if and only if T is compact, so that estimates on $||T||_e$ lead to conditions for T to be

compact. For convenience, we define $||T||_e = ||T|| = \infty$ for any unbounded linear operator T. As an application of our estimates, we obtain the main results in [4] with new proofs. In addition, we also show the equivalence of the compactness and weak compactness of $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$.

Throughout the remainder of this paper, *C* will denote a positive constant, the exact value of which will vary from one occurrence to the others.

2 The norm of C_{ϕ}

polydisk Uⁿ, then

In this section, we give the following estimate of the norm of $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$. **Theorem 1**. Let $\alpha > 0$ and $\phi = (\phi_1, ..., \phi_n)$ be a holomorphic self-map of the unit

$$\begin{split} \sup_{z \in U^n} \sum_{k,l=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{1-|(\varphi_l(z)|^2)} \log \frac{2}{1-|z_k|^2} \lesssim & \parallel C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \parallel \\ \lesssim & 1 + \sup_{z \in U^n} \sum_{k=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{1-|(\varphi_l(z)|^2)} \log \frac{2}{1-|z_k|^2}. \end{split}$$

Here and in the sequel, the symbol $A \le B(\text{or } B \ge A)$ means that $A \le CB$ for some positive constant C independent of A and B. $A \sim B$ means that $A \le B$ and $B \le A$.

Proof. For the lower estimate: $\|C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)\| \gtrsim \sup_{z \in U^n} \sum_{k,l=1}^n |\frac{\partial \varphi_{l,l}}{\partial z_k}(z)| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_{l}(z)|^2} \log \frac{2}{1-|z_k|^2}$. If $\|C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)\| = \infty$, then the result is trivially true. Now suppose $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ is bounded. For any fixed $w \in U^n$ and $k \in \{1, ..., n\}$, take the following test function

$$f(z) = \frac{(1 - |(\varphi_k(w)|^2)^{\alpha})}{(1 - (\varphi_k(w)z_k)^{\alpha})}, \ z \in U^n.$$

Then, $f \in H^{\infty}(U^n)$ and $||f||_{\infty} \le 2^{\alpha}$. Fix any $\delta \in (0, 1)$. If $|\phi_k(w)| \ge \delta$, then

$$\begin{split} & \infty > \parallel C_{\varphi} : H^{\infty}(U^{n}) \rightarrow \mathcal{B}^{\alpha}_{\log}(U^{n}) \parallel \gtrsim \parallel C_{\varphi}f \parallel_{\mathcal{B}^{\alpha}_{\log}} \\ & \geq \sup_{z \in U^{n}} \sum_{j=1}^{n} \left| \frac{\partial (f \circ \varphi)}{\partial z_{j}}(z) \right| (1 - |z_{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{j}|^{2}} \\ & = \sup_{z \in U^{n}} \sum_{j=1}^{n} \left| \frac{\partial f}{\partial w_{k}}(\varphi(z)) \frac{\partial \varphi_{k}}{\partial z_{j}}(z) \right| (1 - |z_{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{j}|^{2}} \\ & = \sup_{z \in U^{n}} \sum_{j=1}^{n} \left| \alpha \overline{\varphi_{k}(w)} \frac{(1 - |(\varphi_{k}(w)^{2}|)^{\alpha}}{(1 - \overline{\varphi_{k}(w)}\varphi_{k}(z))^{\alpha+1}} \frac{\partial \varphi_{k}}{\partial z_{j}}(z) \right| (1 - |z_{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{j}|^{2}} \\ & \geq \sum_{j=1}^{n} \alpha \left| \varphi_{k}(w) \right| \frac{(1 - |w_{j}|^{2})^{\alpha}}{1 - |(\varphi_{k}(w))|^{2}} \frac{\partial \varphi_{k}}{\partial z_{j}}(w) \left| \log \frac{2}{1 - |w_{j}|^{2}} \\ & \gtrsim \sum_{j=1}^{n} \left| \frac{\partial \varphi_{k}}{\partial z_{j}}(w) \right| \frac{(1 - |w_{j}|^{2})^{\alpha}}{1 - |(\varphi_{k}(w))|^{2}} \log \frac{2}{1 - |w_{j}|^{2}}. \end{split}$$

If $|\phi_k(w)| < \delta$, then

$$\begin{split} & \sum_{j=1}^{n} \left| \frac{\partial \varphi_{k}}{\partial z_{j}}(w) \right| \frac{(1 - |w_{j}|^{2})^{\alpha}}{1 - |(\varphi_{k}(w)|^{2}} \log \frac{2}{1 - |w_{j}|^{2}} \lesssim \sum_{j=1}^{n} \left| \frac{\partial \varphi_{k}}{\partial z_{j}}(w) \right| (1 - |w_{j}|^{2})^{\alpha} \log \frac{2}{1 - |w_{j}|^{2}} \\ & \leq \| C_{\varphi} z_{k} \|_{\mathcal{B}^{\alpha}_{\text{loc}}} \leq \| C_{\varphi} : H^{\infty}(U^{n}) \to \mathcal{B}^{\alpha}_{\text{loc}}(U^{n}) \| \| \| z_{k} \|_{\infty} = \| C_{\varphi} : H^{\infty}(U^{n}) \to \mathcal{B}^{\alpha}_{\text{loc}}(U^{n}) \| < \infty. \end{split}$$

That is, for any $w \in U^n$,

$$\sum_{j=1}^{n} \left| \frac{\partial \varphi_k}{\partial z_j}(w) \right| \frac{\left(1 - |w_j|^2\right)^{\alpha}}{1 - \left| \left(\varphi_k(w)\right|^2} \log \frac{2}{1 - |w_j|^2} \lesssim \parallel C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \parallel.$$

Since $k \in \{1, ..., n\}$ is arbitrary, so

$$\sup_{w \in U^n} \sum_{k,j=1}^n \left| \frac{\partial \varphi_k}{\partial z_j}(w) \right| \frac{\left(1 - |w_j|^2\right)^{\alpha}}{1 - |(\varphi_k(w)|^2} \log \frac{2}{1 - |w_j|^2} \lesssim \parallel C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \parallel .$$

For the upper estimate: $\|C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \| \lesssim 1 + \sup_{z \in U^n} \sum_{k,l=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \left| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_{l}(z)|^2} \log \frac{2}{1-|z_k|^2} \right|$

We also assume $\sup_{z \in U^n} \sum_{k,l=1}^n |\frac{\partial \varphi_l}{\partial z_k}(z)| \frac{\left(1-|z_k|^2\right)^{\alpha}}{1-|\varphi_l(z)|^2} \log \frac{2}{1-|z_k|^2} < \infty$, since for the other case nothing needs to be proven. For any $f \in H^{\infty}(U^n)$.

$$\begin{split} &\sum_{k=1}^{n} \left| \frac{\partial (f \circ \varphi)}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\leq \sum_{k=1}^{n} \sum_{l=1}^{n} \left| \frac{\partial f}{\partial w_{l}}(\varphi(z)) \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\leq \sum_{l=1}^{n} \left| \frac{\partial f}{\partial w_{l}}(\varphi(z)) \right| (1 - |\varphi_{l}(z)|^{2}) \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \\ &\lesssim \left(\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \right) \|f\|_{\mathcal{B}} \\ &\lesssim \left(\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \right) \|f\|_{\infty}, \end{split}$$

where $|| f ||_{\mathcal{B}} \lesssim || f ||_{\infty}$ is used in the last line above. Since

$$\| C_{\varphi} f \|_{\mathcal{B}^{\alpha}_{\log}} = |f(\varphi(0))| + \sup_{z \in U^{n}} \sum_{k=1}^{n} \left| \frac{\partial (f \circ \varphi)}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}}$$

$$\lesssim \left(1 + \sup_{z \in U^{n}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}} (z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \right) \| f \|_{\infty}.$$

Taking the supremum over all $f \in H^{\infty}(U^n)$ with $||f||_{\infty} \le 1$, we have

$$\parallel C_{\varphi}: H^{\infty}(U^n)
ightarrow \mathcal{B}^{lpha}_{\log}(U^n) \parallel \lesssim 1 + \sup_{z \in U^n} \sum_{k,l=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{\left(1 - |z_k|^2\right)^{lpha}}{1 - |arphi_l(z)|^2} \log \frac{2}{1 - |z_k|^2}$$

which completes the proof.

The following corollary is obtained immediately from Theorem 1.

Corollary 2. Let $\phi = (\phi_I, ..., \phi_n)$ be a holomorphic self-map of U^n and $\alpha > 0$. Then, $C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ is bounded if and only if

$$\sup_{z\in U^n}\sum_{k,l=1}^n\left|\frac{\partial\varphi_l}{\partial z_k}(z)\right|\frac{\left(1-|z_k|^2\right)^\alpha}{1-\left|\varphi_l(z)\right|^2}\log\frac{2}{1-|z_k|^2}<\infty.$$

3 The essential norm of C_{ϕ}

This section mainly gives the following estimate of the essential norm of C_{ϕ} from $H^{\infty}(U^n)$ to $\mathcal{B}^{\alpha}_{\log}(U^n)$.

Theorem 3. Let $\phi = (\phi_1, ..., \phi_n)$ be a holomorphic self-map of U^n and $\alpha > 0$, then

$$\parallel C_{\varphi}: H^{\infty}(U^n) \rightarrow \mathcal{B}^{\alpha}_{\log}(U^n) \parallel_{e} \sim \lim_{\delta \rightarrow 0} \sup_{dist(\varphi(z), \partial U^n) < \delta} \sum_{k, l=1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_l(z)|^2} \log \frac{2}{1-|z_k|^2}.$$

Proof. For the lower estimate:

$$\parallel C_{\varphi}: H^{\infty}(U^n) \rightarrow \mathcal{B}^{\alpha}_{\log}(U^n) \parallel_{e} \gtrsim \lim_{\delta \rightarrow 0} \sup_{dist(\varphi(z), \partial U^n) < \delta} \sum_{k \mid z \mid 1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}}.$$

It is trivial when C_{ϕ} is unbounded. So we assume that C_{ϕ} is bounded. By Corollary 2,

$$\sum_{k=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1-|z_{k}|^{2})^{\alpha}}{1-|\varphi_{l}(z)|^{2}} \log \frac{2}{1-|z_{k}|^{2}} \lesssim 1, \quad \forall l = 1, \dots, n.$$
 (1)

Take $f_m(z) = z_1^m (m \ge 2)$, then $||f_m||_{\infty} = 1$ and $f_m(z)$ converge to zero uniformly on any compact subset of U^n . So $||Kf_m||_{\mathcal{B}^{\alpha}_{\log}} \to 0$ for any compact operator $K: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$. Then

$$\|C_{\varphi} - K\| \ge \limsup_{m \to \infty} \|(C_{\varphi} - K)f_{m}\|_{\mathcal{B}_{\log}^{q}} = \limsup_{m \to \infty} \|C_{\varphi}f_{m}\|_{\mathcal{B}_{\log}^{q}}$$

$$\ge \limsup_{m \to \infty} \sup_{z \in L^{n}} \sum_{k=1}^{n} \left| \frac{\partial (f_{m} \circ \varphi)}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}}$$

$$\ge \limsup_{m \to \infty} \sup_{z \in A_{m}} \sum_{k=1}^{n} \left| \frac{\partial (f_{m} \circ \varphi)}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}}$$

$$= \limsup_{m \to \infty} \sup_{z \in A_{m}} \sum_{k=1}^{n} \left| m\varphi_{1}^{m-1} (z) \frac{\partial \varphi_{1}}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}}$$

$$= \limsup_{m \to \infty} \sup_{z \in A_{m}} \sum_{k=1}^{n} \left| \frac{\partial \varphi_{1}}{\partial z_{k}} (z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{1}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} m|(\varphi_{1}(z)|^{m-1} (1 - |(\varphi_{1}(z)|^{2}))$$

$$\ge \limsup_{m \to \infty} \sup_{z \in A_{m}} \sum_{k=1}^{n} \left| \frac{\partial \varphi_{1}}{\partial z_{k}} (z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{1}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \liminf_{m \to \infty} \min_{z \in A_{m}} m|\varphi_{1}(z)|^{m-1} (1 - |(\varphi_{1}(z)|^{2}),$$

where $A_m = \{z \in U^n : r_m \le |\phi_1(z)| \le r_{m+1}\}$, $r_m = (\frac{m-1}{m+1})^{1/2}$. Since $y = mx^{m-1}(1-x^2)$, $x \in [0, 1)$, is increasing on $[0, r_m]$ and decreasing on $[r_m, 1)$, $\min_{z \in A_m} m|\phi_1(z)|^{m-1}(1-|\phi_1(z)|^2) = (\frac{m}{m+2})^{\frac{m-1}{2}} \frac{2m}{m+2} \to \frac{2}{e} (\text{as } m \to \infty)$. From (2), we have

$$\parallel C_{\varphi} - K \parallel \gtrsim \limsup_{m \to \infty} \sup_{z \in A_m} \sum_{k=1}^{n} \left| \frac{\partial \varphi_1}{\partial z_k}(z) \right| \frac{(1 - |z_k|^2)^{\alpha}}{1 - |\varphi_1(z)|^2} \log \frac{2}{1 - |z_k|^2}.$$

It is from (1) that

$$\lim_{\delta \to 0} \sup_{dist(\omega(z),\partial U^n) < \delta} \sum_{l=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{\left(1 - |z_k|^2\right)^{\alpha}}{1 - |\varphi_l(z)|^2} \log \frac{2}{1 - |z_k|^2} = a_l < \infty, \quad \forall l = 1, \ldots, n.$$

Then, for any $\varepsilon > 0$, there is $\delta_0 \in (0, 1)$ such that

$$\sum_{k=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{\left(1 - |z_{k}|^{2}\right)^{\alpha}}{1 - \left|\varphi_{l}(z)\right|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} > a_{l} - \varepsilon,$$

whenever dist $(\phi(z), \partial U^n) < \delta_0$. Again $r_m \uparrow 1$, so for m large enough,

$$\sup_{z\in A_m}\sum_{k=1}^n\left|\frac{\partial\varphi_1}{\partial z_k}(z)\right|\frac{\left(1-|z_k|^2\right)^\alpha}{1-|(\varphi_1(z)|^2}\log\frac{2}{1-|z_k|^2}>a_1-\varepsilon.$$

So $||C_{\phi} - K|| \ge a_1 - \varepsilon$. Since *K* is arbitrary,

$$\| C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \|_{e} \gtrsim a_1 - \varepsilon.$$

Similarly, considering the functions $f(z) = z_1^m$, l = 2, ..., n, we also have

$$\| C_{\varphi} : H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n) \|_{e} \gtrsim a_l - \varepsilon.$$

Thus,

$$\begin{split} \parallel C_{\varphi} : H^{\infty}(U^{n}) \to \mathcal{B}^{\alpha}_{\log}(U^{n}) \parallel_{e} \gtrsim \sum_{l=1}^{n} a_{l} - \varepsilon, \\ = \lim_{\delta \to 0} \sup_{dist(\varphi(z), \partial U^{n}) < \delta} \sum_{k, l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} - \varepsilon. \end{split}$$

Again ε is arbitrary, and we obtain the desired lower estimate. For the upper estimate:

$$\parallel C_{\varphi}: H^{\infty}(U^n) \rightarrow \mathcal{B}^{\alpha}_{\log}(U^n) \parallel_{e} \lesssim \lim_{\delta \rightarrow 0} \sup_{dist(\varphi(z), \partial U^n) < \delta} \sum_{k,l,1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^2)^{\alpha}}{1 - |(\varphi_{l}(z)|^2)} \log \frac{2}{1 - |z_{k}|^2}.$$

If $\lim_{\delta \to 0} \sup_{dist(\omega(z),\partial U^n) < \delta} \sum_{k,l=1}^n \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_l(z)|^2} \log \frac{2}{1-|z_k|^2} = \infty$, then the estimate is trivial

too. Now we suppose $\lim_{\delta \to 0} \sup_{dist(\varphi(z),\partial U^n) < \delta} \sum_{k,l=1}^n |\frac{\partial \varphi_l}{\partial z_k}(z)| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_l(z)|^2} \log \frac{2}{1-|z_k|^2} = \infty$, then $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ is bounded by Corollary 2. Define the operators $K_m(m \ge 2)$ as follows

$$K_m f(z) = f\left(\frac{m-1}{m}z\right).$$

It is easy to see that $K_m: H^{\infty}(U^n) \to H^{\infty}(U^n)$ is compact since K_m maps every bounded sequence in $H^{\infty}(U^n)$ converging to zero on compact subsets of U^n to the sequence converging to zero in norm of $H^{\infty}(U^n)$. In addition, $||I - K_m: H^{\infty}(U^n) \to H^{\infty}(U^n)|| \le 2$. Therefore, $C_{\varphi}K_m: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{log}(U^n)$ is compact. Then

$$\begin{split} &\| \ C_{\varphi} : H^{\infty}(U^{n}) \to \mathcal{B}^{\alpha}_{\log}(U^{n}) \|_{e} \leq \| \ C_{\varphi} - C_{\varphi}K_{m} \ \| = \| \ C_{\varphi}(I - K_{m}) \ \| \\ &= \sup_{\|f\|_{\infty} \leq 1} \| \ C_{\varphi}(I - K_{m})f \|_{\mathcal{B}^{\alpha}_{\log}} = \sup_{\|f\|_{\infty} \leq 1} |(I - K_{m})f(\varphi(0))| \\ &+ \sup_{\|f\|_{\infty} \leq 1} \sup_{z \in U^{n}} \sum_{k, l = 1}^{n} \left| \frac{\partial (I - K_{m})f}{\partial w_{l}}(\varphi(z)) \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}} = I_{1} + I_{2}. \end{split}$$

Where

$$I_1 = \sup_{\|f\|_{\infty} \le 1} |(I - K_m)f(\varphi(0))|$$
 and

$$I_{2} = \sup_{\|f\|_{\infty} \le 1} \sup_{z \in U^{n}} \sum_{k=1}^{n} \left| \frac{\partial (I - K_{m}) f}{\partial w_{l}} (\varphi(z)) \frac{\partial \varphi_{l}}{\partial z_{k}} (z) \right| (1 - |z_{k}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}|^{2}}.$$

Fix $\delta \in (0, 1)$ and let $G_1 = \{z \in U^n : dist(\phi(z), \partial U^n) < \delta\}$, $G_2 = U^n \setminus G_1 = \{z \in U^n : dist(\phi(z), \partial U^n) \ge \delta\}$, which is a compact subset of U^n .

$$\begin{split} I_2 &= \sup_{\|f\|_{\infty} \le 1} \sup_{z \in G_1} \sum_{k,l=1}^n \left| \frac{\partial (I - K_m) f}{\partial w_l} (\varphi(z)) \frac{\partial \varphi_l}{\partial z_k} (z) \right| (1 - |z_k|^2)^{\alpha} \log \frac{2}{1 - |z_k|^2} \\ &+ \sup_{\|f\|_{\infty} \le 1} \sup_{z \in G_2} \sum_{k,l=1}^n \left| \frac{\partial (I - K_m) f}{\partial w_l} (\varphi(z)) \frac{\partial \varphi_l}{\partial z_k} (z) \right| (1 - |z_k|^2)^{\alpha} \log \frac{2}{1 - |z_k|^2} = J_1 + J_2. \end{split}$$

Where

$$\begin{split} J_{1} &= \sup_{\|f\|_{\infty} \leq 1} \sup_{z \in G_{1}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \left| \frac{\partial (I - K_{m})f}{\partial w_{l}}(\varphi(z)) \right| (1 - |\varphi_{l}(z)|^{2}) \\ &\lesssim \sup_{\|f\|_{\infty} \leq 1} \sup_{z \in G_{1}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \| (I - K_{m})f \|_{\mathcal{B}} \\ &\lesssim \sup_{\|f\|_{\infty} \leq 1} \sup_{z \in G_{1}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \| (I - K_{m})f \|_{\infty} \\ &\leq \sup_{z \in G_{1}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}} \| I - K_{m} \| \\ &\lesssim \sup_{z \in G_{1}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}}. \end{split}$$

And

$$J_{2} = \sup_{||f||_{\infty} \le 1} \sup_{z \in G_{2}} \sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |(\varphi_{l}(z)|^{2})} \log \frac{2}{1 - |z_{k}|^{2}} \left| \frac{\partial (I - K_{m})f}{\partial w_{l}}(\varphi(z)) \right| (1 - |(\varphi_{l}(z)|^{2}))$$

$$\lesssim \sum_{l=1}^{n} \sup_{\|f\|_{\infty} \le 1} \sup_{z \in G_{2}} \left| \frac{\partial (I - K_{m})f}{\partial w_{l}}(\varphi(z)) \right|.$$

It is clear that the sequence of operators $\{I-K_m\}_m$ satisfies $\lim_{m\to\infty}(I-K_m)f=0$ for each $f\in H$ (U^n), and the space $H(U^n)$ endowed with the compact open topology τ is a Fréchet space. Further, D_j : $(H(U^n), \tau) \to (H(U^n), \tau)$ defined by $D_j f = \frac{\partial f}{\partial z_j}$ is a continuous linear operator. Therefore, by the Banach-Steinhaus theorem, the sequence $\{D_j^\circ(I-K_m)\}_m$ converges to zero uniformly on compact subsets of $(H(U^n), \tau)$. Since, by Montel's normal theorem, the closed unit ball of $H^\infty(U^n)$ is a compact subset of $(H(U^n), \tau)$, we conclude that

$$\lim_{m\to\infty}\sup_{\|f\|_{\infty}<1}\sup_{z\in G_{l}}\left|\frac{\partial(I-K_{m})f}{\partial w_{l}}(\varphi(z))\right|=0,\ l=1,\ldots,n.$$

Thence, $J_2 \to 0$ (as $m \to \infty$).

Similarly, we know that $I_1 = \sup_{\|f\|_{\infty} \le 1} |(I - K_m)f(\varphi(0))| \to 0$, (as $m \to \infty$).

Consequently,

$$\begin{split} \parallel C_{\varphi} : H^{\infty}(U^{n}) &\to \mathcal{B}^{\alpha}_{\log}(U^{n}) \parallel_{e} \leq \limsup_{m \to \infty} \parallel C_{\varphi}(I - K_{m}) \parallel \\ &\leq \limsup_{m \to \infty} I_{1} + \limsup_{m \to \infty} J_{1} + \limsup_{m \to \infty} J_{2} \\ &\lesssim \sup_{dist(\varphi(z), \partial U^{n}) < \delta} \sum_{k, l = 1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}}(z) \right| \frac{(1 - |z_{k}|^{2})^{\alpha}}{1 - |\varphi_{l}(z)|^{2}} \log \frac{2}{1 - |z_{k}|^{2}}. \end{split}$$

Thus

$$\parallel C_{\varphi}: H^{\infty}(U^n) \rightarrow \mathcal{B}^{\alpha}_{\log}(U^n) \parallel_{e} \leq \lim_{\delta \rightarrow 0} \sup_{dist(\varphi(z), \partial U^n) < \delta} \sum_{k \mid z \mid 1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k}(z) \right| \frac{\left(1 - |z_k|^2\right)^{\alpha}}{1 - |\varphi_l(z)|^2} \log \frac{2}{1 - |z_k|^2}.$$

The proof is complete.

As an application, we have the following corollary.

Corollary 4. Let $\phi = (\phi_1, ..., \phi_n)$ be a holomorphic self-map of U^n and $\alpha > 0$. Then the following are equivalent.

- (1) $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ is compact.
- (2) $C_{\varphi}: H^{\infty}(\mathbb{U}^n) \to \mathcal{B}^{\alpha}_{\log}(\mathbb{U}^n)$ is weakly compact.

(3)
$$\lim_{\varphi(z) \to \partial U^n} \sum_{k,l=1}^n |\frac{\partial \varphi_l}{\partial z_k}(z)| \frac{(1-|z_k|^2)^{\alpha}}{1-|\varphi_l(z)|^2} \log \frac{2}{1-|z_k|^2} = 0.$$

Proof. (1) \Rightarrow (2) is obvious, and (3) \Rightarrow (1) follows immediately from Theorem 3. So it suffices to prove (2) \Rightarrow (3). Now assume that $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ is weakly compact. If (3) is not true, then there is a sequence $\{z^j\} \subset U^n$ and $\varepsilon_0 > 0$ such that $w^j = \phi(z^j) \to \partial U^n$ (as $j \to \infty$) together with

$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_{l}}{\partial z_{k}} (z^{j}) \right| \frac{\left(1 - |z_{k}^{j}|^{2}\right)^{\alpha}}{1 - |(\varphi_{l}(z^{j})|^{2}} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \ge \varepsilon_{0}, \tag{3}$$

for each $j \ge 1$. Since C_{ϕ} is weakly compact, C_{ϕ} is bounded. Then, by Corollary 2,

$$\sum_{k,l=1}^{n} \left| \frac{\partial \varphi_l}{\partial z_k} (z^j) \right| \frac{\left(1 - |z_k^j|^2\right)^{\alpha}}{1 - |\varphi_l(z^j)|^2} \log \frac{2}{1 - |z_k^j|^2} \lesssim 1.$$

Extracting a subsequence of $\{z^i\}$, if needed, we may assume that $\lim_{j\to\infty} |\varphi_l(z^j)|$ exists for every l and

$$\left|\frac{\partial \varphi_l}{\partial z_k}(z^j)\right| \frac{\left(1-|z_k^j|^2\right)^{\alpha}}{1-\left|\left(\varphi_l(z^j)\right|^2}\log\frac{2}{1-|z_k^j|^2} \to a_{lk} \in [0, \infty), \quad (\text{as } j \to \infty).$$

From (3), there are k_0 and l_0 such that $a_{l_0k_0} > 0$, i.e.,

$$\left| \frac{\partial \varphi_{l_0}}{\partial z_{k_0}} (z^j) \right| \frac{\left(1 - |z_{k_0}^j|^2\right)^{\alpha}}{1 - |(\varphi_{l_0}(z^j)|^2)} \log \frac{2}{1 - |z_{k_0}^j|^2} \to a_{l_0 k_0} > 0.$$

$$\tag{4}$$

If
$$|w_{l_0}^j| \to 1$$
, define $f_j(z) = \frac{1 - |w_{l_0}^j|^2}{1 - z_{l_0}w_{l_0}^j}$. Then, the sequence $\{f_j\}_j \subset H^{\infty}(U^n)$ is bounded

and converges to zero uniformly on any compact subset of U^n . That is, $\{f_j\}$ weakly converges to zero in $H^{\infty}(U^n)$. Because $H^{\infty}(U^n)$ has Dunford-Pettis property (See Theorem 5.3 in [20] for $H^{\infty}(U)$, and note the proof there works also for $H^{\infty}(U^n)$), the weak compactness of $C_{\varphi}: H^{\infty}(U^n) \to \mathcal{B}^{\alpha}_{\log}(U^n)$ implies that $\|C_{\varphi}f_j\|_{\mathcal{B}^{\alpha}_{\log}} \to 0$ (as $j \to \infty$). But this is impossible since using (4) we may estimate that for each $j \geq 1$,

$$\begin{split} \| \ C_{\varphi} f_{j} \|_{\mathcal{B}^{\alpha}_{\log}} & \geq \sum_{k=1}^{n} \left| \frac{\partial (f_{j} \circ \varphi)}{\partial z_{k}} (z^{j}) \right| (1 - |z_{k}^{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \\ & = \sum_{k=1}^{n} \left| \frac{\partial f_{j}}{\partial w_{l_{0}}} (\varphi(z^{j})) \frac{\partial \varphi_{l_{0}}}{\partial z_{k}} (z^{j}) \right| (1 - |z_{k}^{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \\ & = |w_{l_{0}}^{j}| \sum_{k=1}^{n} \frac{(1 - |z_{k}^{j}|^{2})^{\alpha}}{1 - |\varphi_{l_{0}}(z^{j})|^{2}} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k}} (z^{j}) \right| \log \frac{2}{1 - |z_{k}^{j}|^{2}} \\ & \geq |w_{l_{0}}^{j}| \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k_{0}}} (z^{j}) \right| \frac{(1 - |z_{l_{0}}^{j}|^{2})^{\alpha}}{1 - |\varphi_{l_{0}}(z^{j})|^{2}} \log \frac{2}{1 - |z_{l_{0}}^{j}|^{2}} \rightarrow a_{l_{0}k_{0}} > 0. \end{split}$$

If $|w_{l_0}^j| \to \rho < 1$. Since $w^j \to \partial U^n$, there is $l_1 \in \{1, ..., n\} \setminus \{l_0\}$ such that $|w_{l_1}^j| \to 1$. If there exists k_1 such that

$$\left| \frac{\partial \varphi_{l_1}}{\partial z_{k_1}} (z^j) \right| \frac{\left(1 - |z_{k_1}^j|^2\right)^{\alpha}}{1 - |\varphi_{l_1}(z^j)|^2} \log \frac{2}{1 - |z_{k_1}^j|^2} \to a_{l_1 k_1} > 0,$$

then as in the last paragraph above we obtain the desired contradiction using the following test functions:

$$g_j(z) = \frac{1 - |w_{l_1}^j|^2}{1 - z_{l_1} w_{l_1}^j}.$$

Thus, we may assume that

$$\left| \frac{\partial \varphi_{l_1}}{\partial z_k} (z^j) \right| \frac{(1 - |z_k^j|^2)^{\alpha}}{1 - |(\varphi_{l_1}(z^j)|^2)} \log \frac{2}{1 - |z_k^j|^2} \to 0, \text{ (as } j \to \infty),$$
 (5)

for each k. We now define the test functions h_i as follows

$$h_j(z) = (z_{l_0} + 2) \frac{1 - |w_{l_1}^j|^2}{1 - z_{l_1} w_{l_1}^j}.$$

Then, $||h_j||_{\infty} \le 1$ and h_j converge to zero uniformly on any compact subset of U^n . But for any j large enough

$$\begin{split} & \parallel C_{\varphi}h_{j} \parallel_{\mathcal{B}_{\log}^{\alpha}} \geq \sum_{k=1}^{n} \left| \frac{\partial (h_{j} \circ \varphi)}{\partial z_{k}} (z^{j}) \right| (1 - |z_{k}^{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \\ & = \sum_{k=1}^{n} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k}} (z^{j}) + (w_{l_{0}}^{j} + 2) \overline{w_{l_{1}}^{j}} \frac{1}{1 - |w_{l_{1}}^{j}|^{2}} \frac{\partial \varphi_{l_{1}}}{\partial z_{k}} (z^{j}) \right| ||(1 - |z_{k}^{j}|^{2})^{\alpha} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \\ & \geq \sum_{k=1}^{n} (1 - |z_{k}^{j}|^{2})^{\alpha} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k}} (z^{j}) \right| \log \frac{2}{1 - |z_{k}^{j}|^{2}} - \sum_{k=1}^{n} \left| w_{l_{1}}^{j} ||w_{l_{0}}^{j} + 2|| \frac{\partial \varphi_{l_{1}}}{\partial z_{k}} (z^{j}) \left| \frac{(1 - |z_{k}^{j}|^{2})^{\alpha}}{1 - |w_{l_{1}}^{j}|^{2}} \log \frac{2}{1 - |z_{k}^{j}|^{2}} \right| \\ & \gtrsim \sum_{k=1}^{n} (1 - |z_{k_{0}}^{j}|^{2})^{\alpha} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k_{0}}} (z^{j}) \right| \log \frac{2}{1 - |z_{k_{0}}^{j}|^{2}} \\ & \gtrsim (1 - |z_{k_{0}}^{j}|^{2})^{\alpha} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k_{0}}} (z^{j}) \right| \log \frac{2}{1 - |z_{k_{0}}^{j}|^{2}} \\ & \gtrsim \frac{(1 - |z_{k_{0}}^{j}|^{2})^{\alpha}}{1 - |(\varphi_{l_{0}}(z^{j}))^{2}} \left| \frac{\partial \varphi_{l_{0}}}{\partial z_{k_{0}}} (z^{j}) \right| \log \frac{2}{1 - |z_{k_{0}}^{j}|^{2}} \\ & \Rightarrow a_{l_{0}k_{0}} > 0, \end{split}$$

the inequalities in the third and fourth lines above follow from (5), and the last line is due to $|\varphi_{l_0}(z^j)| \to \rho < 1$. This contradicts again $||C_{\varphi}h_j||_{\mathcal{B}^{\alpha}_{log}} \to 0$, which completes the proof.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.10901158,11071190).

Author details

¹School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, PR China ²Huaxia College, Wuhan University of Technology, Wuhan, 430070, PR China

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 11 December 2010 Accepted: 2 September 2011 Published: 2 September 2011

References

- 1. Cowen, C, MacCluer, B: Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton (1995)
- 2. Shapiro, J.: Composition Operators and Classical Function Theory. Springer, New York (1993)
- Timoney, R: Bloch functions in several complex variables I. Bull Lond Math Soc. 12, 241–267 (1980). doi:10.1112/blms/ 12.4.241
- Li, H, Liu, P: Composition operators between H[®] and generally weighted Bloch spaces in polydisk. Acta Math Sci. 29A, 1634–1641 (2009)
- Stević, S, Agarwal, R: Weighted composition operators from logarithmic Bloch-type spaces to Bloch-type spaces. J Inequal Appl 21 (2009). Article ID 964814
- Madigan, K, Matheson, A: Compact composition operators on the Bloch space. Trans Amer Math Soc. 347, 2679–2687 (1995). doi:10.2307/2154848
- 7. Stević, S: On new Bloch-type spaces. Appl Math Comput. 215, 841–849 (2009). doi:10.1016/j.amc.2009.06.009
- 8. MacCluer, B, Zhao, R: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mountain J Math. 33, 1437–1458 (2003). doi:10.1216/rmjm/1181075473
- Montes-Rodriguez, A: The essential norm of a composition operator on Bloch spaces. Pac J Math. 188, 339–351 (1999). doi:10.2140/pjm.1999.188.339
- Zhao, R: Essential norms of composition operators between Bloch type spaces. Proc Am Math Soc. 138, 2537–2546 (2010). doi:10.1090/S0002-9939-10-10285-8
- 11. Zhou, Z: Composition operators on the Lipschitz spaces in polydiscs. Sci China A. 46, 33–381 (2003)
- 12. Zhou, Z, Shi, J: Composition operators on the Bloch spaces in polydiscs. Complex Var. 46, 73–88 (2001)
- Lindström, M, Makhmutov, S, Taskinen, J: The essential norm of a Bloch-to-Q_pcomposition operator. Can Math Bull. 47, 49–59 (2004). doi:10.4153/CMB-2004-007-6
- Montes-Rodriguez, A: The Pick-Schwarz lemma and composition operators on Bloch spaces. Rend Circ Mat Palermo. 56(2 Suppl), 167–170 (1998)
- Zhou, Z, Shi, J: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich Math J. 50, 381–405 (2002). doi:10.1307/mmj/1028575740
- Zhou, Z, Liu, Y: The essential norms of composition operators between generalized Bloch spaces in the polydisc and their applications. J Inequal Appl 22 (2006). Article ID 90742
- Montes-Rodriguez, A: Weighted composition operators on weighted Banach spaces of analytic functions. J Lond Math Soc. 61, 872–884 (2000). doi:10.1112/S0024610700008875
- 18. Ohno, S: Weighted composition operators between H^{∞} and the Bloch space. Taiwan J Math. 5, 555–563 (2001)
- Stević, S: Composition operators between H[∞] and α-Bloch spaces on the polydisc. Zeitschrift für Anal und ihre Anwendungen. 25, 457–466 (2006)
- Bourgain, J: New Banach space properties of the disc algebra and H°. Acta Math. 152, 1–48 (1984). doi:10.1007/ BF02392189

doi:10.1186/1029-242X-2011-46

Cite this article as: Wang and Wu: Norms and essential norms of composition operators from H^{∞} to general weighted Bloch spaces in the polydisk. *Journal of Inequalities and Applications* 2011 2011:46.