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Abstract
In this article, we discuss the properties of the neutral operator with variable
parameter (Ax)(t) = x(t) – c(t)x(t – δ(t)) and by applying Green’s function of a
third-order differential equation and a fixed point theorem in cones, we obtain some
sufficient conditions for existence, nonexistence, multiplicity of positive periodic
solutions for a generalized third-order neutral differential equation.
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1 Introduction
In [], Zhang discussed the properties of the neutral operator (Ax)(t) = x(t) – cx(t – δ),
which became an effective tool for the research on differential equations with this pre-
scribed neutral operator (see, e.g., [–]). Lu and Ge [] investigated an extension of A,
namely the neutral operator (Ax)(t) = x(t) –

∑n
i= cix(t – δi), and obtained the existence of

periodic solutions for the corresponding neutral differential equation. Afterwards, Du et
al. [] studied the neutral operator (Ax)(t) = x(t)–c(t)x(t–δ), here c(t) isω-periodic func-
tions. Bymeans ofMawhin’s continuation theorem and the properties ofA, they obtained
sufficient conditions for the existence of periodic solutions to a Liénard neutral differen-
tial equation. Recently, in [], Ren et al. investigated the neutral operator with variable
delay (A)x(t) – cx(t – δ(t)). By applying coincidence degree theory, they obtained suffi-
cient conditions for the existence of periodic solutions to a Rayleigh neutral differential
equation.
Motivated by [, –], in this paper, we consider the neutral operator (Ax)(t) = x(t) –

c(t)x(t – δ(t)), here |c(t)| �= , c, δ ∈ C(R,R) and δ is an ω-periodic function for some
ω > . Notice that here the neutral operator A is a natural generalization of the famil-
iar operator Ai, i = , , , . But A possesses a more complicated nonlinearity than Ai,
i = , , , . For example, the neutral operator Ai, i = , , is homogeneous in the following
sense (Aix)′(t) = (Aix′)(t), i = , , whereas the neutral operator A in general is inhomo-
geneous. As a consequence, many of the new results for differential equations with the
neutral operator A will not be a direct extension of known theorems for neutral differen-
tial equations.
The paper is organized as follows. In Section , we first analyze qualitative properties

of the generalized neutral operator A which will be helpful for further studies of differen-
tial equations with this neutral operator; in Section , we consider a third-order neutral
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differential equation as follows:

(
x(t) – c(t)x

(
t – δ(t)

))′′′ = a(t)x(t) – λb(t)f
(
x
(
t – τ (t)

))
, (.)

here λ is a positive parameter; δ(t) is said to be variable delay, c, δ ∈ C(R,R) and δ is an ω-
periodic function for some ω > , f ∈ C(R, [,∞)), and f (x) >  for x > ; a ∈ C(R, (,∞))
with max{a(t) : t ∈ [,ω]} < 


√
 (

π
ω
), b ∈ C(R, (,∞)), τ ∈ C(R,R), a(t), b(t) and τ (t) are

ω-periodic functions. By applying Green’s function of a third-order differential equation
and a fixed point theorem in cones, we obtain sufficient conditions for the existence, mul-
tiplicity and nonexistence of positive periodic solutions to the third-order neutral differ-
ential equation. We will give an example to illustrate our results, and an example is also
given in this section. Our results improve and extend the results in [–].

2 Analysis of the generalized neutral operator with variable parameter
Let

c∞ = max
t∈[,ω]

∣∣c(t)∣∣, c = min
t∈[,ω]

∣∣c(t)∣∣.
Let X = {x ∈ C(R,R) : x(t + ω) = x(t), t ∈ R} with the norm ‖x‖ = maxt∈[,ω] |x(t)|, and

let C+
ω = {x ∈ C(R, (,∞)) : x(t + ω) = x(t)}, C–

ω = {x ∈ C(R, (–∞, )) : x(t + ω) = x(t)}. Then
(X,‖ · ‖) is a Banach space. A cone K in X is defined by K = {x ∈ X : x(t) ≥ α‖x‖,∀t ∈ R},
where α is a fixed positive number with α < . Moreover, define operators A,B : Cω → Cω

by

(Ax)(t) = x(t) – c(t)x
(
t – δ(t)

)
, (Bx)(t) = c(t)x

(
t – δ(t)

)
.

Lemma . If |c(t)| �= , then the operator A has a continuous inverse A– on Cω , satisfying
()

(
A–f

)
(t) =

⎧⎪⎨
⎪⎩
f (t) +

∑∞
j=

∏j
i= c(Di)x(t –

∑j
i= δ(Di)) for |c(t)| < ,∀f ∈ Cω,

– f (t+δ(t))
c(t+δ(t)) –

∑∞
j=

f (t+δ(t)+
∑j

i= δ(D′
i))

c(t+δ(t))
∏j

i= c(D
′
i)

for |c(t)| > ,∀f ∈ Cω.

()

∣∣(A–f
)
(t)

∣∣ ≤
⎧⎨
⎩

‖f ‖
–c∞ for c∞ < ∀f ∈ Cω,
‖f ‖
c–

for c > ∀f ∈ Cω.

()

∫ ω



∣∣(A–f
)
(t)

∣∣dt ≤
⎧⎨
⎩


–c∞

∫ ω

 |f (t)|dt for c∞ < ∀f ∈ Cω,


c–
∫ ω

 |f (t)|dt for c > ∀f ∈ Cω.

Proof Case : |c(t)| ≤ c∞ < .
Let t =D and Dj = t –

∑j
i= δ(Di), j = , , . . . .

(Bx)(t) = c(t)x
(
t – δ(t)

)
= c(D)x

(
t – δ(D)

)
;
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(
Bx

)
(t) = c(t)c

(
t – δ(t)

)
x
(
t – δ(t) – δ

(
t – δ(t)

))
= c(D)c(D)x

(
t – δ(D) – δ(D)

)
;(

Bx
)
(t) = c(t)c

(
t – δ(t)

)
c
(
t – δ(t) – δ

(
t – δ(t)

))
x
(
t – δ(D) – δ(D) – δ(D)

)

= c(D)c(D)c(D)x

(
t –

∑
i=

δ(Di)

)
.

Therefore

Bjx(t) =
j∏

i=

c(Di)x

(
t –

j∑
i=

δ(Di)

)
,

and

∞∑
j=

(
Bjf

)
(t) = f (t) +

∞∑
j=

j∏
i=

c(Di)x

(
t –

j∑
i=

δ(Di)

)
.

Since A = I – B, we get from ‖B‖ ≤ c∞ <  that A has a continuous inverse A– : Cω → Cω

with

A– = (I – B)– = I +
∞∑
j=

Bj =
∞∑
j=

Bj,

here B = I . Then

(
A–f (t)

)
=

∞∑
j=

[
Bjf

]
(t) = f (t) +

∞∑
j=

j∏
i=

c(Di)x

(
t –

j∑
i=

δ(Di)

)
,

and consequently

∣∣(A–f
)
(t)

∣∣ =
∣∣∣∣∣

∞∑
j=

[
Bjf

]
(t)

∣∣∣∣∣
=

∣∣∣∣∣f (t) +
∞∑
j=

j∏
i=

c(Di)x

(
t –

j∑
i=

δ(Di)

)∣∣∣∣∣
≤

(
 +

∞∑
j=

cj∞

)
|f |∞

≤ |f |∞
 – c∞

.

Moreover,

∫ ω



∣∣(A–f
)
(t)

∣∣dt = ∫ ω



∣∣∣∣∣
∞∑
j=

(
Bjf

)
(t)

∣∣∣∣∣dt ≤
∞∑
j=

∫ ω



∣∣(Bjf
)
(t)

∣∣dt

=
∞∑
j=

∫ ω



∣∣∣∣∣
j∏

i=

c(Di)x

(
t –

j∑
i=

δ(Di)

)∣∣∣∣∣dt ≤ 
 – c∞

∫ ω



∣∣f (t)∣∣dt.
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Case : |c(t)| > c > .
Let D′

 = t, D′
j = t +

∑j
i= δ(D′

i), j = , , . . . . And set

E : Cω → Cω, (Ex)(t) = x(t) –

c(t)

x
(
t + δ(t)

)
,

B : Cω → Cω, (Bx)(t) =

c(t)

x
(
t + δ(t)

)
.

By the definition of the linear operator B, we have

(
Bj
f

)
(t) =

∏j
i= c(D′

i)
f

(
t +

j∑
i=

δ
(
D′

i
))

,

here Di is defined as in Case . Summing over j yields

∞∑
j=

(
Bj
f

)
(t) = f (t) +

∞∑
j=

∏j
i= c(D′

i)
f

(
t +

j∑
i=

δ
(
D′

i
))

.

Since ‖B‖ < , we obtain that the operator E has a bounded inverse E–,

E– : Cω → Cω, E– = (I – B)– = I +
∞∑
j=

Bj
,

and ∀f ∈ Cω we get

(
E–f

)
(t) = f (t) +

∞∑
j=

(
Bj
f

)
(t).

On the other hand, from (Ax)(t) = x(t) – c(t)x(t – δ(t)), we have

(Ax)(t) = x(t) – c(t)x
(
t – δ(t)

)
= –c(t)

[
x
(
t – δ(t)

)
–


c(t)

x(t)
]
,

i.e.,

(Ax)(t) = –c(t)(Ex)
(
t – δ(t)

)
.

Let f ∈ Cω be arbitrary. We are looking for x such that

(Ax)(t) = f (t),

i.e.,

–c(t)(Ex)
(
t – δ(t)

)
= f (t).

Therefore

(Ex)(t) = –
f (t + δ(t))
c(t + δ(t))

=: f(t),
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and hence

x(t) =
(
E–f

)
(t) = f(t) +

∞∑
j=

(
Bj
f

)
(t) = –

f (t + δ(t))
c(t + δ(t))

–
∞∑
j=

Bj

f (t + δ(t))
c(t + δ(t))

,

proving that A– exists and satisfies

[
A–f

]
(t) = –

f (t + δ(t))
c(t + δ(t))

–
∞∑
j=

Bj

f (t + δ(t))
c(t + δ(t))

= –
f (t + δ(t))
c(t + δ(t))

–
∞∑
j=

f (t + δ(t) +
∑j

i= δ(D′
i))

c(t + δ(t))
∏j

i= c(D′
i)

and

∣∣[A–f
]
(t)

∣∣ =
∣∣∣∣∣– f (t + δ(t))

c(t + δ(t))
–

∞∑
j=

f (t + δ(t) +
∑j

i= δ(D′
i))

c(t + δ(t))
∏j

i= c(D′
i)

∣∣∣∣∣ ≤ ‖f ‖
c – 

.

Statements () and () are proved. From the above proof, () can easily be deduced. �

Lemma . If c(t) <  and σ c∞ < α here σ = –c
–c∞

> , we have for y ∈ K that

(
α

 – c
–

c∞
 – c∞

)
‖y‖ ≤ (

A–y
)
(t)≤ 

 – c∞
‖y‖.

Proof Since c(t) <  and |c(t)| ≤ c∞ < σ c∞ < α < , by Lemma ., we have for y ∈ K that

(
A–y

)
(t) = y(t) +

∞∑
j=

j∏
i=

c(Di)y

(
s –

j∑
i=

δ(Di)

)

= y(t) +
∑

j≥ even

j∏
i=

c(Di)y

(
t –

j∑
i=

δ(Di)

)
–

∑
j≥ odd

j∏
i=

∣∣c(Di)
∣∣y

(
t –

j∑
i=

δ(Di)

)

≥ α‖y‖ + α
∑

j≥ even

cj‖y‖ – ‖y‖
∑

j≥ odd

cj∞

=
α

 – c
‖y‖ – c∞

 – c∞
‖y‖

=
(

α

 – c
–

c∞
 – c∞

)
‖y‖. �

Lemma . If c(t) >  and c(t) < , then for y ∈ K we have

α

 – c
‖y‖ ≤ (

A–y
)
(t)≤ 

 – c∞
‖y‖.

Proof Since c(t) >  and c(t) < , α < , by Lemma ., we have for y ∈ K that

(
A–y

)
(t) = y(t) +

∑
j≥

j∏
i=

c(Di)y

(
t –

j∑
i=

δ(Di)

)
≥ α‖y‖ + α‖y‖

∑
j≥

cj =
α

 – c
‖y‖.

�
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3 Positive periodic solutions for third-order neutral equations
At first, we introduce the following Green’s functions and properties of Green’s functions,
which can be found in [].

Theorem . For ρ >  and h ∈ X, the equation
⎧⎨
⎩u′′′ – ρu = h(t),

u() = u(ω), u′() = u′(ω), u′′() = u′′(ω)
(.)

has a unique solution which is of the form

u(t) =
∫ ω


G(t, s)

(
–h(s)

)
ds, (.)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 exp(  ρ(s–t))[sin(
√

 ρ(t–s)+ π

 )–exp(–

 ρω) sin(

√

 ρ(t–s–ω)+ π

 )]

ρ(+exp(–ρω)– exp(– ρω
 ) cos(

√

 ρω))

+ exp(ρ(t–s))
ρ(exp(ρω)–) ,

 ≤ s ≤ t ≤ ω,
 exp(  ρ(s–t–ω))[sin(

√

 ρ(t–s+ω)+ π

 )–exp(–

 ρω) sin(

√

 ρ(t–s)+ π

 )]

ρ(+exp(–ρω)– exp(– ρω
 ) cos(

√

 ρω))

+ exp(ρ(t+ω–s))
ρ(exp(ρω)–) ,

 ≤ t ≤ s ≤ ω.

(.)

Theorem . For ρ >  and h ∈ X, the equation
⎧⎨
⎩u′′′ + ρu = h(t),

u() = u(ω), u′() = u′(ω), u′′() = u′′(ω)
(.)

has a unique ω-periodic solution

u(t) =
∫ ω


G(t, s)h(s)ds, (.)

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

 exp(  ρ(t–s))[sin(
√

 ρ(t–s)– π

 )–exp(

 ρω) sin(

√

 ρ(t–s–ω)– π

 )]

ρ(+exp(ρω)– exp(  ρω) cos(
√

 ρω))

+ exp(ρ(s–t))
ρ(–exp(–ρω)) ,

 ≤ s≤ t ≤ ω,
 exp(  ρ(t+ω–s))[sin(

√

 ρ(t+ω–s)– π

 )–exp(

 ρω) sin(

√

 ρ(t–s)– π

 )]

ρ(+exp(ρω)– exp(  ρω) cos(
√

 ρω))

+ exp(ρ(s–t–ω))
ρ(–exp(–ρω)) ,

 ≤ t ≤ s ≤ ω.

(.)

Now we present the properties of the Green’s functions for (.), (.).

l =


ρ(exp(ρω) – )
, L =

 +  exp(– ρω

 )
ρ( – exp(– ρω

 ))
.

http://www.advancesindifferenceequations.com/content/2014/1/273
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Theorem .
∫ ω

 G(t, s)ds = 
ρ

and if
√
ρω < 

π holds, then  < l < G(t, s) ≤ L for all
t ∈ [,ω] and s ∈ [,ω].

Theorem .
∫ ω

 G(t, s)ds = 
ρ

and if
√
ρω < 

π holds, then  < l < G(t, s) ≤ L for all
[,ω] and s ∈ [,ω].

Define the Banach space X as in Section . Denote

M =max
{
a(t) : t ∈ [,ω]

}
, m =min

{
a(t) : t ∈ [,ω]

}
, ρ =M,

k = l(M +m) + σLM, k =
k –

√
k – σLlMm
σLM

, α =
l[m – (M +m)c∞]

LM( – c∞)
.

It is easy to see thatM,m,β ,k,k > .
Now we consider (.). First let

f  = lim
x→

f (x)
x

, f ∞ = lim
x→∞

f (x)
x

, f

= lim

x→

f (x)
x

, f ∞ = lim
x→∞

f (x)
x

,

and denote

i = number of ’s in (f , f ∞), i = number of ’s in (f

, f ∞);

i∞ = number of ∞’s in (f , f ∞), i∞ = number of ∞’s in (f

, f ∞).

It is clear that i, i, i∞, i∞ ∈ {, , }.Wewill show that (.) has i or i∞ positivew-periodic
solutions for sufficiently large or small λ, respectively.
In what follows, we discuss (.) in two cases, namely the case where c(t) <  and –c∞ >

–min{k, m
M+m }.

From –c∞ > – m
M+m , we have α = l[m–(M+m)c∞]

LM(–c∞) > l(m–(M+m)· m
M+m )

LM(–c∞) = . So, we get α > .
Moreover, we consider the equation

σLMx – kx + lm = .

Then the equation has a solution x = k = k–
√
k–σLlMm
σLM . From c∞ < k, we can get

σLMc∞ – kc∞ + lm < .

So, we have

σLMc∞ –
(
l(M +m) + σLM

)
c∞ + lm < ,

we get

σ c∞ >
l[m – (M +m)c∞]

LM( – c∞)
= α.

On the other hand, the case where c >  and c∞ < min{ m
M+m ,

LM–lm
(L–l)M–lm } (note that c∞ <

m
M+m implies α > ; c∞ < LM–lm

(L–l)M–lm implies α < ). Obviously, we have c∞ < , which makes
Lemma . applicable for both cases, and also Lemma . or ., respectively.

http://www.advancesindifferenceequations.com/content/2014/1/273
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Let K = {x ∈ X : x(t) ≥ α‖x‖} denote the cone in X as defined in Section , where α is
just as defined above. We also use Kr = {x ∈ K : ‖x‖ < r} and ∂Kr = {x ∈ K : ‖x‖ = r}.
Let y(t) = (Ax)(t), then fromLemma.we have x(t) = (A–y)(t). Hence (.) can be trans-

formed into

y′′′(t) – a(t)
(
A–y

)
(t) = –λb(t)f

((
A–y

)(
t – τ (t)

))
, (.)

which can be further rewritten as

y′′′(t) – a(t)y(t) + a(t)H
(
y(t)

)
= –λb(t)f

((
A–y

)(
t – τ (t)

))
, (.)

where H(y(t)) = y(t) – (A–y)(t) = –c(t)(A–y)(t – δ(t)).
Now we discuss the two cases separately.

3.1 Case I: c(t) < 0 and –c∞ > –min{k1, m
M+m }

Now we consider

y′′′(t) – a(t)y(t) + a(t)H
(
y(t)

)
= h(t), h ∈ C–

ω, (.)

and define the operators T , Ĥ : X → X by

(Th)(t) =
∫ t+ω

t
G(t, s)

(
–h(s)

)
ds, (Ĥy)(t) = –M + a(t)y(t) – a(t)H

(
y(t)

)
.

Clearly T , Ĥ are completely continuous, (Th)(t) >  for h(t) <  and ‖Ĥ‖ ≤ (M – m +
M c∞

–c∞ ). By Theorem ., the solution of (.) can be written in the form

y(t) = (Th))(t) + (TĤy)(t). (.)

In view of c(t) <  and –c∞ > –min{k, m
M+m }, we have

‖TĤ‖ ≤ ‖T‖‖Ĥ‖ ≤ M –m +mc∞
M( – c∞)

< , (.)

where we used the fact
∫ t+ω

t G(t, s)ds = 
M . Hence

y(t) = (I – TĤ)–(Th)(t).

Define an operator P : X → X by

(Ph)(t) = (I – TĤ)–(Th)(t).

Obviously, for any h ∈ C–
ω , if max{a(t) : t ∈ [,ω]} < 


√
 (

π
ω
), y(t) = (Ph)(t) is the unique

positive ω-periodic solution of (.).

Lemma . P is completely continuous and

(Th)(t) ≤ (Ph)(t) ≤ M( – c∞)
m – (M +m)c∞

‖Th‖ for all h ∈ C–
ω. (.)

http://www.advancesindifferenceequations.com/content/2014/1/273
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Proof By the Neumann expansion of P, we have

P = (I – TĤ)–T

=
(
I + TĤ + (TĤ) + · · · + (TĤ)n + · · · )T

= T + TĤT + (TĤ)T + · · · + (TĤ)nT + · · · . (.)

Since T and Ĥ are completely continuous, so is P. Moreover, by (.), and recalling that
‖TĤ‖ ≤ M–m+mc∞

M(–c∞) < , we get

(Th)(t) ≤ (Ph)(t) ≤ M( – c∞)
m – (M +m)c∞

‖Th‖. �

Define an operator Q : X → X by

Qy(t) = P
(
λb(t)f

((
A–y

)(
t – τ (t)

)))
. (.)

Lemma . Q(K)⊂ K .

Proof From the definition of Q, it is easy to verify that Qy(t + ω) = Qy(t). For y ∈ K , we
have from Lemma . that

Qy(t) = P
(
λb(t)f

((
A–y

)(
t – τ (t)

)))
≥ T

(
λb(t)f

((
A–y

)(
t – τ (t)

)))
= λ

∫ t+ω

t
G(t, s)b(s)f

[(
A–y

)(
s – τ (s)

)]
ds

≥ λl
∫ ω


b(s)f

[(
A–y

)(
s – τ (s)

)]
ds.

On the other hand,

Qy(t) = P
(
λb(t)f

((
A–y

)(
t – τ (t)

)))
≤ M( – c∞)

m – (M +m)c∞

∥∥T(
λb(t)f

((
A–y

)(
t – τ (t)

)))∥∥
= λ

M( – c∞)
m – (M +m)c∞

max
t∈[,ω]

∫ t+ω

t
G(t, s)b(s)f

((
A–y

)(
s – τ (s)

))
ds

≤ λ
M( – c∞)

m – (M +m)c∞
L

∫ ω


b(s)f

((
A–y

)(
s – τ (s)

))
ds.

Therefore

Qy(t) ≥ l[m – (M +m)c∞]
LM( – c∞)

‖Qy‖ = α‖Qy‖,

i.e., Q(K) ⊂ K . �

From the continuity of P, it is easy to verify that Q is completely continuous in X. Com-
paring (.) to (.), it is obvious that the existence of periodic solutions for equation (.)
is equivalent to the existence of fixed-points for the operatorQ in X. Recalling Lemma .,
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the existence of positive periodic solutions for (.) is equivalent to the existence of fixed
points of Q in K . Furthermore, if Q has a fixed point y in K , it means that (A–y)(t) is a
positive ω-periodic solution of (.).

Lemma . If there exists η >  such that

f
((
A–y

)(
t – τ (t)

)) ≥ (
A–y

)(
t – τ (t)

)
η for t ∈ [,ω] and y ∈ K ,

then

‖Qy‖ ≥ λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖, y ∈ K .

Proof By Lemma . and Lemma ., we have for y ∈ K that

Qy(t) = P
(
λb(t)f

((
A–y

)(
t – τ (t)

)))
≥ T

(
λb(t)f

((
A–y

)(
t – τ (t)

)))
= λ

∫ t+ω

t
G(t, s)b(s)f

((
A–y

)(
s – τ (s)

))
ds

≥ λlη
∫ ω


b(s)

(
A–y

)(
s – τ (s)

)
ds

≥ λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖.

Hence

‖Qy‖ ≥ λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖, y ∈ K . �

Lemma . If there exists ε >  such that

f
((
A–y

)(
t – τ (t)

)) ≤ (
A–y

)(
t – τ (t)

)
ε for t ∈ [,ω] and y ∈ K ,

then

‖Qy‖ ≤ λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖, y ∈ K .

Proof By Lemma . and Lemma ., we have

‖Qy(t)‖ ≤ λ
M( – c∞)

m – (M +m)c∞
L

∫ ω


b(s)f

((
A–y

)(
s – τ (s)

))
ds

≤ λ
M( – c∞)

m – (M +m)c∞
Lε

∫ ω


b(s)

(
A–y

)(
s – τ (s)

)
ds

≤ λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖. �

Define

F(r) =max

{
f (t) :  ≤ t ≤ r

 – c∞

}
,
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f(r) =min

{
f (t) :

(
α

 – c
–

c∞
 – c∞

)
r ≤ t ≤ r

 – c∞

}
.

Lemma . If y ∈ ∂Kr , then

‖Qy‖ ≥ λlf(r)
∫ ω


b(s)ds.

Proof By Lemma ., we obtain ( α

–c
– c∞

–c∞
)r ≤ (A–y)(t – τ (t)) ≤ r

–c∞ for y ∈ ∂Kr ,
which yields f ((A–y)(t – τ (t))) ≥ f(r). The lemma now follows analogous to the proof
of Lemma .. �

Lemma . If y ∈ ∂Kr , then

‖Qy‖ ≤ λ
LM( – c∞)F(r)
m – (M +m)c∞

∫ ω


b(s)ds.

Proof By Lemma ., we can have  ≤ (A–y)(t – τ (t)) ≤ r
–c∞ for y ∈ ∂Kr , which yields

f ((A–y)(t – τ (t)))≤ F(r). Similar to the proof of Lemma ., we get the conclusion. �

We quote the fixed point theorem which our results will be based on.

Lemma . [] Let X be a Banach space and K be a cone in X. For r > , define Kr =
{u ∈ K : ‖u‖ < r}. Assume that T : Kr → K is completely continuous such that Tx �= x for
x ∈ ∂Kr = {u ∈ K : ‖u‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(T ,Kr ,K) = ;
(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(T ,Kr ,K) = .

Now we give our main results on positive periodic solutions for (.).

Theorem .
(a) If i =  or , then (.) has i positive ω-periodic solutions for λ > 

f()l
∫ ω
 b(s)ds > ;

(b) If i∞ =  or , then (.) has i∞ positive ω-periodic solutions for
 < λ < m–(M+m)c∞

LM(–c∞)F()
∫ ω
 b(s)ds ;

(c) If i∞ =  or i = , then (.) has no positive ω-periodic solutions for sufficiently small
or sufficiently large λ > , respectively.

Proof (a) Choose r = . Take λ = 
f(r)l

∫ ω
 b(s)ds > , then for all λ > λ, we have from

Lemma . that

‖Qy‖ > ‖y‖ for y ∈ ∂Kr . (.)

Case . If f  = , we can choose  < r̄ < r, so that f (u) ≤ εu for  ≤ u ≤ r̄, where the
constant ε >  satisfies

λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

< . (.)

Let r = (– c∞)r̄, we have f ((A–y)(t–τ (t)))≤ ε(A–y)(t–τ (t)) for y ∈ Kr . By Lemma .,
we have  ≤ (A–y)(t – τ (t))≤ ‖y‖

–c∞ ≤ r̄ for y ∈ ∂Kr . In view of Lemma . and (.), we
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have for y ∈ ∂Kr that

‖Qy‖ ≤ λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖ < ‖y‖.

It follows from Lemma . and (.) that

i(Q,Kr ,K) = , i(Q,Kr ,K) = ,

thus i(Q,Kr\K̄r ,K) = – and Q has a fixed point y in Kr\K̄r , which means that (A–y)(t)
is a positive ω-positive solution of (.) for λ > λ.
Case . If f ∞ = , there exists a constant H̃ >  such that f (u) ≤ εu for u≥ H̃ , where the

constant ε >  satisfies

λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

< . (.)

Let r = max{r, H̃(–c)(–c
∞)

α(–c∞)–c∞(–c)
}, we have f ((A–y)(t – τ (t))) ≤ ε(A–y)(t – τ (t)) for y ∈

Kr . By Lemma ., we have (A–y)(t – τ (t)) ≥ ( α

–c
– c∞

–c∞
)‖y‖ ≥ H̃ for y ∈ ∂Kr . Thus by

Lemma . and (.), we have for y ∈ ∂Kr that

‖Qy‖ ≤ λε
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖ < ‖y‖.

Recalling Lemma . and (.) that

i(Q,Kr ,K) = , i(Q,Kr ,K) = ,

then i(Q,Kr\K̄r ,K) =  and Q has a fixed point y in Kr\K̄r , which means that (A–y)(t)
is a positive ω-positive solution of (.) for λ > λ.
Case . If f  = f ∞ = , from the above arguments, there exist  < r < r < r such that Q

has a fixed point y(t) inKr\K̄r and a fixed point y(t) inKr\K̄r . Consequently, (A–y)(t)
and (A–y)(t) are two positive ω-periodic solutions of (.) for λ > λ.
(b) Let r = . Take λ = m–(M+m)c∞

LM(–c∞)F(r)
∫ ω
 b(s)ds > , then by Lemma . we know if λ < λ

then

‖Qy‖ < ‖y‖, y ∈ ∂Kr . (.)

Case . If f

= ∞, we can choose  < r̄ < r so that f (u) ≥ ηu for  ≤ u ≤ r̄, where the

constant η >  satisfies

λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds > . (.)

Let r = (– c∞)r̄, we have f ((A–y)(t–τ (t)))≥ η(A–y)(t–τ (t)) for y ∈ Kr . By Lemma .,
we have  ≤ (A–y)(t – τ (t))≤ ‖y‖

–c∞ ≤ r̄ for y ∈ ∂Kr . Thus by Lemma . and (.),

‖Qy‖ ≥ λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖ > ‖y‖.
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It follows from Lemma . and (.) that

i(Q,Kr ,K) = , i(Q,Kr ,K) = ,

which implies i(Q,Kr\K̄r ,K) =  and Q has a fixed point y in Kr\K̄r . Therefore (A–y)(t)
is a positive ω-periodic solution of (.) for  < λ < λ.
Case . If f ∞ = ∞, there exists a constant H̃ >  such that f (u) ≥ ηu for u ≥ H̃ , where

the constant η >  satisfies

λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds > . (.)

Let r = max{r, H̃(–c)(–c
∞)

α(–c∞)–c∞(–c)
}, we have f ((A–y)(t – τ (t))) ≥ η(A–y)(t – τ (t)) for y ∈

Kr . By Lemma ., we have (A–y)(t – τ (t)) ≥ ( α

–c
– c∞

–c∞
)‖y‖ ≥ H̃ for y ∈ ∂Kr . Thus by

Lemma . and (.), we have for y ∈ ∂Kr that

‖Qy‖ ≥ λlη
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖ > ‖y‖.

It follows from Lemma . and (.) that

i(Q,Kr ,K) = , i(Q,Kr ,K) = ,

i.e., i(Q,Kr\K̄r ,K) = – and Q has a fixed point y in Kr\K̄r . That means (A–y)(t) is a
positive ω-periodic solution of (.) for  < λ < λ.
Case . If f


= f ∞ = ∞, from the above arguments, Q has a fixed point y in Kr\K̄r

and a fixed point y in Kr\K̄r . Consequently, (A–y)(t) and (A–y)(t) are two positive
ω-periodic solutions of (.) for  < λ < λ.
(c) By Lemma ., if y ∈ K , then (A–y)(t – τ (t))≥ ( α

–c
– c∞

–c∞
)‖y‖ >  for t ∈ [,ω].

Case . If i = , we have f

>  and f ∞ > . Let b =min{ f (u)u ;u > } > , then we obtain

f (u) ≥ bu, u ∈ [, +∞).

Assume that y(t) is a positive ω-periodic solution of (.) for λ > λ, where λ =
(–c)(–c

∞)
lb[α(–c∞)–c∞(–c)]

∫ ω
 b(s)ds > . SinceQy(t) = y(t) for t ∈ [,ω], then by Lemma . if λ > λ,

we have

‖y‖ = ‖Qy‖ ≥ λlb
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖ > ‖y‖,

which is a contradiction.
Case . If i∞ = , we have f  < ∞ and f ∞ < ∞. Let b = max{ f (u)u : u > } > , then we

obtain

f (u) ≤ bu, u ∈ [,∞).
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Assume that y(t) is a positive ω-periodic solution of (.) for  < λ < λ, where λ =
m–(M+m)c∞
bLM

∫ ω
 b(s)ds . Since Qy(t) = y(t) for t ∈ [,ω], it follows from Lemma . that

‖y‖ = ‖Qy‖ ≤ λb
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖ < ‖y‖,

which is a contradiction. �

Theorem .
(a) If there exists a constant b >  such that f (u) ≥ bu for u ∈ [, +∞), then (.) has

no positive ω-periodic solution for λ > (–c)(–c
∞)

lb[α(–c∞)–c∞(–c)]
∫ ω
 b(s)ds .

(b) If there exists a constant b >  such that f (u) ≤ bu for u ∈ [, +∞), then (.) has
no positive ω-periodic solution for  < λ < m–(M+m)c∞

bLM
∫ ω
 b(s)ds .

Proof From the proof of (c) in Theorem ., we obtain this theorem immediately. �

Theorem. Assume i = i = i∞ = i∞ = , and that one of the following conditions holds:
() f  ≤ f ∞;
() f


> f ∞;

() f

≤ f ∞ ≤ f  ≤ f ∞;

() f ∞ ≤ f

≤ f ∞ ≤ f .

If

( – c)( – c∞)
l[α( – c∞) – c∞( – c)]

∫ ω

 b(s)dsmax{f

, f , f ∞, f ∞}

< λ <
m – (M +m)c∞

LM
∫ ω

 b(s)dsmin{f

, f , f ∞, f ∞} ,

then (.) has one positive ω-periodic solution.

Proof Case . If f  ≤ f ∞, then

( – c)( – c∞)
l[α( – c∞) – c∞( – c)]

∫ ω

 b(s)ds
< λ <

m – (M +m)c∞
LM

∫ ω

 b(s)ds
.

It is easy to see that there exists  < ε < f∞ such that

( – c)( – c∞)
(f̄∞ – ε)l[α( – c∞) – c∞( – c)]

∫ ω

 b(s)ds
< λ <

m – (M +m)c∞
(f


+ ε)LM

∫ ω

 b(s)ds
.

For the above ε, we choose r̄ >  such that f (u) ≤ (f

+ε)u for  ≤ u≤ r̄. Let r = (–c∞)r̄,

we have f ((A–y)(t – τ (t))) ≤ (f

+ ε)(A–y)(t – τ (t)) for y ∈ Kr . By Lemma ., we have

 ≤ (A–y)(t– τ (t)) ≤ ‖y‖
–c∞ ≤ r̄ for K ∈ ∂Kr . Thus by Lemma . we have for y ∈ ∂Kr that

‖Qy‖ ≤ λ(f

+ ε)

LM
∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖ < ‖y‖.
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On the other hand, there exists a constant H̃ >  such that f (u) ≥ (f ∞ – ε)u for u ≥ H̃ .
Let r =max{r, H̃(–c)(–c

∞)
α(–c∞)–c∞(–c)

}, we have f ((A–y)(t – τ (t)))≥ (f ∞ – ε)(A–y)(t – τ (t)) for

y ∈ Kr . By Lemma ., we have (A–y)(t – τ (t)) ≥ ( α

–c
– c∞

–c∞
)‖y‖ ≥ H̃ for y ∈ ∂Kr . Thus

by Lemma ., for y ∈ ∂Kr ,

‖Qy‖ ≥ λl(f ∞ – ε)
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖ > ‖y‖.

It follows from Lemma . that

i(Q,Kr ,K) = , i(Q,Kr ,K) = ,

thus i(Q,Kr\K̄r ,K) = – and Q has a fixed point y in Kr\K̄r . So (A–y)(t) is a positive
ω-periodic solution of (.).
Case . If f


> f ∞, in this case, we have

( – c)( – c∞)
f̄l[α( – c∞) – c∞( – c)]

∫ ω

 b(s)ds
< λ <

m – (M +m)c∞
f ∞LM

∫ ω

 b(s)ds
.

It is easy to see that there exists  < ε < f such that

( – c)( – c∞)
(f̄ – ε)l[α( – c∞) – c∞( – c)]

∫ ω

 b(s)ds
< λ <

m – (M +m)c∞
(f ∞ + ε)LM

∫ ω

 b(s)ds
.

For the above ε, we choose r̄ >  such that f (u) ≥ (f –ε)u for  ≤ u≤ r̄. Let r = (–c∞)r̄,
we have f ((A–y)(t – τ (t))) ≥ (f  – ε)(A–y)(t – τ (t)) for y ∈ Kr . By Lemma ., we have
 ≤ (A–y)(t – τ (t)) ≤ ‖y‖

–c∞ ≤ r̄ for y ∈ ∂Kr . Thus we have by Lemma . that for y ∈ ∂Kr ,

‖Qy‖ ≥ λl(f  – ε)
(

α

 – c
–

c∞
 – c∞

)∫ ω


b(s)ds‖y‖ > ‖y‖.

On the other hand, there exists a constant H̃ >  such that f (u) ≤ (f ∞ + ε)u for u ≥ H̃ .

Let r =max{r, H̃(–c)(–c
∞)

α(–c∞)–c∞(–c)
}, we have f ((A–y)(t – τ (t)))≤ (f ∞ + ε)(A–y)(t – τ (t)) for

y ∈ Kr . By Lemma . we have (A–y)(t – τ (t)) ≥ ( α

–c
– c∞

–c∞
)‖y‖ ≥ H̃ for y ∈ ∂Kr . Thus

by Lemma ., for y ∈ ∂Kr ,

‖Qy‖ ≤ λ(f ∞ + ε)
LM

∫ ω

 b(s)ds
m – (M +m)c∞

‖y‖.

It follows from Lemma . that

i(Q,Kr ,K) = , i(Q,Kr ,K) = .

Thus i(Q,Kr\K̄r ,K) = – and Q has a fixed point y in Kr\K̄r , proving that (A–y)(t) is a
positive ω-periodic solution of (.).
Case . f


≤ f ∞ ≤ f  ≤ f ∞. The proof is the same as in Case .

Case . f ∞ ≤ f

≤ f ∞ ≤ f . The proof is the same as in Case . �
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3.2 Case II: c(t) > 0 and c∞ <min{ m
M+m ,

LM–lm
(L–l)M–lm }

Define

f(r) =min

{
f (t) :

α

 – c
r ≤ t ≤ r

 – c∞

}
.

Similarly as in Section ., we get the following results.

Theorem .
(a) If i =  or , then (.) has i positive ω-periodic solutions for λ > 

f()l
∫ ω
 b(s)ds > .

(b) If i∞ =  or , then (.) has i∞ positive ω-periodic solutions for
 < λ < m–(M+m)c∞

LM(–c∞)F()
∫ ω
 b(s)ds .

(c) If i∞ =  or i = , then (.) has no positive ω-periodic solution for sufficiently small
or large λ > , respectively.

Theorem .
(a) If there exists a constant b >  such that f (u) ≥ bu for u ∈ [, +∞), then (.) has no

positive ω-periodic solution for λ > –c
lαb

∫ ω
 b(s)ds .

(b) If there exists a constant b >  such that f (u) ≤ bu for u ∈ [, +∞), then (.) has no
positive ω-periodic solution for  < λ < m–(M+m)c∞

bLM
∫ ω
 b(s)ds .

Theorem . Assume that i = i = i∞ = i∞ =  hold, and that one of the following con-
ditions holds:
() f  ≤ f ∞;
() f


> f ∞;

() f

≤ f ∞ ≤ f  ≤ f ∞;

() f ∞ ≤ f

≤ f ∞ ≤ f .

If

 – c
lα

∫ ω

 b(s)dsmax{f

, f , f ∞, f ∞} < λ <

m – (M +m)c∞
LM

∫ ω

 b(s)dsmin{f

, f , f ∞, f ∞} ,

then (.) has one positive ω-periodic solution.

Remark  In a similar way, one can consider the third-order neutral functional differential
equation (x(t) – c(t)x(t – δ(t)))′′′ + a(t)x(t) = λb(t)f (x(t – τ (t))).

We illustrate our results with an example.

Example . Consider the following third-order neutral differential equation:

(
u(t) +




(
 –



sint

)
u
(
t – cos t

))′′′
–



(
 –



sin t

)
u(t)

= –λ( – cost)u
(
t – τ (t)

)
au(t–τ (t)), (.)

where λ and  < a <  are two positive parameters, τ (t + π ) = τ (t).
Comparing (.) to (.), we see that δ(t) = cos t, c(t) = – 

 ( –

 sint), a(t) =


 ( –


 sin

 t), b(t) =  – cost, ω = π , f (u) = uau. Clearly, c∞ = 
 , c =


 , M = 

 , m = 
 ,
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and we get ρ = 
 , noticing that

√
π
 < π

 holds. f  = , f ∞ = , i = . By Theorem ., we
easily get the following conclusion: equation (.) has two positive π-periodic solutions
for λ > 

πr
, where r =min{f (.), f (  )}.

In fact, by simple computations, we have

l =


ρ(exp(ρω) – )
= ., L =

 +  exp(– ρω

 )
ρ( – exp(– ρω

 ))
= .

k = ., k = ., α = .,

c∞ =



<min

{
k,

m
M +m

}
= ., c∞ =




< . = α,

and

f() =min

{
f (t) : .≈ α

 – c
–

c∞
 – c∞

≤ t ≤ 


}

=min

{
f (.), f

(



)}
= r,


f()l

∫ π

 b(s)ds
=


πr

.
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