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Abstract

Background: Accurate model comparison requires extensive computation times, especially for parameter-rich
models of sequence evolution. In the Bayesian framework, model selection is typically performed through the
evaluation of a Bayes factor, the ratio of two marginal likelihoods (one for each model). Recently introduced
techniques to estimate (log) marginal likelihoods, such as path sampling and stepping-stone sampling, offer
increased accuracy over the traditional harmonic mean estimator at an increased computational cost. Most often,
each model’s marginal likelihood will be estimated individually, which leads the resulting Bayes factor to suffer from
errors associated with each of these independent estimation processes.

Results: We here assess the original ‘model-switch’ path sampling approach for direct Bayes factor estimation in
phylogenetics, as well as an extension that uses more samples, to construct a direct path between two competing
models, thereby eliminating the need to calculate each model’s marginal likelihood independently. Further, we
provide a competing Bayes factor estimator using an adaptation of the recently introduced stepping-stone sampling
algorithm and set out to determine appropriate settings for accurately calculating such Bayes factors, with
context-dependent evolutionary models as an example. While we show that modest efforts are required to roughly
identify the increase in model fit, only drastically increased computation times ensure the accuracy needed to detect
more subtle details of the evolutionary process.

Conclusions: We show that our adaptation of stepping-stone sampling for direct Bayes factor calculation
outperforms the original path sampling approach as well as an extension that exploits more samples. Our proposed
approach for Bayes factor estimation also has preferable statistical properties over the use of individual marginal
likelihood estimates for both models under comparison. Assuming a sigmoid function to determine the path
between two competing models, we provide evidence that a single well-chosen sigmoid shape value requires less
computational efforts in order to approximate the true value of the (log) Bayes factor compared to the original
approach. We show that the (log) Bayes factors calculated using path sampling and stepping-stone sampling differ
drastically from those estimated using either of the harmonic mean estimators, supporting earlier claims that the
latter systematically overestimate the performance of high-dimensional models, which we show can lead to
erroneous conclusions. Based on our results, we argue that highly accurate estimation of differences in model fit for
high-dimensional models requires much more computational effort than suggested in recent studies on marginal
likelihood estimation.
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Background
An increasing number of studies in phylogenetics have
demonstrated, using a range of different inferential meth-
ods of varying complexity, that the assumption of site-
independent evolution is overly restrictive and that
evolutionary models that take into account context-
dependencies may greatly improve model fit. Specifi-
cally, context-dependent models are useful when studying
mammalian genomes due to the extensive methylation of
C in CG doublets, which could make such Cs hotspots
for mutation (see [1], for a review). Indeed, more accurate
mathematical models of molecular sequence evolution
continue to be developed for good reasons as the addi-
tional complexity of such models can lead to the identifi-
cation of important evolutionary processes that would be
missed with simpler models. These models however come
at a drastically elevated computational cost due to their
increase in number of parameters and the need for data
augmentation to make the likelihood calculations feasible
[2].
The power of Markov chain Monte Carlo (MCMC)

techniques enables drawing inference under such complex
high-dimensional models in molecular phylogenetics [3].
In this process, comparing alternative models according
to objective criteria in a formal model selection pro-
cedure is essential in order to select models that best
balance simplicity with flexibility and biological realism
[4,5]. However, the computational demands associated
with increasing model complexity and the amount of data
available has considerably hampered careful model assess-
ments. While MCMC approaches cleverly avoid calculat-
ing the normalization constant (or marginal likelihood),
it is in fact this constant that is of primary importance
in model selection (one will choose the model with the
highest marginal likelihood). In particular, it is used to cal-
culate the (log) Bayes factor between two models, which
is a ratio of two marginal likelihoods (i.e. two normalizing
constants of the form p(Y | M), with Y the observed data
andM an evolutionary model under evaluation) obtained
for the two models,M0 andM1, under comparison [6]:

B10 = p(Y | M1)

p(Y | M0)
. (1)

Kass and Raftery [7] introduce different gradations to
assess the log Bayes factor as evidence againstM0. A value
between 0 and 1 is not worth more than a bare men-
tion, whereas a value between 1 and 3 is considered as
positive evidence against M0. Values larger than 3 and 5
are considered to respectively give strong and very strong
evidence against M0. The Bayes factor offers advantages
over likelihood-ratio-tests comparing nested models in
which one garners evidence only in favor of rejecting
less complex models. Instead, the Bayes factor evaluates
the relative merits of both competing models and does

not require nested models. Further, when the individ-
ual (log) marginal likelihoods are estimated correctly, the
(log) Bayes factor takes into account differences in dimen-
sions, so higher dimensional models are not automatically
preferred.
Several useful methods have been proposed to evaluate

marginal likelihoods (and by extension Bayes factors) in
phylogenetics, but they are often limited to specific model
selection situations, see [8] for an overview. Comparing
a few of the methods of potentially general applicabil-
ity, Lartillot and Philippe [8] test a (simple) Monte Carlo
estimator of integrating the likelihood against the model
prior and two variants of importance sampling (IS): the
posterior harmonic mean estimator (HME) and the sta-
bilized HME to a path sampling (PS) approach [9-11]. Of
these approaches, the HME [12] is by far the most pop-
ular method in the field of phylogenetics, only requiring
samples from the posterior distribution (see e.g. [13]).
The HME is however often severely biased and overes-
timates the true marginal likelihood [14]. Because the
HME estimator’s variance may be infinite, a modified, sta-
bilized version has been proposed [12] with extensions
to quantify its Monte Carlo error in phylogenetics [15].
PS is shown to outperform the other methods across
all scenarios, remaining well-behaved in cases with high
dimensions where all three IS methods fail, even when
these IS methods use a huge number of posterior samples
[8].
Recently, Xie et al. [14] introduced stepping-stone sam-

pling (SS), which employs ideas from both importance
sampling and path sampling to estimate the marginal like-
lihood using a path that bridges the posterior and prior
distribution of a model. Using a Gaussian model exam-
ple, the authors demonstrate that SS yields a substantially
less biased estimator than PS, while requiring significantly
fewer path steps (called ratios in the context of SS) to
reliably estimate the marginal likelihood. Further, SS out-
performs the HME in terms of accuracy, consistency and
repeatability [16]. While the performance of PS and SS
was originally assessed using Gaussian model examples
and small phylogenetic examples, these approaches have
recently been shown to considerably outperform the HME
and a posterior simulation-based analogue of Akaike’s
information criterion (AICM) using extensive simulations
and empirical analyses in the context of demographic and
relaxed molecular clock model comparison [17].
As a consequence of these developments, path sampling

(PS; [8]) and stepping-stone sampling (SS; [14]) estima-
tors are currently being integrated in popular software
packages such as BEAST [18]. These methods repre-
sent very general estimators as they can be applied to
any model for which MCMC samples can be obtained.
Despite the increased computational demands associated
with these estimators, they are particularly suited to assess
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the performance of high-dimensional models, since the
HME systematically favors parameter-richmodels (see the
corresponding section in this paper) [8].
In this paper, we focus on direct (log) Bayes factor

estimation between two competing models instead of
estimating each individual model’s marginal likelihood.
Direct (log) Bayes factor estimation, available in the path
sampling paradigm as ‘model-switch path sampling’ and
connecting the twomodels under comparison in the space
of unnormalized densities, is more accurate and less prone
to errors as we show here, which is especially important
for cases where the difference between the logarithm of
the marginal likelihoods of the two models is small com-
pared to the separate marginal likelihoods themselves [8].
Given the recent introduction of stepping-stone sampling
to estimate marginal likelihoods more efficiently [14], we
here introduce ‘model-switch stepping-stone sampling’ to
perform direct (log) Bayes factor estimation and provide
evidence that this represents the more reliable approach.
We test the mentioned approaches on three data sets

(see Methods section) with distinctive properties to show
the advantages of our presented approach. Two mam-
malian data sets are analyzed, which are expected to
yield increases in model fit due to the CpG-methylation-
deamination process acting upon mammalian sequences
and the ability of the proposed context-dependent model
to incorporate this process. The largest of these data sets
contains large amounts of sites for each of the parameters
that need to be estimated and is hence expected to yield
accurate context-dependent parameter estimates that will
lead to a substantial increase in model fit over a tradi-
tional site-independent model. The smaller mammalian
data set is likely to yield context-dependent parameter
estimates with large variance, rendering the process of
assessing differences in model fit challenging and hence
presenting an interesting case for the different model
selection approaches that are being compared. Finally, we
test a green plant data set of which the substitution pro-
cesses are not expected to conform to those accounted
for by the context-dependent model and which is hence
expected to yield a decrease in model fit compared to a
site-independent evolutionary model.

Methods
Data
A first (mammalian) data set is a subset of the sequence
data set analyzed in Prasad et al. [19], which is an
expanded version of that reported by Thomas et al.
(2003). All sequences are orthologous to a 1.9-Mb region
of human chromosome 7 (build hg18, chr7:115,597,757-
117,475,182) that includes 10 known genes (e.g., CFTR,
ST7, and CAV1). We selected five sequences from the
Laurasiatheria, i.e. the sequences of domestic pig (Sus
scrofa domestica), Indian muntjac (Muntiacus muntjak

vaginalis), sheep (Ovis aries), cow (Bos taurus) and
horse (Equus caballus) assuming the following topology
((((cow,sheep),muntjak),pig),horse). The reported analy-
ses in this manuscript were performed on the conserved
non-coding part of the data set of Prasad et al. [19], com-
prising 97,682 nucleotides per sequence. We refer to this
data set as the “Laurasiatheria” data set.
A second (mammalian) data set consists of the ψη-

globin pseudogene sequences of six primates: human
(Homo Sapiens), chimpanzee (Pan Troglodytes), gorilla
(Gorilla Gorilla), orang-utan (Pongo Pygmaeus), rhesus
monkey (Macaca Mulatta) and spider monkey (Ateles
Geoffroyi), containing 6,166 nucleotides in each sequence.
We have used the fixed consensus tree shown in the work
of Yang [20] and refer to this dataset as the “Pseudogenes”
data set.
A third (plant) data set consists of 20 small subunit

(SSU) rRNA genes (nuclear) obtained from the align-
ment of Karol et al. [21]. We have used the following
sequences: Cyanophora paradoxa, Nephroselmis olivacea,
Chlamydomonas moewusii, Volvox carteri, Paulschulzia
pseudovolvox, Coleochaete orbicularis 2651, Coleochaete
solute 32d1, Coleochaete irregularis 3d2, Coleochaete
sieminskiana 10d1, Zygnema peliosporum, Mougeotia
sp758, Gonatozygon monotaenium 1253, Onychonema
sp832, Cosmocladium perissum 2447, Lychnothamnus
barbatus 159, Nitellopsis obtusa F131B, Chara connivens
F140, Lamprothamnium macropogon X695, Arabidopsis
thaliana andTaxusmairei.We used the 50%majority-rule
posterior consensus tree under the general time-reversible
model.We refer to this dataset as the “Nuclear SSU rRNA”
data set, which contains 1,619 nucleotides per sequence.

Context-dependent evolutionary model
We allow the substitution probabilities for a given site to
depend on its “evolutionary context”, i.e. the combination
of neighboring bases of that site. We assume that evolu-
tion occurs independently on each tree branch (see e.g.
[22]) but do not employ a branch-specific (or lineage-
specific) context-dependent evolutionary model. We do
not follow the approach of Hwang and Green [23], who
have approximated the continuous-timeMarkov substitu-
tion process by partitioning each branch into two or more
discrete time units so that the average substitution rate per
time unit is ≤ 0.005, because our previous work demon-
strated that this does not result in different parameter
estimates [24]. We here present a first-order (i.e. depend-
ing on the two immediate neighbors) context-dependent
evolutionary model which mimics the model of Hwang
and Green [23].
For bases x �= z in the first-order context-dependent

model, let ψi(x → z | wy) be the probability that, in one
unit of time, the base x at position i mutates to z, given
neighboring bases w (at position i − 1) and y (at position
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i + 1). Should the branch not be partitioned, it is hence
assumed that the neighboring bases of position i remain
constant across the branch. Partitioning the branch into
two or more parts allows the substitution probabilities to
depend on more recent ancestral sequences than at the
start of the branch. The probability of no substitution is
ψi(x → x | wy) = 1 − ∑

z �=x ψi(x → z | wy). If w, x, y
or z is a gap, ψi(x → z | wy) = 1. Each combination of
two neighbors yields its own set of context-dependent fre-
quencies fw−y, i.e. the substitution probabilities for a given
set of immediate neighbors w and y yield a distribution
of frequencies for those neighbors. These frequencies are
used to scale the substitution probabilities ψi(x → z | wy)
so that one unit of time is the time in which we expect
to see one change per base, and this for each of the 16
evolutionary contexts, so that

∑
x
∑

z fwxyψi(x → z |
wy) = 1. This first-order context-dependent substitution
model requires 192 parameters to be estimated when it
is assumed that complementary events are unequal. Here,
we assume that such events are equal, i.e. that ψi(x → z |
wy) = ψi(xc → zc | ycwc), where xc denotes the com-
plement of x, which reduces the number of parameters for
this model to 96.
For the Laurasiatheria data set, the distribution of bases

x that are at the ancestral root sequence is modeled as an
inhomogeneous second-order Markov chain with transi-
tion parameters π(x | v,w), where v and w are the bases
that immediately precede x (as in [23]). If x, v or w is
a gap, π(x | v,w) = 1. For the pseudogenes data set,
an inhomogeneous first-order Markov chain with transi-
tion parameters π(x | v) is assumed (see [25]), where v
is the base that immediately precedes x. If x or v is a gap,
π(x | v) = 1. For the nuclear SSU data set [21], an zero-
order Markov chain π(x) is assumed (see Results section).
No symmetry conditions are imposed on the π values.

Prior distributions
Given the importance of using proper prior distribu-
tions (see e.g. [26]), we here provide the priors used in
this manuscript. Let T be the set of branch lengths with
tb(tb ≥ 0) one arbitrary branch length and μ a hyper-
parameter in the prior for tb in T. The following prior
distributions q(.) were chosen for our analysis, with �(.)
the Gamma function:

tb | μ ∼ Exponential (μ), q(tb | μ)

= 1
μ
e−(1/μ)tb for eachtb in T ,

μ ∼ Inv - gamma(2.1, 1.1), q(μ)

= (1.1)(2.1)

�(2.1)
μ−(2.1+1.1)e−1.1/μ, μ > 0.

Branch lengths are assumed i.i.d. given μ. Dirichlet
priors (which are uninformative priors) assign densities

to groups of parameters that measure proportions (i.e.,
parameters that must sum to 1). For each set of model
frequencies of which the ancestral root sequence is com-
posed, the following prior distribution is assumed:

πROOT ∼ Dirichlet (1, 1, 1, 1), q(πROOT) = �(4).

The above prior is also assumed for the set of base fre-
quencies of the GTRmodel, which also specify its station-
ary distribution. For themodel parameters of each context
(i.e. neighboring base combination) independently, the
following prior distribution is assumed (see [27,28]):

ψ ∼ Dirichlet (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), q(ψ) = �(12).

When the model allows for the presence of multiple
contexts of evolution, each context is assumed to have its
own prior, independently of other contexts. The use of a
hyperparameter for the branch-length priors is to reduce
sensitivity of the posterior to the prior [4,29].

Harmonic mean estimators
Among the available approaches to calculate the marginal
likelihood of a model, the harmonic mean estimator
(HME) is by far themost used in the field of phylogenetics,
only requiring samples from the posterior distribution.
Because HME variance may be infinite, a modified stabi-
lized version (sHME) has been proposed [12]. The HME
is however often severely biased and results in overesti-
mating the true marginal likelihood [8,14]. Lartillot and
Philippe [8] suggest an intuitive reasoning for this by
stating that, if the likelihood is unimodal, the marginal
likelihood is more or less the product of two factors:
the likelihood reached in the high-likelihood region (the
mode height) and the relative size of this region (the mode
width, which tends to be smaller for higher dimensional
models). Estimators such as the HME have difficulties in
assessing the mode width, which is estimated by measur-
ing the relative frequency at which points of the sample
fall inside and outside the mode, requiring that a suffi-
cient number of points outside the mode be included in
the sample. Lartillot and Philippe [8] state that, in practice,
the contrast between the low and the high likelihoods is in
general so large that even a posterior sample of astronom-
ical size will be virtually confined within the mode. The
estimated frequency at which the low-likelihood region is
visited is then 0, which means that, in effect, the HME
behaves as if the mode was occupying the entire param-
eter space, and therefore, completely underestimates the
dimensional penalty. As a result, the HME overestimates
the marginal likelihood, an overestimation that is more
pronounced in the case of higher dimensional models,
leading to the HME being biased in favor of such models.
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Path sampling
Path sampling is considered a natural generalization of
importance sampling and uses many and continuously
connected “bridge” densities (called a “path”) to compute
(ratios of ) normalizing constants [10]. Path sampling is
hence an extension of bridge sampling, which generalizes
importance sampling through the use of a single “bridge”
density. In a comparative study on a variety of methods
for computing Bayes factors, from Laplace approxima-
tion to bridge sampling, DiCiccio et al. [30] show that
bridge sampling typically provides an order of magnitude
of improvement. Path sampling, which was not part of
their study, has been demonstrated to yield even more
dramatic improvement [10].
Using the notation put forward by [8], suppose there

are two unnormalized densities, q0(θ) and q1(θ), defined
on the same parameter space �, with corresponding true
probability densities

pi(θ) = 1
Zi

qi(θ), i = 0, 1, (2)

where the normalizing constants are

Zi =
∫

�

qi(θ)dθ , i = 0, 1. (3)

Monte Carlo simulation is widely used in statistics,
mainly because of its general applicability, to approxi-
mate such analytically intractable normalizing constants.
Arguably, it is also the only general method available for
dealing with complex, high-dimensional problems [10].
Up until the introduction of bridge sampling and path
sampling, estimation methods in statistics often relied on
the scheme of importance sampling, either using draws
from an approximate density or from one of pi(θ). The-
oretical [11] and empirical evidence [30,31] provided in
the context of bridge sampling, show that substantial
reductions of Monte Carlo errors can be achieved with
little or minor increase in computational effort, by using
draws from more than one pi(θ). The key idea is to
use “bridge” densities to effectively shorten the distances
among target densities, distances that are responsible for
large Monte Carlo errors with the standard importance
sampling methods. In fact, Gelman and Meng [10] show
that importance sampling, bridge sampling and path sam-
pling represent a natural methodological evolution, from
using no bridge densities to using a (potentially) infinite
number of them.
Lartillot and Philippe [8] recently introduced path sam-

pling in the field of phylogenetics and propose a continu-
ous method to directly estimate log Bayes factors, which
has the advantage of yielding greater accuracy compared
to a previously introduced discrete method [32]. This
approach (called “model-switch” path sampling) consid-
ers the unnormalized density function qβ to constitute a

direct path between the two competing models [8], which
has normalizing constant cβ yielding the normalized den-
sity pβ . In other words, β interpolates between the two
models’ posterior densities. The originally proposed con-
tinuous method consists in equilibrating a MCMC under
β = 0, followed by smoothly increasing the value of β ,
by adding a constant increment δβ after each series of
Q cycles, until β = 1 is reached. During this proce-
dure, points θk are saved before each update of β . Denote
(βk , θk)k=0..K the series of points obtained this way. The
constant-increment approach of Lartillot and Philippe [8]
assumes in particular β0 = 0, βK = 1, and ∀k, 0 ≤ k <

K ,βk+1 − βk = δβ , which is reflected in the expressions
for the continuous estimator and its corresponding dis-
cretization and sampling error. Specifically, the estimate
of

lnZ1 − lnZ0 =
∫ 1

0
Eβ [U(θ)] dβ , (4)

with Zi the normalizing constant of model i, is given by:

μ̂qs = 1
K

(
1
2
U(θ0) +

K−1∑
k=1

U(θk) + 1
2
U(θK )

)
, (5)

with

U(θ) = ln f (y | θ ,M1) + ln π(θ | M1) − ln f (y | θ ,M0)

− ln π(θ | M0),
(6)

where y represents the data (e.g., nucleotide sequences),
θ is the vector of model parameters, Mi, i = 0, 1 are the
two models under consideration, f (y | θ ,M) is the likeli-
hood function and π(θ | Mi), i = 0, 1 the model priors.
As the authors mention, one can also start at β = 1,
equilibrate theMCMC, and then progressively decrease β ,
while sampling along the path down to β = 0. The mean
of both estimates can then be used as a final estimate of the
log Bayes factor (called the bidirectional mean). We here
adopt the terminology of Lartillot and Philippe [8] and call
the move from β = 0 to β = 1 the “annealing” integra-
tion whereas the move from β = 1 to β = 0 is called the
“melting” integration. The constant-increment approach
[8] may be considered to yield an oversimplified expres-
sion for the continuous estimator. It is based on Simpson’s
triangulation formula to calculate the contribution to the
overall log Bayes factor of one step of the integration, for
example from βk to βk+1 as follows:

(βk+1 − βk)

(
1
2
U(θk) + 1

2
U(θk+1)

)
. (7)
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Given that the increments are constant, it follows that
∀k0 ≤ k < K ,βk+1 − βk = 1/K and hence equation
(5) is readily obtained. In the case of non-constant
increments, equation (5) for the continuous estimator
becomes:

μ̂qs =
K−1∑
k=0

(βk+1 − βk)

(
1
2
U(θk) + 1

2
U(θk+1)

)
. (8)

Equation 8 is restricted to a sample from the last iter-
ation of each β to calculate the marginal likelihood, as
in the original paper on path sampling [8]. Therefore,
this approach only uses a limited amount of the avail-
able samples and more information can potentially be
retrieved from the MCMC iterations in order to improve
the estimation of the marginal likelihood. One possibil-
ity lies in using the mean of multiple values for each
β , collected at fixed intervals, which requires replacing
U(θk) and U(θk+1) in equation 8 by Û(θk) and Û(θk+1)
respectively, i. e. the mean of a collection of samples at
βk and βk+1 respectively. We propose to collect a sam-
ple every 10 update cycles, where an update cycle involves
an update for every model parameter, branch length and
ancestral site. Such a scenario is valid since, for large val-
ues of K, pβk−1 is only slightly more dispersed than pβk
(i.e. in such a case, the subsequent power posteriors will
be very similar) and hence serves as an excellent impor-
tance distribution [33]. In other words, for large values of
K, the MCMC chain will smoothly transition between dif-
ferent values of β , and hence the likelihood and parameter
values in subsequent MCMC chains will not be all that
different from one another, which allows for early sam-
pling at each new value of β . We refer to Appendix A
for a derivation of the discretization and sampling error
corresponding to the path sampling estimator discussed
here.

Stepping-stone sampling
Recently, Xie et al. [14] presented a novel approach to
estimate marginal likelihoods called ‘stepping-stone sam-
pling’. The authors show that their approach yields an
unbiased estimate of the marginal likelihood, as opposed
to PS, and that their calculations can be performed more
efficiently than PS. Using a simulated Gaussian exam-
ple data set, which is instructive because of the fact
that the true value of the marginal likelihood is avail-
able analytically, Xie et al. [14] show that PS and SS
perform much better (with SS being the best) than the
HME at estimating the marginal likelihood. The authors
go on to analyze a 10-taxon green plant data set using
DNA sequences of the chloroplast-encoded large sub-
unit of the RuBisCO gene (rbcL) and establish that

PS requires a larger number of power posteriors to be
explored compared to SS to overcome its additional
bias. Using the HME to estimate the marginal likelihood
is reported to yield higher values than using both PS
and SS.
We here present an extension of their approach to

directly calculate (log) Bayes factors, i.e. the stepping-
stone version of model-switch path sampling, with the
term “model-switch” indicating that a single path directly
connects the two models in the space of unnormalized
densities. Whereas such a general approach to directly
estimate (log) Bayes factors is relatively new in the field
of phylogenetics [8], the idea stems from statistics and
was first introduced in the work of Meng and Wong
[11], who propose a number of approaches to calcu-
late the ratio of two normalizing constants. Using the
notation of [14], consider again the unnormalized den-
sity function qβ , which constitutes a direct path between
the two competing models M0 and M1 [8] and has nor-
malizing constant cβ yielding the normalized density pβ :

qβ(θ) = [
f (y | θ ,M0)π(θ | M0)

]1−β

× [
f (y | θ ,M1)π(θ | M1)

]β ,
(9)

pβ(θ) = qβ(θ)/cβ(θ), (10)

cβ =
∫

�

qβ(θ)dθ , (11)

where again y represents the data (e.g., nucleotide
sequences), θ is the vector of model parameters, Mi, i =
0, 1 are the two models under consideration, f (y | θ ,M)

is the likelihood function and π(θ | Mi), i = 0, 1
the model priors. The goal is to estimate the ratio
c1.0/c0.0. Similar to the original stepping-stone method,
this ratio can be expressed as a product of K ratios:

r = c1.0
c0.0

=
K∏

k=1

cβk
cβk−1

, (12)

where 0 = β0 < . . . < βk−1 < βk < . . . <

βK = 1. Each ratio cβk/cβk−1 can be estimated by
importance sampling, using pβk−1 as the importance sam-
pling density. Because pβk−1 is only slightly different
from pβk , it serves as an excellent importance distribu-
tion. One of the K ratios, rk , can thus be expressed as
follows:
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rk = cβk
cβk−1

=
∫
qβk (θ)dθ∫
qβk−1(θ)dθ

=
∫ ( qβk (θ)

pβk−1 (θ)

)
pβk−1(θ)dθ∫ ( qβk−1 (θ)

pβk−1 (θ)

)
pβk−1(θ)dθ

=
∫ ( qβk (θ)

qβk−1 (θ)/cβk−1 (θ)

)
pβk−1(θ)dθ∫ ( qβk−1 (θ)

qβk−1 (θ)/cβk−1 (θ)

)
pβk−1(θ)dθ

=
∫ (

qβk

qβk−1

)
pβk−1(θ)dθ

=
∫ [ f (y | θ ,M0)π(θ | M0)]1−βk [ f (y | θ ,M1)π(θ | M1)]βk

[ f (y | θ ,M0)π(θ | M0)]1−βk−1 [ f (y | θ ,M1)π(θ | M1)]βk−1
pβk−1(θ)dθ

=
∫ [ f (y | θ ,M1)π(θ | M1)]βk−βk−1

[ f (y | θ ,M0)π(θ | M0)]βk−βk−1
pβk−1(θ)dθ

= Epβk−1

[(
f (y | θ ,M1)π(θ | M1)

f (y | θ ,M0)π(θ | M0)

)βk−βk−1
]
.

(13)

An estimator r̂k is constructed using samples θk−1,i(i =
1, 2, . . . , n) from pβk−1 :

r̂k = 1
n

n∑
i=1

[
f (y | θk−1,i,M1)π(θk−1,i | M1)

f (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
.

(14)

Numerical stability can be improved by factoring
out the largest sampled term ηk = max1≤i≤n{f (y |
θk−1,i,M1)π(θk−1,i | M1)/f (y | θk−1,i,M0)π(θk−1,i | M0)}:

r̂k = 1
n

(ηk)
βk−βk−1

n∑
i=1

×
[

f (y | θk−1,i,M1)π(θk−1,i | M1)

ηkf (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
.

(15)

Combining all K ratios, the SS estimate of the Bayes
factor is

r̂ =
K∏

k=1
r̂k . (16)

As for the marginal likelihood estimator based on
stepping-stone sampling [14], r̂ is unbiased, being a prod-
uct of independent unbiased estimators. On the log scale,

and by performing calculations:

logr̂k
=(βk − βk−1) log ηk

+ log
(
1
n

n∑
i=1

[
f (y | θk−1,i,M1)π(θk−1,i | M1)

ηkf (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
)
.

(17)

Finally, summing log r̂k over all K ratios yields the over-
all estimator:

log r̂ =
K∑

k=1
log r̂k

=
K∑

k=1
[ (βk − βk−1) log ηk]

+
K∑

k=1
log

(
1
n

n∑
i=1

×
[

f (y | θk−1,i,M1)π(θk−1,i | M1)

ηkf (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
)
.

(18)

Although r̂ is unbiased, changing to the log scale intro-
duces a bias [14]. Note that direct Bayes factor estimation
(i.e. constructing a path between two competing mod-
els) using stepping-stone sampling yields lower variance
than calculating the ratio of two independently estimated
marginal likelihoods (with each marginal likelihood esti-
mator constructing a path between its prior and poste-
rior). We refer to Appendix B for the derivation of this
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variance and its comparison to the ratio of variances
accompanying marginal likelihood estimation.

Error assessment
Instead of investigating the discretization and sampling
error (the two types of error that occur when performing
path sampling; [8]), we here focus on the differences that
may occur between annealing and melting versions of the
model-switch integrations that yield the log Bayes factor.
We use the split-calculation approach introduced in pre-
vious work [34], which allows the integration shown in
equation 4 to be rewritten as∫ 1

0
Eβ [U(θ)] dβ =

∫ α1

0
Eβ [U(θ)] dβ + . . .

+
∫ 1

αn
Eβ [U(θ)] dβ ,

(19)

with α0 = 0 < α1 < . . . < αn < 1 = αn+1 dividing
the interval [0,1] into n subintervals. Each of these inte-
grals can be calculated independently in parallel, allowing
the calculation of the log Bayes factor to be distributed
across multiple computer nodes (20 in this case), yield-
ing results much faster than when running on a single
node. While the method discussed in [34] was applied to
path sampling, it can easily be adapted for stepping-stone
sampling (not shown) and hence each integral shown in
equation 19 can be calculated using both path sampling
and stepping-stone sampling. We calculate the difference
in contribution to the log Bayes factor for each of the
calculated 20 sub-integrals and consider the sum of the
absolute values of these differences to be a bidirectional
error (or repeatability error). The higher this error, the
larger the difference between both annealing and melting
calculations of the same sub-integral, indicating that more
stringent computational settings are needed to accurately
estimate the contribution to the total log Bayes factor.
Even using very demanding computational settings to

calculate the log Bayes factor in both directions, small dif-
ferences between the two estimates are to be expected
for two reasons. One is the repeatability issue discussed
in [16], which results in small deviations of the marginal
likelihood depending on the starting seeds of the analy-
ses, a second is the so-called “thermic lag” of the MCMC
chain [8]. Indeed, as β changes continuously during sam-
pling, the chain is never exactly at equilibrium, which will
cause a “thermic lag” of the MCMC chain. When sam-
pling a value of θ at the current value of β , one is in
effect sampling from pβ ′ , with β ′ slightly smaller than β .
Because U(θ) is an increasing function of β , one expects
this lag to result on average in an underestimation of
the true marginal likelihood when β goes from 0 to 1
(i.e. the ‘annealing’ integration) and in an overestimation
when β goes from 1 to 0 (i.e. the ‘melting’ integration)

[8]. This thermic lag bias results from the fact that when
the value of β is adjusted, the Markov chain takes some
time to adjust to the new value [14], i.e. needs to be
equilibrated before taking samples. We here check how
consistent the estimators are in yielding an underestima-
tion for the annealing calculations and an overestimation
for the melting calculations.

Results
Laurasiatheria data set
As a means of comparison for our proposed approach,
we first estimate the marginal likelihood of the presented
context-dependent model and a site-independent refer-
ence model known as the general time-reversible (GTR)
evolutionary model, which contains 5 free evolutionary
parameters and 3 free base frequencies. The HME and
sHME estimates of the marginal likelihood for these mod-
els are listed in Table 1, showing that (according to the
HME and sHME) the context-dependent model (HG04)
offers a drastic improvement in model fit over the gen-
eral time-reversible model, with a log Bayes factor of
3522.93 log units. However, as mentioned in the Methods
section, the HME tends to be biased towards higher-
dimensional models, meaning that the log Bayes factor
shown in Table 1 is possibly an overestimation of the true
log Bayes factor.
As a baseline for the comparison of our analyses of

different sigmoid shape parameters to determine which
power posteriors to estimate, we first used a flexible-
increment approach as introduced in previous work [34]
and determined the annealing and melting estimates
for the log Bayes factor and the accompanying bidirec-
tional error (seeMethods section). The flexible-increment
approach is an extension of the original (constant-
increment) path samplingmethod, where each integration
interval shown in equation 19 employs a different but
constant increment size for β . An equal number of itera-
tions were run across all 20 integration intervals, summing
up to a total of K = 2.000 path steps, with Q = 200
MCMC iterations being run per path step (see Additional
file 1: Table S1, settings ‘F’ - ‘2.000’ - ‘200’). Our flexible-
increment approach yields lower bidirectional errors for
all three log Bayes factor estimators compared to the orig-
inal path sampling method [8] (see Additional file 1: Table
S1, settings ‘C’ - ‘2.000’ - ‘200’) and yields more sim-
ilar results for the annealing and melting integrations.
Using these settings, it is immediately apparent that the
estimated log Bayes factor using PS or SS is drastically dif-
ferent from the one estimated earlier in the manuscript
using the HME and sHME, with the log Bayes factor
estimates differing by about 600 log units.
As discussed earlier, the manual determination and

refinement of the number of path steps and MCMC iter-
ations per path step is an iterative and time-consuming
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Table 1 Model comparison using the harmonic mean estimator (HME) for each of the three data sets

Data set Model Root order HME sHME log BF

Laurasiatheria GTR Independence (Second) -173720.23 -173342.71 -

HG04 Second -170093.65 -169819.78 3522.93

Pseudogenes GTR Independence (First) -14026.11 -14001.45 -

HG04 First -13772.80 -13738.83 262.62

Nuclear SSU rRNA GTR Independence (Zero) -8441.69 -8409.53 -

HG04 Zero -8412.27 -8374.33 35.20

GTR Independence (First) -8435.35 -8409.82 -

HG04 First -8395.11 -8364.34 45.48

GTR Independence (Second) -8445.00 -8408.39 -

HG04 Second -8399.92 -8353.75 54.64

Harmonic mean estimates (HME) and stabilized harmonic mean estimates (sHME) for both the site-independent general time-reversible model (GTR) and the context-
dependent model of Hwang and Green (HG04) [23], combined with the one or more ancestral root distributions [24]. Great care needs to be taken to make sure that
under the GTR model, the same sites are taken into account when calculating the likelihood, this due to the presence of gaps. We emphasize this by stating which
ancestral root distribution is used for the GTR model, on top of eliminating those sites for which the dependency pattern contains one or more gaps. The proposed
context-dependent model (HG04) clearly outperforms the site-independent GTR model for all the data sets, according to the HME and sHME. Further, for the nuclear
SSU rRNA data set and according to the sHME, the difference in model fit increases in favor of the HG04 model with increasing dependencies at the ancestral root.

process. We used identical integration settings (K = 2000
and Q = 200) and estimate the log Bayes factor using
a sigmoidal approach to determine the path steps to tra-
verse. Based on a visual comparison (see Figure 1), a shape
parameter of α = 6.0 is an appropriate starting value,
which is increased until the accuracy of the results can no
longer be improved. Annealing and melting integrations,
shown side by side in Figure 2, for the different sigmoid
shape values indicate that the most adequate performance
is obtained for sigmoid shape values between 10.0 and
12.0, where bracketing the true value of the log Bayes fac-
tor becomes more reliable, although there are still quite
a few units of difference between them. We increased

the shape parameter up to α = 13.0, revealing that the
lowest bidirectional errors are reached for α = 10.0 (see
Figure 3), and this for all three estimators. The compu-
tational settings (i.e. for K and Q) used so far focus on
running many short chains, with each subsequent chain
only slightly different than the previous one. We now test
what the optimal values for both parameters are in order
to achieve optimal performance.
Given that Xie et al. [14] have shown that a value of

K = 8 path steps is sufficient for marginal likelihood
estimation using stepping-stone sampling for a data set
of 10 green plant rbcL sequences (and that K = 32 is
sufficient for path sampling), we have first reversed the
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Figure 1 Sigmoid shape comparison. Comparison of different integration settings for the three log Bayes factor estimators (left), showing how a
sigmoidal shape with α = 6.0 is closest to our flexible-increment approach, while α = 10.0 yields a curve that slowly converges towards both ends
of the integration interval. The constant-increment approach is clearly a too rude approximation of a path between the two models. Bidirectional
errors for a sigmoidal shape of α = 8.0 (middle), showing that such a curve yields large errors towards both priors and that a higher shape value
would be preferred. Bidirectional errors for a sigmoidal shape of α = 12.0 (right), showing that such a curve yields larger errors in the middle of the
integration interval although nowhere near the errors towards the priors for α = 8.0.
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Figure 2Model comparison using path sampling (PS) and stepping-stone sampling (SS) for the Laurasiatheria data set. Laurasiatheria data
set: visual comparison of annealing and melting estimates (shown side by side) for the log Bayes factor for different sigmoid shape values. For
α = 10.0 and α = 12.0, these estimates are available for K = 2.000(Q = 200 and Q = 400), 4.000, 8.000 and16.000, while for α = 8.0, α = 9.0,
α = 11.0 and α = 13.0 this last value has not been examined. Each subfigure shows annealing and melting estimates for a particular sigmoid shape
value, and this for the three estimators discussed: path sampling, the extension of path sampling that uses the mean of a series of samples for each
power posterior, and stepping-stone sampling.
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Figure 3 Comparison of annealing andmelting estimates with increasing computational settings. Laurasiatheria data set: visual comparison
of the bidirectional mean log Bayes factor, estimated using stepping-stone sampling, for each sigmoid shape value with the corresponding intervals
composed of both annealing and melting estimates. In general, these intervals decrease in width with increasing computational settings.

integration settings for two shape values (i.e. K = 200 and
Q = 2.000 for α = 10.0 and α = 12.0; see Additional file 1:
Table S1). The results seem to indicate that both versions
of the path sampling estimator converge really well, with
reasonable bidirectional errors. This result is misleading
however, as shown by our stepping-stone sampling esti-
mator (which is a less biased estimator) which converges
to a different value for the log Bayes factor. In fact, only
stepping-stone sampling offers an indication that some-
thing is amiss, given its higher bidirectional error, but
mainly due to its melting estimate of the log Bayes factor,
which is much higher than the annealing estimate. Hence,
K = 200 path steps are clearly insufficient to obtain reli-
able estimates of the log Bayes factor and may even yield
fairly accurate but unreliable results. Increasing K to 400
solves the problem of the previous integration settings for
a sigmoid shape value α = 10.0 for all three estimators,
albeit that the associated bidirectional error estimates are
very large. However, for a shape value α = 12.0, both
path sampling estimators are still unable to bracket the
true log Bayes factor value, hence requiring that the num-
ber of path steps K be further increased. In other words,

even a number of path steps of K = 400, which seems
to be excessive based on the work of Xie et al. [14], is
only sufficient when a suitable sigmoid shape value is
chosen.
Since doubling the number of iterations per path step

to Q = 400, when K = 2.000, only leads to limited
improvements of the bidirectional error (see Figure 2 and
Additional file 1: Table S1), we now gradually increase
the number of path steps, starting with K = 4.000 or
twice the amount of our first series of analyses, since
increasing K alleviates the bias of stepping-stone sam-
pling [14]. Further increasing the number of path steps
to K = 8.000 confirms this conclusion. Because of the
computational demands, we only apply a final doubling
of the number of path steps (K = 16.000) to the sig-
moid shape values α = 10.0 and α = 12.0 (see Figure 2).
Bidirectional errors continue to decrease, leading to even
better bracketing of the true value of the log Bayes fac-
tor (see Figure 3). Further, comparing the estimates for
both sigmoid shapes shows that the different shapes for
the first time lead to very similar results for both annealing
and melting calculations, allowing us to accurately infer
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the true value. For α = 10.0, the mean bidirectional log
Bayes factor equals 2921.09 and for α = 12.0 this equals
2921.16.
Our exploration of different α values allows us to create

a visual representation for annealing and melting esti-
mates of the log Bayes factor and their bidirectional mean,
which is used as the actual estimate of the true value (see
Figure 4). For a shape of α = 12.0, the bidirectional mean
is themost stable across the different number of path steps
(or ratios) of the different shape values tested and has the
appealing property that the difference between annealing
and melting estimates decreases the most with increasing
path steps (or ratios).

Pseudogenes data set
We first estimate the marginal likelihood of the HG04
context-dependent model and compared it to that of the
GTR model using the HME and sHME (see Table 1).
These estimators again report a significant improve-
ment in model fit of the HG04 model, equipped with
a first-order ancestral root distribution, over the site-
independent GTR model, by a log Bayes factor of 262.62
log units. The much lower number of nucleotides of
the pseudogenes data set compared to the Laurasiathe-
ria data set allow for a much quicker evaluation of the
(log) Bayes factor using both path sampling approaches

as well as the stepping-stone sampling approach. We
have therefore chosen to do so using the most strin-
gent settings used for the Laurasiatheria data set, i.e.
K = 16.000 and Q = 200. The results are shown in
Table 2.
Of the different sigmoid shape values tested, a shape

value of α = 6.0 performs much worse than all other
values tested, which perform quite similarly. The orig-
inal path sampling method [8] performed the worst (3
cases) in terms of yielding an underestimation of the
log Bayes factor using the annealing integration and an
overestimation using the melting integration, with our
adaptation of path sampling and our proposed stepping-
stone sampling approaching only reporting 1 comparison
for which this is the case (i.e. for α = 13.0). A shape
value of α = 9.0 yields the lowest bidirectional error
for SS, yielding a mean bidirectional log Bayes factor
of 175.12, confirming the conclusion of the HME and
sHME that the proposed context-dependent model HG04
provides a significantly better model fit than the GTR
model. Once again however, HME and sHME seem to
clearly be biased towards higher-dimensional model as
the log Bayes factor is again overestimated. This result
for the pseudogenes data set confirms that a context-
dependent model offers increased performance over site-
independent models in mammalian data sets, even in the
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Figure 4 Bidirectional errors. Laurasiatheria data set: visual comparison of the bidirectional errors associated with each sigmoid shape value for
the three estimators presented in this manuscript. It can be seen that sigmoid shape values between 10.0 and 12.0 are preferred for the
Laurasiatheria data set.
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Table 2 Model comparison using path sampling (PS) and stepping-stone sampling (SS) for the pseudogenes data set

α K Q BDE(PS) BDE(PS) BDE(SS) PS-A PS-M PS − A PS-M SS-A SS-M

6.0 16.000 200 8.54 7.74 12.47 174.61 180.14 172.89 179.06 171.26 182.21

8.0 3.80 2.93 3.04 174.75 175.00 174.38 174.72 174.17 175.14

9.0 2.35 2.36 2.45 174.99 174.96 174.82 175.38 174.71 175.52

10.0 2.69 2.65 2.64 174.64 174.98 174.41 175.56 174.35 175.70

11.0 3.49 3.93 3.99 175.66 175.72 175.61 175.89 175.64 176.01

12.0 3.65 2.91 2.86 174.50 174.29 174.57 174.51 174.53 174.64

13.0 2.86 2.59 2.60 175.48 174.79 175.45 174.79 175.40 174.93

Pseudogenes data set. Log Bayes factor estimates for thendent model compared to the site-independent model using regular path sampling (PS; only using the last
sample for each path step), path sampling using the mean of a collection of samples from each path step (PS) and regular stepping-stone sampling (SS). Bidirectional
checks, consisting of annealing (-A) and melting (-M) integrations, were performed for each log Bayes factor calculation, yielding a bidirectional error (BDE) for each
estimator. α values indicate the shape of the sigmoid function used to construct a path between the two models. K indicates the number of path steps (or ratios for
SS) used, while Q indicates the number of iterations to be performed per path step (or ratio for SS).

case of (relatively) short sequences and a small number of
sequences.

Nuclear SSU rRNA data set
A land plant data set, such as the one analyzed here
[21], offers a real challenge for marginal likelihood and
(log) Bayes factor estimators using the models com-
pared in this manuscript. The HG04 model is aimed at
capturing specific context-dependent processes, such as
the CpG-methylation-deamination process inmammalian
sequences. Since we are unaware of any such processes
being present in land plant sequences, we expect that the
context-dependent HG04 model will actually be outper-
formed by the site-independent GTR model in terms of
model fit, on the premise that a model selection approach
is used that is able to penalize the model for its excessive
amount of parameters that are not accompanied by fitting
site patterns.
Given the probably low amount of context-dependent

substitution processes that are able to significantly
increase model fit, the ancestral root distribution will
most likely also not contain any dependencies. We now
test this assumption using both the HME, sHME and SS
approach, comparing a zero-order, first-order and second-
order ancestral root distribution to the GTRmodel (which
uses its base frequencies to determine the independent
stationary distribution at the ancestral root). Note that
Table 1 shows 3 estimates of the HME and sHME for
the GTR model, depending on the actual ancestral root
distribution used with the context-dependent model to
ensure that the same set of likelihood contributions are
used for the different models. According to the HME and
sHME (see Table 1), the most parameter-rich ancestral
root distribution also explains the data the best, with a
second-order distribution being preferred with a log Bayes
factor of 54.64 log units over the GTR model (45.48 log
units for a first-order and 35.20 log units for a zero-order
ancestral root distribution). This result is questionable,

since the pseudogene mammalian data set (which is a
clear example of a data set that should be analyzed using
a context-dependent model and accompanying ancestral
root distribution) benefits the most from a first-order
ancestral root distribution [26].
We now turn our attention to calculating the log Bayes

factor using the proposed SS approach. Assuming K =
2.000 ratios with Q = 200 iterations each, a zero-order
ancestral root distribution yielded a bidirectional mean
log Bayes factor of -58.56 log units versus the GTR model,
a first-order distribution a bidirectional mean log Bayes
factor of -64.21 log units and a second-order distribution
a bidirectional mean log Bayes factor of -94.23 log units.
The outcome here is much more biologically plausible
than what was obtained using the HME and sHME, with
no sign of dependencies being detected, not at the ances-
tral root nor throughout the remainder of the underlying
tree. These results hence support the claim that the HME
tends to be biased towards higher-dimensional models,
both on the level of the context-dependent model and the
ancestral root distribution used, and is hence unable to
accurately perform model selection (especially for models
with higher dimensions).
This data set is comparable with the pseudogenes data

set in terms of computational complexity, meaning that we
have again opted to use the most demanding integration
settings for the different PS/SS approaches. The results
are shown in Table 3. Of the different sigmoid shape val-
ues tested, a shape value of α = 6.0 again performs worse
than all other values tested. A shape value of α = 10.0
yields the lowest bidirectional error for SS, yielding amean
bidirectional log Bayes factor of -59.18, confirming the
conclusion of the previous paragraph with more demand-
ing integration settings. Contrary to the two mammalian
data sets in this manuscript, the overestimation of the
marginal likelihood for high-dimensional models by the
HME and sHME leads to a different conclusion for these
estimators compared to PS and SS, showing at PS and
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Table 3 Model comparison using path sampling (PS) and stepping-stone sampling (SS) for the nuclear SSU rRNA data set

α K Q BDE(PS) BDE(PS) BDE(SS) PS-A PS-M PS-A PS-M SS-A SS-M

6.0 16.000 200 6.76 4.38 4.32 -58.33 -59.82 -58.82 -57.56 -59.35 -56.82

8.0 2.12 1.99 1.89 -58.92 -59.14 -58.69 -59.11 -58.69 -58.91

9.0 2.08 1.89 1.83 -59.37 -59.48 -58.92 -59.36 -59.00 -59.23

10.0 2.00 1.66 1.64 -60.47 -59.96 -59.94 -59.47 -59.97 -59.38

11.0 2.60 2.74 2.69 -58.89 -59.15 -58.86 -59.23 -58.89 -59.12

12.0 1.86 1.93 2.04 -59.54 -58.80 -59.55 -58.53 -59.57 -58.43

13.0 2.47 2.12 2.20 -58.58 -59.10 -58.44 -59.00 -58.46 -58.87

Nuclear SSU rRNA data set. Log Bayes factor estimates for the context-dependent model compared to the site-independent model using regular path sampling (PS;
only using the last sample for each path step), path sampling using the mean of a collection of samples from each path step (PS) and regular stepping-stone sampling
(SS). Bidirectional checks, consisting of annealing (-A) and melting (-M) integrations, were performed for each log Bayes factor calculation, yielding a bidirectional error
(BDE) for each estimator. α values indicate the shape of the sigmoid function used to construct a path between the two models. K indicates the number of path steps
(or ratios for SS) used, while Q indicates the number of iterations to be performed per path step (or ratio for SS).

SS are able to take into account differences in dimension
when estimating (log) Bayes factors, unlike the HME and
sHME.

Discussion and conclusion
In this paper we have compared the performance of two
versions of path sampling, an accurate (in that it is able
to reliably estimate marginal likelihoods and hence Bayes
factors) but computationally demanding model compar-
ison approach, with that of stepping-stone sampling, for
which we provide a so-called model-switch version to
directly estimate (log) Bayes factors. We have shown that
our adaptation of stepping-stone sampling for direct (log)
Bayes factor calculation outperforms the original path
sampling approach as well as an extension that exploits
more samples. Further, we have demonstrated that the
(log) Bayes factor estimator proposed in this manuscript
generally has lower variance than the (log) Bayes factor
estimator obtained through the ratio of marginal likeli-
hoods estimated using stepping-stone sampling.
The large number of combinations of number of path

steps / ratios and chain lengths we investigated leads to the
recommendation of stepping-stone sampling over path
sampling. Indeed, for a relatively small number of path
steps / ratios, path sampling tends to converge towards an
entirely different value for the (log) Bayes factor, whereas
only stepping-stone sampling is able to provide indica-
tions thatmore stringent analyses need to be performed to
better approximate the (log) Bayes factor. Stepping-stone
sampling is hence better-suited to provide rough initial
estimates, using shorter and hence less time-consuming
runs, of the magnitude of modeling assumptions. Both
path sampling and stepping-stone sampling methods to
estimate (log) marginal likelihoods and (log) Bayes fac-
tors are much more reliable approaches to perform model
selection than the harmonic mean estimator, which is
often employed because of its simplicity and computa-
tionally appealing properties.

Given that at both ends of the integration interval when
performing model-switch path sampling and stepping-
stone sampling, one of the models requires sampling from
its prior distribution, we have opted for a sigmoid function
to determine the necessary power posterior distributions
from which sampling is required. Of the shape values
compared for the different data sets, a value of between 9.0
and 12.0 is the most appropriate to accurately determine
the difference in model fit for high-dimensional models as
it is able to accurately bracket the (log) Bayes factor and is
accompanied by a low bidirectional error.
Given that path sampling and stepping-stone sampling

are far more reliable approaches when estimating the
(log) marginal likelihood, we have checked whether this
affects the outcome when performing model compari-
son. Whereas for the Laurasiatheria data set, there is a
large difference in the log Bayes factor estimated by path
sampling and stepping-stone sampling on one hand, and
the harmonic mean estimator on the other hand, these
approaches still reach the same conclusion, i.e. that the
context-dependent model presented here yields a much
better model fit than a site-independent evolutionary
model.While this is also the case for a smaller mammalian
pseudogene data set, albeit with lower log Bayes factors,
we show that for a plant nuclear rRNA SSU data set, the
conclusions of the harmonic mean estimator and the path
sampling and stepping-stone sampling estimators do not
concur, with the former method being unable to accu-
rately penalize the context-dependent model for its excess
parameters.
High-dimensional models are typically used in, for

example, studies of context-dependence in mammalian
sequences. Context-dependent models have been shown
to yield much larger increases in model fit than the
assumption of among-site rate variation [35] or using
mixture models [25]. The so-called first-order context-
dependent evolutionary model (i.e. assuming an influence
from its two immediate flanking bases), which we analyze
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in this paper, offers a fair balance between parameter com-
plexity and performance, with further improvements in
model fit appearing quite challenging [25]. In other words,
the drastic increase in number of parameters, from 12 to
96, is justified by the context-dependent evolutionary pro-
cesses present in the data, even though this means that far
less data per parameter is available. In non-mammalian
sequences, these models may be prove to be less use-
ful, as demonstrated in this manuscript, as the drastic
increase in number of parameters is not accompanied
by fitting context-dependent evolutionary patterns in the
underlying data.
While stepping-stone sampling outperforms both ver-

sions of path sampling, as we have shown in this paper,
it is not a silver bullet and still requires massive compu-
tation times, especially for the high-dimensional models
tested in this manuscript. Despite recent claims that data
augmentation can speed up (log) Bayes factor calculation
[36], the use of data augmentation is often a prerequisite
to evaluate the likelihood for a context-dependent model
and hence does not yield additional increases in speed
here. For the Laurasiatheria data set, the most demand-
ing settings we tested (K = 16.000 and Q = 200)
require about 13 days of calculation running across 40
cores simultaneously using 8-core Intel(R) Xeon(R) CPU
X7560 processors running at 2.27GHz. This yields a total
computational effort for this data set of about 4.300 days
or close to 12 computation years. The other two data sets
analyzed in this manuscript require little more than 1 day
of calculation running across 40 cores simultaneously on
the reported system.
One way to circumvent the added complexity of model-

switch path sampling and stepping-stone sampling is to
shorten the path from posterior to prior whilst still calcu-
lating the marginal likelihood for each model separately.
Recently, Fan et al. [16] propose a more general version
of stepping-stone sampling that introduces an arbitrary
“working” prior distribution parameterized using MCMC
samples from the posterior distribution. The authors show
that if this reference distribution exactly equals the poste-
rior distribution, the marginal likelihood can be estimated
exactly. The authors show that generalized stepping-stone
sampling is considerably more efficient and does not
require sampling from distributions close to the true prior,
currently still an issue with path sampling and stepping-
stone sampling for manymodels. However, at the moment
this method is restricted to evaluations on a fixed phy-
logenetic tree topology. Integrating over plausible tree
topologies complicates generalized stepping-stone sam-
pling because of the need to define a reference distribution
for topologies that provides a good approximation to the
posterior. However, most context-dependent modeling
approaches already make the assumption of a fixed under-
lying tree to make likelihood calculations feasible, making

this last requirement less of an issue. The extension of gen-
eralized stepping-stone sampling towards constructing a
direct path between two competing models is currently
the subject of ongoing work.

Appendix A: discretization and sampling error for
path sampling
The corresponding discretization error for model-switch
path sampling, originally provided in [8] for the constant-
increment approach, associated with using non-constant
increments needs to be reformulated. Since Eβ [U] is a
monotonous function of β , the worst-case upper (resp.
lower) error is given by the area between the piecewise
continuous function joining themeasured values of Eβ [U]
and the upper (resp. lower) step function built from them
[8]. Both areas are equal to:

σd =|
K−1∑
k=0

1
2
(βk+1 − βk)(Eβk+1 [U]−Eβk [U] ) | . (20)

Calculating the sampling error in the case of non-
constant increments is slightly more complicated:

V [ μ̂qs]= 1
4

(K−1∑
k=0

V [(βk+1 − βk)(U(θk) + U(θk+1))]

+
K−1∑
k=0

K−1∑
l=0,l �=k

Cov [(βk+1 − βk)(U(θk)

+U(θk+1)), (βl+1 − βl)(U(θl) + U(θl+1))]
)
.

(21)

Assuming independence between the successive points
of the chain, the first part of the sum in equation (21) can
be written as:

K−1∑
k=0

(βk+1 − βk)
2(V [U(θk)]+V [U(θk+1)] ). (22)

Using that same assumption, the second part of the sum
(i.e., the covariance) in equation (21) only yields a non-
zero contribution to the covariance if l = k + 1 or l =
k−1. This yields the following expression for the sampling
variance:

V [ μ̂qs]= 1
4

(K−1∑
k=0

(βk+1 − βk)
2(V [U(θk)]+V [U(θk+1)] )

+2
K−1∑
k=1

(βk+1 − βk)(βk − βk−1)V [U(θk)]
)
.

(23)

Again, the presented formulas are valid only if the points
are truly independent draws from their respective distri-
butions. If this is not the case, then a factor τ = K/Keff



Baele et al. BMC Bioinformatics 2013, 14:85 Page 16 of 18
http://www.biomedcentral.com/1471-2105/14/85

(i.e. the decorrelation time) needs to be taken into account
in equation 23, to account for the effective sample size [8].
Given that β moves between 0 and 1, the decorrelation
time might change. While Lartillot and Philippe [8] did
not observe large variations in the decorrelation time for
different values of β for the models they compared, this is
not generally so, as shown in [1].

Appendix B: variance for stepping-stone sampling
As in the original work on (log) marginal likelihood esti-
mation using stepping-stone sampling, we here provide an
expression for the simulation variance of r̂k in the context
of estimating (log) Bayes factor. The simulation variance
of r̂k is estimated by

V̂ar(r̂k)

= 1
n2

n∑
i=1

([
f (y | θk−1,i,M1)π(θk−1,i | M1)

f (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
− r̂k

)2

(24)

Based on the δ method [14,37], the variance of log r̂ =∑K
k=1 log(r̂k) is approximated by:

V̂ar(log r̂)

≈
K∑

k=1

1
r̂2k
V̂ar(r̂k)

= 1
n2

K∑
k=1

1
r̂2k

n∑
i=1

×
([

f (y | θk−1,i,M1)π(θk−1,i | M1)

f (y | θk−1,i,M0)π(θk−1,i | M0)

]βk−βk−1
− r̂k

)2

.

(25)

Note that the two equations above are not used in the
remainder of this appendix.
Direct (log) Bayes factor estimation is deemed to be less

prone to errors than calculating the ratio of independently
estimated marginal likelihoods [8]. Using the δ method
[37] and assuming independence of r̂k , k = 1, . . . ,K

V̂ar{log r̂} =
K∑

k=1
V̂ar (log r̂k)

≈
K∑

k=1

V̂ar (r̂k)
r̂2k

(26)

and, also using the δ method [37]

V̂ar{log r̂} ≈
V̂ar

(∏K
k=1 r̂k

)
(∏K

k=1 r̂k
)2 . (27)

From equations 26 and 27, it follows that

V̂ar
( K∏
k=1

r̂k

)
≈

( K∏
k=1

r̂k

)2 K∑
k=1

V̂ar
(
r̂k

)
r̂2k

. (28)

We will use equation 28 together with the general
approximation

Var
(R
S

)
≈ E(R)2

E(S)2

[
Var(R)

E(R)2
− 2Cov(R, S)

E(R)E(S)
+ Var(S)

E(S)2

]
.

(29)

In particular, assuming that the modelsM0 andM1 have
the same priors, it follows from equation 28 that

V̂ar (r̂)

= r̂2

n

K∑
k=1

V̂ar
((

f (y | θk−1,M1)

f (y | θk−1,M0)

)βk−βk−1
) / (

cβk
cβk−1

)2

= r̂2
K∑

k=1

V̂ar(f (y | θk−1,M1))βk−βk−1

n(c1,βk/c1,βk−1)
2

+ V̂ar(f (y | θk−1,M0))βk−βk−1

n(c0,βk/c0,βk−1)
2

− 2Cov
(
f (y | θk−1,M1)βk−βk−1 , f (y | θk−1,M0)βk−βk−1

)
n(c1,βk/c1,βk−1)(c0,βk/c0,βk−1)

(30)

where θk is a random draw from pβk and

cj,β =
∫

f (y | θ ,Mj)
βπ(θ | Mj)dθ . (31)

We compare this expression to the variance of the Bayes
factor obtained by independently calculating its marginal
likelihoods using stepping-stone sampling [14]. In that
case, and using expression 28,

V̂ar (r̂) = V̂ar
( K∏
k=1

r̂k,1
r̂k,0

)

= r̂2
K∑

k=1
V̂ar

(
r̂k,1
r̂k,0

) / (
r̂k,1
r̂k,0

)2
(32)

where

r̂k,j = 1
n

n∑
i=1

f (y | θk−1,i,Mj)
βk−βk−1 . (33)
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From expression 32, it follows that for sufficiently large
n, using the unbiasedness of r̂k and assuming that the
separate chains are independent

V̂ar (r̂) = r̂2
K∑

k=1
V̂ar

(
r̂k,1
r̂k,0

)/ (
c1,βk
c1,βk−1

c0,βk−1

c0,βk

)2

= r̂2
K∑

k=1

V̂ar(f (y | θk−1,M1))βk−βk−1

n(c1,βk/c1,βk−1)
2

+ V̂ar(f (y | θk−1,M0))βk−βk−1

n(c0,βk/c0,βk−1)
2 .

(34)

Comparing expressions 30 and 34 shows that the vari-
ance of our direct Bayes factor estimation differs from
the variance of the ratio of marginal likelihoods only in
the last term of expression 30 (i.e. the “covariance term”).
This term is not zero because the densities are evaluated
in the same parameter draws. Furthermore, we can logi-
cally expect this covariance to be generally positive. This
formalizes the idea that direct Bayes factor estimation
(i.e. constructing a path between two competing mod-
els) yields lower variance than calculating the ratio of
two independently estimated marginal likelihoods (with
each marginal likelihood estimator constructing a path
between its prior and posterior), if the two model pri-
ors are the same. From expression 30, it follows that the
variance of our proposed approach is finite as long as the
denominators are not zero, which is to be expected as oth-
erwise the marginal likelihoods themselves would have to
be zero.
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