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Abstract
In the present paper, we introduce two-parameter Srivastava polynomials in one, two
and three variables by inserting new indices, where in the special cases they reduce
to (among others) Laguerre, Jacobi, Bessel and Lagrange polynomials. These
polynomials include the family of polynomials which were introduced and/or
investigated in (Srivastava in Indian J. Math. 14:1-6, 1972; González et al. in Math.
Comput. Model. 34:133-175, 2001; Altın et al. in Integral Transforms Spec. Funct.
17(5):315-320, 2006; Srivastava et al. in Integral Transforms Spec. Funct. 21(12):885-896,
2010; Kaanoglu and Özarslan in Math. Comput. Model. 54:625-631, 2011). We prove
several two-sided linear generating relations and obtain various series identities for
these polynomials. Furthermore, we exhibit some illustrative consequences of the
main results for some well-known special polynomials which are contained by the
two-parameter Srivastava polynomials.
MSC: 33C45

1 Introduction
Let {An,k}∞n,k= be a bounded double sequence of real or complex numbers, let [a] denote
the greatest integer in a ∈ R, and let (λ)ν , (λ) ≡ , denote the Pochhammer symbol de-
fined by

(λ)ν :=
�(λ + ν)

�(λ)

by means of familiar gamma functions. In , Srivastava [] introduced the following
family of polynomials:

SNn (z) :=
[ nN ]∑
k=

(–n)Nk
k!

An,kzk
(
n ∈N =N∪ {};N ∈ N

)
, ()

where N is the set of positive integers.
Afterward, González et al. [] extended the Srivastava polynomials SNn (z) as follows:

SNn,m(z) :=
[ nN ]∑
k=

(–n)Nk
k!

An+m,kzk (m,n ∈N;N ∈N) ()
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and investigated their properties extensively. Motivated essentially by the definitions ()
and (), scientists investigated and studied various classes of Srivastava polynomials in
one and more variables.
In [], the following family of bivariate polynomials was introduced:

Sm,N
n (x, y) :=

[ nN ]∑
k=

Am+n,k
xn–Nk

(n –Nk)!
yk

k!
(n,m ∈N,N ∈N),

and it was shown that the polynomials Sm,N
n (x, y) include many well-known polynomials

such as Lagrange-Hermite polynomials, Lagrange polynomials and Hermite-Kampé de
Feriét polynomials.
In [], Srivastava et al. introduced the three-variable polynomials

Sm,M,N
n (x, y, z)

:=
[ nN ]∑
k=

[ k
M ]∑
l=

Am+n,k,l
xl

l!
yk–Ml

(k –Ml)!
zn–Nk

(n –Nk)!
(m,n ∈ N;M,N ∈ N), ()

where {Am,n,k} is a triple sequence of complex numbers. Suitable choices of {Am,n,k} in
equation () give a three-variable version of well-known polynomials (see also []). Re-
cently, in [], the multivariable extension of the Srivastava polynomials in r-variable was
introduced

Sm,N,N,...,Nr–
n (x,x, . . . ,xr)

:=
[ n
Nr–

]∑
kr–=

[ kr–Nr–
]∑

kr–=

· · ·
[ kN ]∑
k=

[ kN ]∑
k=

Am+n,kr–,k,k,...,kr–
xk
k!

xk–Nk


(k –Nk)!
· · · xn–Nr–kr–

r

(n –Nr–kr–)!

(m,n ∈N;N,N, . . . ,Nr– ∈N), ()

where {Am,kr–,k,k,...,kr–} is a sequence of complex numbers.
In this paper we introduce the two-parameter Srivastava polynomials in one and more

variables by inserting new indices. These polynomials include the family of polynomials
which were introduced and/or investigated in [–, , ] and []. We prove several two-
sided linear generating relations and obtain various series identities for these polynomials.
Furthermore, we exhibit some illustrative consequences of themain results for some well-
known special polynomials which are contained by the two-parameter Srivastava polyno-
mials.

2 Two-parameter one-variable Srivastava polynomials
In this section we introduce the following family of two-parameter one-variable polyno-
mials:

Sm,m
n (x) :=

n∑
k=

(–n)k
k!

Am+m+n,m+kx
k (m,m,n,k ∈N), ()
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where {An,k} is a bounded double sequence of real or complex numbers. Note that appro-
priate choices of the sequence An,k give one-variable versions of the well-known polyno-
mials.

Remark . Choosing Am,n = (–α –m)n (m,n ∈N) in (), we get

Sm,m
n

(
–
x

)
= (–)m (α +m + n + )m

n!
(–x)n

L(α+m)
n (x),

where L(α)n (x) are the classical Laguerre polynomials given by

L(α)n (x) =
(–x)n

n! 
F

(
–n, –α – n; –;

–
x

)
.

Remark . Setting

Am,n =
(α + β + )m(–β –m)n

(α + β + )m(–α – β – m)n
(m,n ∈ N)

in (), we obtain

Sm,m
n

(


 + x

)

=
(α + β + )m+m+n(–β –m –m – n)m ( + α + β + m +m)n

(α + β + )m+m+n(–α – β – m – m – n)m ( + α + β + m +m)n

× n!
(


 + x

)n

P(α+m+m,β+m)
n (x),

where P(α,β)
n (x) are the classical Jacobi polynomials.

Remark . If we set Am,n = (α +m – )n (m,n ∈ N) in (), then we get

Sm,m
n

(
–x
β

)
= (α +m +m + n – )myn(x,α +m + m,β) (β �= ),

where yn(x,α,β) are the classical Bessel polynomials given by

yn(x,α,β) = F
(
–n,α + n – ;–;

–x
β

)
.

Theorem . Let {f (n)}∞n= be a bounded sequence of complex numbers. Then

∞∑
m,m,n=

f (n +m +m)Sm,m
n (x)

wm


m!
wm


m!
tn

n!

=
∞∑

m,m=

f (m +m)Am+m,m
(w + t)m

m!
(w + (–xt))m

m!
, ()

provided each member of the series identity () exists.
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Proof Let the left-hand side of () be denoted by �(x). Then, using the definition of
Sm,m
n (x) on the left-hand side of (), we have

�(x) =
∞∑

m,m,n=

f (n +m +m)
n∑

k=

(–n)k
k!

Am+m+n,m+kx
k w

m


m!
wm


m!
tn

n!

=
∞∑

m,m,n=

f (n +m +m)
n∑

k=


k!
Am+m+n,m+k(–x)

k w
m


m!
wm


m!
tn

(n – k)!

=
∞∑

m,m,n,k=

f (n +m +m + k)
(–xt)k

k!
Am+m+n+k,m+k

wm


m!
wm


m!
tn

n!
.

Let m →m – n,

�(x) =
∞∑

m,m,k=

f (m +m + k)
(–xt)k

k!
Am+m+k,m+k

( m∑
n=

wm–n
 tn

(m – n)!n!

)
wm


m!

=
∞∑

m,m,k=

f (m +m + k)
(–xt)k

k!
Am+m+k,m+k

(∑m
n=

(m
n
)
wm–n
 tn

m!

)
wm


m!

=
∞∑

m,m,k=

f (m +m + k)Am+m+k,m+k
(w + t)m

m!
wm


m!
(–xt)k

k!
.

Let m →m – k,

�(x) =
∞∑

m,m=

f (m +m)Am+m,m
(w + t)m

m!

m∑
k=

wm–k
 (–xt)k

(m – k)!k!

=
∞∑

m,m=

f (m +m)Am+m,m
(w + t)m

m!
(w + (–xt))m

m!
. �

Remark . Choosing Am,n = (–α –m)n (m,n ∈ N) and x → – 
x , then by Theorem .,

we get

∞∑
m,m,n=

f (n +m +m)(–)m (α +m + n + )mL
(α+m)
n (x)

wm


m!
wm


m!

(
–
t
x

)n

=
∞∑

m,m=

f (m +m)(–α –m –m)m
(w + t)m

m!
(w + ( tx ))

m

m!
.

If we set w = – t
x and f =  into the above equation, then we have

∞∑
m,m,n=

(–)m (α +m + n + )mL
(α+m)
n (x)

wm


m!
(– t

x )
n+m

m!

=
∞∑

m=

(w + t)m

m!
= ew+t .
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Remark . Setting

Am,n =
(α + β + )m(–β –m)n

(α + β + )m(–α – β – m)n
(m,n ∈ N)

and x → 
+x in equation (), we have

∞∑
m,m,n=

f (n +m +m)

× (α + β + )m+m+n(–β –m –m – n)m ( + α + β + m +m)n
(α + β + )m+m+n(–α – β – m – m – n)m ( + α + β + m +m)n

× n!
(


 + x

)n

P(α+m+m,β+m)
n (x)

wm


m!
wm


m!
tn

=
∞∑

m,m=

f (m +m)
(α + β + )m+m (–β –m –m)m

(α + β + )m+m (–α – β – m – m)m

× (w + t)m

m!
(w + (– 

+x t))
m

m!
.

Remark . If we set Am,n = (α +m–)n (m,n ∈N) and x→ – x
β
in (), then we can write

∞∑
m,m,n=

f (n +m +m)(α +m +m + n – )myn(x,α +m + m,β)
wm


m!
wm


m!
tn

n!

=
∞∑

m,m=

f (m +m)(α +m +m – )m
(w + t)m

m!
(w + x

β
t)m

m!
.

If we set f =  and w = – x
β
t, then

∞∑
m,m,n=

(α +m +m + n – )myn(x,α +m + m,β)
wm


m!
(– x

β
t)m

m!
tn

n!

=
∞∑

m=

(w + t)m

m!
= ew+t .

Remark . If we consider Remarks . and ., we get the following relation between
Laguerre polynomials L(α)n (x) and Bessel polynomials yn(x,α,β):

∞∑
m,m,n=

(–)m (α +m + n + )mL
(α+m)
n (x)

wm


m!
(– t

x )
n+m

m!

=
∞∑

m,m,n=

(α +m +m + n – )myn(x,α +m + m,β)
wm


m!
(– x

β
t)m

m!
tn

n!
.
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3 Two-parameter two-variable Srivastava polynomials
In this section we introduce the following two-parameter family of bivariate polynomials:

Sm,m
n (x, y) :=

n∑
k=

Am+m+n,m+k
xk

k!
yn–k

(n – k)!
(m,m,n,k ∈ N), ()

where {An,k} is a bounded double sequence of real or complex numbers. Note that in the
particular case these polynomials include the Lagrange polynomials.

Remark . Choosing Am,n = (α)m–n(β)n (m,n ∈N) in (), we have

Sm,m
n (x, y) = (α)m (β)mg

(α+m,β+m)
n (x, y),

where g(α,β)n (x, y) are the Lagrange polynomials given by

g(α,β)n (x, y) =
n∑

k=

(α)n–k(β)k
(n – k)!k!

xkyn–k .

Using similar techniques as in the proof of Theorem ., we get the following theorem.

Theorem . Let {f (n)}∞n= be a bounded sequence of complex numbers. Then

∞∑
m,m,n=

f (n +m +m)Sm,m
n (x, y)

wm


m!
wm


m!
tn

=
∞∑

m,m=

f (m +m)Am+m,m
(w + yt)m

m!
(w + xt)m

m!
, ()

provided each member of the series identity () exists.

Remark . If we set Am,n = (α)m–n(β)n (m,n ∈N) in (), we have

∞∑
m,m,n=

f (n +m +m)(α)m (β)mg
(α+m,β+m)
n (x, y)

wm


m!
wm


m!
tn

=
∞∑

m,m=

f (m +m)(α)m (β)m
(w + yt)m

m!
(w + xt)m

m!
.

Choosing f =  gives

∞∑
m,m,n=

(α)m (β)mg
(α+m,β+m)
n (x, y)

wm


m!
wm


m!
tn

= ( –w – yt)–α( –w – xt)–β .

Furthermore, since we have the relation between P(α,β)
n (x, y) Jacobi polynomials and

Lagrange polynomials [] as

g(α,β)n (x, y) = (y – x)nP(–α–n,–β–n)
n

(
x + y
x – y

)
,
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we get the following generating relation for Jacobi polynomials P(α,β)
n (x, y):

∞∑
m,m,n=

(α)m (β)m (y – x)nP(–α–m–n,–β–m–n)
n

(
x + y
x – y

)
wm


m!
wm


m!
tn

= ( –w – yt)–α( –w – xt)–β .

4 Two-parameter three-variable Srivastava polynomials
In this section we define two-parameter three-variable Srivastava polynomials as follows:

Sm,m,M
n (x, y, z) :=

n∑
k=

[ k
M ]∑
l=

Am+m+n,m+k,l
xl

l!
yk–Ml

(k –Ml)!
zn–k

(n – k)!

(m,m,n,k, l ∈N,M ∈N), ()

where {An,k,l}∞n,k= is a bounded triple sequence of real or complex numbers.
Using similar techniques as in the proof of Theorem ., we get the following theorem.

Theorem . Let {f (n)}∞n= be a bounded sequence of complex numbers. Then

∞∑
m,m,n=

f (n +m +m)Sm,m,M
n (x, y, z)

wm


m!
wm


m!
tn

=
∞∑

m,m,l=

f (m +m +Ml)Am+m+Ml,m+Ml,l
(xtM)l

l!
(w + zt)m

m!
(w + yt)m

m!
, ()

provided each member of the series identity () exists.

Theorem. Let {f (n)}∞n= be a bounded sequence of complex numbers, and let Sm,m,M
n (x,

y, z) be defined by (). Suppose also that two-parameter two-variable polynomials PM
m,m (x,

y) are defined by

PM
m,m (x, y) =

[m
M ]∑
l=

Am+m,m,l
xm–Ml

(m –Ml)!
yl

l!
. ()

Then the family of two-sided linear generating relations holds true between the two-
parameter three-variable Srivastava polynomials Sm,m,M

n (x, y, z) and PM
m,m (x, y):

∞∑
m,m,n=

f (n +m +m)Sm,m,M
n (x, y, z)

wm


m!
wm


m!
tn

=
∞∑

m,m=

f (m +m)
(w + zt)m

m!
PM
m,m

(
w + yt,xtM

)
. ()

Suitable choices of An,k,l in equations () and () give some known polynomials.

Remark . ChoosingM =  and Am,n,k = (α)m–n(γ )n–k(β)k (m,n ∈N) in (), we get

Sm,m,
n (x, y, z) = (α)m (γ )mu

(α+m,β ,γ+m)
n (z,x, y),

http://www.advancesindifferenceequations.com/content/2013/1/81
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where u(α,β ,γ )n (x, y, z) is the polynomial given by

u(α,β ,γ )n (x, y, z) =
n∑

k=

[ k ]∑
l=

(β)l(γ )k–l(α)n–k
yl

l!
xn–k

(n – k)!
zk–l

(k – l)!
.

Now, by setting M =  and Am,n,k = (α)k(β)n–k(γ )m–n (m,n ∈ N) in the definition (), we
obtain

Sm,m,
n (x, y, z) = (γ )m (β)mg

(α,β+m,γ+m)
n (x, y, z),

where g(α,β ,γ )n (x, y, z) are the Lagrange polynomials given by

g(α,β ,γ )n (x, y, z) =
n∑

k=

k∑
l=

(α)l(β)k–l(γ )n–k
xl

l!
yk–l

(k – l)!
zn–k

(n – k)!
.

Remark . If we setM =  and Am,n,k = (α)m–n(γ )n–k(β)k (m,n ∈N) in (), then

P
m,m (x, y) = (α)mh

(γ ,β)
m (x, y),

where h(γ ,β)m (x, y) denotes the Lagrange-Hermite polynomials given explicitly by

h(γ ,β)m (x, y) =
[m

 ]∑
l=

(γ )m–l(β)l
xm–l

(m – l)!
yl

l!
.

Furthermore, choosing M =  and Am,n,k = (α)k(β)n–k(γ )m–n (m,n ∈ N) in the definition
(), we have

P
m,m (x, y) = (γ )mg

(β ,α)
m (x, y),

where g(α,β)m (x, y) are the Lagrange polynomials given by

g(α,β)m (x, y) =
m∑
l=

(α)m–l(β)l
xm–l

(m – l)!
yl

l!
.

Remark . If we set w → –zt and w → –yt in Theorem ., then we get

∞∑
m,m,n=

f (n +m +m)Sm,m,M
n (x, y, z)

(–zt)m

m!
(–yt)m

m!
tn

=
∞∑
l=

f (Ml)AMl,Ml,l
(xtM)l

l!
. ()

Now, if we set f = ,M =  and Am,n,k = (α)m–n(γ )n–k(β)k (m,n ∈N) in (), then

∞∑
m,m,n=

(α)m (γ )mu
(α+m,β ,γ+m)
n (z,x, y)

(–zt)m

m!
(–yt)m

m!
tn =

(
 – xt

)–β .
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Furthermore, if we setM =  and Am,n,k = (α)m–n(γ )n–k(β)k (m,n ∈ N) in (), then

∞∑
m,m,n=

f (n +m +m)(α)m (γ )mu
(α+m,β ,γ+m)
n (z,x, y)

wm


m!
wm


m!
tn

=
∞∑

m,m=

f (m +m)
(w + zt)m

m!
(α)mh

(γ ,β)
m

(
w + yt,xt

)
.
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