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Abstract. Nonlinear dynamic behaviors of a simply supported honeycomb sandwich plate subjected to the transverse 
excitations are investigated in this paper. Based on the classical thin plate theory and Von Karman large deformation 
theory, the governing equation of motion for the honeycomb sandwich plate is established by using the Hamilton 
principle. The nonlinear governing partial differential equation is discretized to the ordinary differential equations by 
differential quadrature method and then solved by Runge-Kutta-Fehlberg method. Based on the numerical simulations, 
combined with nonlinear dynamic theory, the influences of the frequency and amplitude of the transverse excitation 
are investigated respectively by using the bifurcation diagrams, Poincare maps and phase portraits. The results exhibit 
the existence of the period-1, period-2 and chaotic responses with the variation of the excitations, which demonstrate 
that those motions appear alternately. 

1 Introduction  
As a kind of special composite structural material, 
sandwich beam and plates are widely used in a variety of 
aircraft structures and satellite launch vehicles. This is 
due to their many advantages such as low density, high 
strength ratio, high stiffness and ease of manufacture and 
repair compared with other structural materials. Therefore, 
sandwich structures have been received great attention, 
particularly in the recent decades. 

A review of literature indicates that many analysis of 
sandwich plates, involving static, free vibration and 
stability analyzes, has been carried out. Using several 
plate models, Zenkour [1-2] performed a comprehensive 
analysis of functionally grade sandwich plates, including 
buckling, free vibration and stability analyzes. Li et al. [3] 
applied the three dimensional Ritz method based on the 
use of the Chebyshev polynomials for the free vibration 
analysis of functionally graded material sandwich plates. 
Dozio[4] studied the free vibration behavior of sandwich 
plates with FGM core via variable-kinematic 2-D Ritz 
models using Chebyshev polynomials. Neves et al.[5] 
combined quasi-3D higher-order shear deformation 
theories with meshless techniques in order to cope with 
bending, free vibration and stability analysis of FGM 
isotropic and sandwich plates. Fiorenzo [6,7] investigated 
free vibration and thermal stability of functionally graded 
sandwich plates and sandwich plates with anisotropic 
face sheets in thermal environment by using Hierarchical 
Trigonometric Ritz Formulation. Wang and Yuan [8] 
studied the effects of boundary conditions and different 
types loading on the displacement and stress distributions 

of the soft-core sandwich panels by using differential 
quadrature method.  

The aforementioned research works provide the 
foundation and the guidance for us to study a variety of 
properties of the honeycomb sandwich plates. However, 
there is few research focused on the global bifurcations 
and chaotic dynamics of sandwich plates. We have found 
two papers on bifurcations and chaotic dynamics of 
sandwich plates. J.H.Zhang and W. zhang [9] 
investigated the global bifurcations and multi-pulse 
chaotic dynamics of a simply supported honeycomb 
sandwich rectangular plate under combined parametric 
and transverse excitations, they found  that multi-pulse 
chaotic motions can occur in the honeycomb sandwich 
rectangular plate. Applying the Galerkin’s approach, 
Zhang et al. [10] investigated nonlinear dynamic 
behaviors of a simply supported 3D-Kagome truss core 
sandwich plate subjected to the transverse and the in-
plane excitations. The bifurcation diagrams exhibit the 
existence of period, muti-period and chaotic motions 
appear alternately. 

Usually, the honeycomb sandwich plates can be 
modeled by nonlinear partial differential equations. As 
we all know, in most cases it is difficult to obtain closed-
form solutions for nonlinear partial differential equations. 
As a result, people have to apply approximate, numerical 
or analytical methods to solve partial differential 
equations which arise in almost all engineering sphere. In 
the literature mentioned above, the approximate method 
used by scholars include finite difference method, finite 
element method, Ritz method, Galerkin method, 
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homotopy analysis method, multiquadric collocations 
method and differential quadrature method. 

The differential quadrature (DQ) method, which was 
introduced by Bellman [11] et al. in 1972, is a highly 
efficient approach to directly solving a partial differential 
equation for a finite domain with a set of given boundary 
conditions. The DQ method can discretize a finite domain 
by using a set of regularly or irregularly distributed grid 
points. Using appropriate interpolation polynomials, the 
unknown functions and their derivatives at an arbitrary 
point can be represented by a weighted linear 
combination of the functional values at all the discrete 
points. The accurate numerical results and little 
computational effort are obtained by using a smaller 
number of grid points. 

The pioneering work on the application of the DQ 
method to the structural mechanics was given by Striz et 
al. [12, 13]. Since the DQ method has lots of merits, such 
as simple principle, high precision, less computation and 
easy programming, this method has been used to solve a 
variety of problems in structural mechanics [14-20]. All 
these works demonstrated that the application of the DQ 
method caused the accurate results and less 
computational effort. However, most of the DQ 
applications are relevant to the problems of the static or 
free vibration in engineering fields, few applications are 
relevant to the problems of the nonlinear dynamics. The 
author [21] of this paper has applied the DQ method to 
the analysis of nonlinear dynamics of axially moving 
viscoelastic beams and the differential quadrature method 
was compared with other methods, which accuracy is 
verified. 

In this paper, we developed the DQ method to analyze 
the nonlinear dynamical properties such as bifurcations 
and chaos of a simply supported honeycomb sandwich 
rectangular plate under transverse excitation for the first 
time. It is found from the numerical results that the DQ 
method can be successfully applied to reveal the complex 
dynamic phenomena of the honeycomb sandwich 
rectangular plate. 

2 Governing equation of the honeycomb 
sandwich plate 

Consider a simply supported honeycomb sandwich plate, 
where the edge lengths are a  and b  and h the thickness 
is h, respectively. The honeycomb sandwich rectangular 
plate consists of 3 layers that made of two layers of thin 
skins and a hexagon honeycomb core. Based on the 
classical thin plate theory and Von Karman large 
deformation theory, by using the generalized Hamilton’s 
principle, we have the governing equation of the 
nonlinear transverse vibration of the honeycomb 
sandwich plate under transverse load as following: 

 11 12 66 21 22, 4 , ,xxxx yyxx yyyyD w D D D w D w     
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Where a dot represents the partial differentiation with 

respect to time t , and a comma denotes the partial 
differentiation with respect to a specified coordinate, c is 
a vibration damping coefficient,  ,f F x y cos t  is the 
transverse excitation that loads the plate 

Where 
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where 1 2 12 21,E E    .  
0I is the quality of honeycomb sandwich plates and 
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The boundary conditions are  

0x  or x a , 0w  , 
2

2 0w
x





,                             (5a) 

0y  or y b , 0w ,
2

2 0w
y





.                          (5b) 

3 Differential quadrature analogs 

The DQM formulation can be found in literature [22]. For 
integrity and convenience, this subsection reviews the 
main idea of the DQM. The idea of the DQM is to 
directly compute the derivative of a function at any grid 
point within its bounded domain by estimating a 
weighted linear sum of values of the function at a small 
set of points belonging to the domain. 

Introduce NM   unequally spaced sampling points 
as  
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2 1i
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.       (6b) 
Applying the quadrature rules for the derivatives of a 

function at the sampling points yield 
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where  , , ,x i jw x y t ,  , , ,xx i jw x y t ,  , , ,xxxx i jw x y t ,  ,y , ,i jw x y t ,
 , , ,yy i jw x y t ,  , , ,yyyy i jw x y t ,  , , ,xy i jw x y t ,  , , ,xxyy i jw x y t  are the 

first, the second and the forth-order partial derivative 
approximations of yx, at the nth time level at the grid 

point  ji yx , , respectively, and the DQM weighting 
coefficients are the expression  
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In this paper, set 1a b M N  ， , and the coefficient 

matrix
  m

ija
  of the first order, second order and fourth 

order derivative are expressed in 1AB , 2AB , 4AB , 
respectively and set the internal node function value 

vector      1 1 2 2 2 2, , , , , , , , ,N Nw x y t w x y t w x y t     is expressed 
in W . Modification of the weighting coefficient matrix 
[22] to implement the boundary condition equations (5), 
yields 
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With
  2
ija

, the modified weighting coefficient 

matrix
  4
ija

 can be computed by using the matrix 
multiplication method. Substitution of equations (7) into 
equations (1) yields 
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Where I represent a    2 2N N    unit matrix, 

“  ”means that two vectors are multiplied by the 
corresponding elements, “  ， ” represent vector product 
and Kronecker product respectively. Equations (11) 
includes    2 2N N   nonlinear ordinary differential 
equations with unknown transverse displacements vector 
W . Given initial conditions, for a set of given 
parameters E , , F and so on. Then equation (11) can be 
numerically solved by Runge-Kutta-Fehlberg method, 
and the transverse displacement  , ,i iw x y t  at each t   can 
be obtained. 

4 Numerical results 
In the following, the DQM is applied to the governing 
equations (1) to investigate the effect of the frequency 
and the amplitude of the transverse excitation on the 
nonlinear dynamic behaviors of the honeycomb sandwich 
plate. The bifurcation diagram is a modern technique 
used to analyze nonlinear systems. To give the bifurcation 
diagrams, we will project the Poincare maps onto the 
displacement axis and the velocity axis. By varying the 
transverse excitation frequency   and the amplitude F , 
the two types of bifurcation diagrams are respectively 
presented with all other parameters fixed as shown Figure 
1 and Figure 2. In order to illustrate in detail the 
bifurcation behaviors, the Poincare maps which consists 

of the displacements w  and the velocity dw
dt

, and the 

phase portraits which consists of the displacement w and 

the velocity dw
dt

 are respectively depicted.  

In all present investigations, the center of the plate is 
chosen to represent the motion of the plate, the initial 
conditions are 

 
 ( , ,0) 0, , ,0 0.01tw x y w x y                                    (12) 

 
Figure1 presents the bifurcation diagrams for the  

displacements w  via the transverse excitation frequency 
   when the transverse excitation amplitude 3000N.F   

From Figure 1, we can see that when the frequency   
is located in the interval [62, 63]Hz , the system movement 
is complicated chaotic motions. With the increasing of 
the frequency up to 67Hz , most of the motions are simple 
periodic motions which interrupted by two small chaotic 
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windows, when 64.475Hz   , period doubling bifurcation 
appears, that is the single period motions change into 
period-2 motions. With the further increase of the 
frequency of the transverse excitation, the system 
movement change into chaotic motions again until the 
last. 

 

 
Figure 1. Effect of transverse excitation frequency: bifurcation 
diagrams for the displacement w via  . 

 
Figure2 presents the bifurcation diagrams for the 

displacements w  via the transverse excitation amplitude 
fluctuation F  in  2500,2900 N , when 62Hz . From 
Figure 2, we can see that chaotic and periodic motions 
appear alternately when the transverse excitation 
amplitude F is located in  2500,2662 N , which most of 
the motions are large amplitude chaotic motions. 
Increasing the amplitude of the transverse excitation F , it 
is observed that a large window periodic motions appear 
and there is a period doubling bifurcation when 

2846NF  . With the further increase of the transverse 
excitation amplitude from 2850NF  , the system 
movement change into chaotic motions again until the 
last. 

 
Figure 2.Effect of amplitude of the transverse excitation: 
bifurcation diagrams for the displacement w via F  
 

Typical periodic motion and chaotic motion are 
presented in figures 3-5, in terms of (a) phase portrait of 
w and w , (b) the Poincare maps of w and w . They can be 
easily differentiated. In a projection of a Poincare map, 
periodic-1 motion is represented by one point, periodic-2 

motion is represented by two point and chaos is 
represented by infinite number of points. 

 
 (a)                             (b) 

 

Figure 3. Chaotic motion appears when 3000NF  , 
62.5Hz  

 
(a)                                                      (b) 

Figure 4. Period-2 motion appears when 2846NF  , 
62Hz  

 
(a)                                                       (b) 

Figure 5. Period-1 motion appears when 2700NF  , 
62Hz . 

5 Summary 
This paper studies the bifurcations and chaotic motions 
for a simply supported honeycomb sandwich rectangular 
plate under transverse excitation which governing 
equation is established by using the generalized 
Hamilton’s principle. The DQ method is developed to 
solve the nonlinear partial-differential governing equation 
numerically. Based on the numerical solutions, the 
nonlinear dynamical behaviors are numerically 
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w

w

w

w
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w
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investigated by means of the Poincare map, the phase 
portraits. Two types of bifurcation diagrams are presented 
to show the displacement and velocity projections of the 
Poincare maps changing with the frequency and the 
amplitude of the transverse excitation. The results show 
that the chaotic motion and the periodic motion exchange 
alternately for a sufficiently large fluctuation of 
frequency and the amplitude of the transverse excitation. 
In addition, comparing the phase portraits with the 
Poincare map, the nonlinear dynamical behaviors are 
identified by the phase portraits are the same as the 
results obtained using the Poincare map. These results 
show the DQ method is an efficient method for the 
nonlinear analysis of honeycomb sandwich plate. 
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