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Abstract
We present an explicit solution to an optimal stopping problem of the stochastic
Gilpin-Ayala population model by applying the smooth pasting technique (Dixit in
The Art of Smooth Pasting, 1993 and Dixit and Pindyck in Investment under
Uncertainty, 1994). The optimal stopping rule is to find an optimal stopping time and
an optimal stopping boundary of maximizing the expected discounted reward,
which are given in this paper explicitly.
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1 Introduction
Optimal stopping problems of stochastic systems play an important role in the field of
stochastic control theory. A special interest in such problems is attracted by many fields
such as finance, biology models and so on.
The aim of the optimal stopping problems is to search for random times at which the

stochastic processes should be stopped to make the expected values of the given reward
functionals optimal. Lots of explicitly solvable stopping problems with exponentially dis-
counted stopping problems aremainly those for one-dimensional diffusion processes. The
optimal stopping times are the first time at which the underlying processes exit certain re-
gions restricted by constant boundaries.
In this paper, the optimal stopping time for the stochastic Gilpin-Ayala model [–],

whose solution is a diffusion process, is introduced, and the explicit expressions for the
value functions and the boundaries in such optimal stopping problems are obtained. To
our best knowledge, there have been few tries to research the optimal harvesting problems
based on optimal stopping, and many scholars studied stochastic logistic models such as
[, ]. There are only a few results about the corresponding stochastic Gilpin-Ayalamodel,
which is our motivation.
The Gilpin-Ayala populationmodel is one of the most important and classic mathemat-

ical bio-economic models due to its theoretical and practical significance. In , Gilpin
and Ayala [] claimed the following model:

dXt =
(
rXt – bXθ+

t
)
dt, θ > , (.)
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where Xt denotes the density of resource population at time t, r >  is called the intrin-
sic growth rate and b = r/K > , K is the environmental carrying capacity. It is obvious
that (.) becomes the classic logistic population model when θ = .
Recently, Eq. (.) has been extensively studied and many important results have been

obtained; see, e.g., [–].
However, the population systems are affected by random disturbances such as environ-

ment effects, financial events and so on in the real world. In order to fit the real world
better, the white noise is introduced into the population systems by many researchers [,
, –]. In this paper, we study the optimal stopping problem of the stochastic Gilpin-
Ayala population model

dXt =
(
rXt – bXθ+

t
)
dt +μXt dBt , X = x≥ , t > , θ > , (.)

where the constants r, b are mentioned in (.) and Bt is one-dimensional Brownian mo-
tion [].
The outline for this paper is as follows. Section  of this paper is concernedwith the gen-

eral problem of choosing an optimal stopping time for the stochastic Gilpin-Ayala pop-
ulation model. In Section , a closed-form candidate function for the value function is
given. We verify the candidate for the expected reward is optimal and the optimal stop-
ping boundary is expressed by the smooth pasting technique.

2 Formulation of the problem
Let the probability space (�,F,P) satisfy the usual conditions. Suppose the population
with size Xt at time t is given by the stochastic Gilpin-Ayala population model

dXt =
(
rXt – bXθ+

t
)
dt +μXt dBt , X = x≥ , t > . (.)

It can be proved that if r >  and b > , then the stochastic Gilpin-Ayala equation (.) has
a global, continuous positive solution Xt defined by

Xx
t =

(

xθ

e–θ ((r– 
μ)t+μB(t)) +

∫ t


bθe–θ ((r– 

μ)(t–s)+μ(B(t)–B(s))) ds
)–

(.)

for all t ≥ , B(t) is one-dimensional Brownianmotion (see []), and note that  ≤ Xt < K .
The optimal stopping rule here can be considered to find an optimal value function �

and an optimal stopping time τ * such that

�(s,x) = sup
τ

E(,x)[e–ρτ (Xτ – a) +w
]
= E(,x)[e–ρτ * (Xτ * – a) +w

]
, a > . (.)

The sup is taken over all stopping times τ of the process Xt and the reward function

g(s,x) = e–ρs(x – a) +w, (.)

where the discounting exponent ρ > , e–ρτ (Xτ –a) is the profit at time τ and a represents
a fixed fee and it is natural to assume that a < K . The positive constant w represents the
permanent assets. Ex denotes the expectation with respect to the probability lawQx of the
process Xt , t ≥  starting at X = x > .
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Note that it is trivial that the initial value x≤ a. So we further assume that x > a and the
stopping time τ is bounded since  < Xτ < K .

3 Analysis
Let us start with the infinitesimal generator []A of the Itô diffusion Yt = (t,Xt)T , which
is defined by

f (y) = lim
t↓

E
y[f (Yt)] – f (y)

t
, y ∈R

, f ∈ C(
R

). (.)

By the application of Itô formula, we have

Af (s,x) =
∂f
∂s

+
(
rx – bxθ+)∂f

∂x
+


μx

∂f
∂x

, f ∈ C(
R

), (.)

which is based on

dYt =

(


rXt – bXθ+
t

)
dt +

(


μXt

)
dBt . (.)

And

Ag =
∂g
∂s

+
(
rx – bxθ+)∂g

∂x
+


μx

∂g
∂x

=
(
r – ρ – bxθ

)
e–ρsx + ρae–ρs (.)

for all s > , x >  []. In order to find the unknown value function � from (.) and the
unknown boundary x*, we consider

Af (s,x) = , (s,x) ∈ R
+. (.)

If we try a solution of (.) of the form

f (s,x) = e–ρsφ(x), (.)

and substitute (.) into (.), we obtain

–ρφ(x) +
(
rx – bxθ+)φ′(x) +



μxφ′′(x) = , x > . (.)

The general solution φ of (.) is

φ(x) = CxθaU
(
a,b,

b
μθ

xθ

)
+CxθaM

(
a,b,

b
μθ

xθ

)
(.)

by setting

a =



μ – r +
√

μ + (–r + ρ)μ + r

μθ
(.)
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and

b =
μθ +

√
μ + (–r + ρ)μ + r

μθ
, (.)

where C, C are arbitrary constants. Here U(a,b,x) is the confluent hypergeometric
function, whose integral representation is

U(a,b,x) =


	(a)

∫ ∞


e–xtta–( + t)b–a– dt (.)

for a >  and b >  (see [, , ]). M(a,b,x) is the Kummer hypergeometric function
and 	 denotes the gamma function.
If φ(x) goes to ∞ as x → ∞, we must have C =  since φ(x) is bounded. Then we define

the candidate h(s,x) :R
+ →R for the optimal value function � in (.) by

h(s,x) = f (s,x) +w =

⎧⎨
⎩e–ρsf̂ (x) +w,  < x < x,

e–ρsĝ(x) +w, x ≥ x,
(.)

where

f̂ (x) = CxθaU
(
a,b,

b
μθ

xθ

)
,  < x < x

and

ĝ(x) = x – a, x ≥ x.

We observe that the constant

C = (x – a)
[
(x)θaU

(
a,b,

b
μθ

(x)θ
)]–

(.)

is determined by
() value matching condition [, ]

f̂ (x) = ĝ(x) (.)

and
() smooth pasting condition

f̂ ′(x) = ĝ ′(x). (.)

In fact, x* =
θaa
θa–

is showed to be the unique solution of (.) by the following assump-
tions and Lemma ..
We assume the following.

Assumption 

ρ > r. (.)

http://www.advancesindifferenceequations.com/content/2012/1/210
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Assumption 

K >
θaa

θa – 
. (.)

The following lemma provides an optimal stopping boundary.

Lemma . x* =
θaa
θa–

is the maximum value point of h(s,x) given by (.) with respect to
x,  < x < K for fixed s > ,  < x < K .

Proof Let ∂h
∂x

(s,x) =  for arbitrary s > ,  < x < K , then we derive

C(s,x)x–θa–
 U–

(
a,b,

b
μθ

xθ


)(
( – θa)x + θaa

)(
 –

L(y)
R(x) + 

)
=  (.)

by setting C(s,x) = e–ρsxθaU(a,b, b
μθ

xθ ) and y = b
μθ

xθ
 together with

L(y) =
yU(a + ,b + , y)

U(a,b, y)
(.)

and

R(x) =
x

θa(a – x)
. (.)

Since R(x) increases on the interval [,a) with R() =  and R(a–) = +∞, and R(x) is
an increasing function on the interval (a, +∞) with R(a+) = –∞ and R(+∞) = –(θa)–,
we can deduce that L(y) is a decreasing function on (,∞) with L(+) > . In fact, we
only need to check that L(x) decreases on R+ with L(+) >  and L(+∞) = . L(+∞) = 
is trivial due to the fact that U(a,b,x) ∼ z–a as z → ∞. To prove L(+) > , we take the
change-of-variable formula to (.), then it follows

U(a,b, y) =
y–b
	(a)

∫ ∞


e–tta–(t + y)b–a– dt, (.)

which directly implies

lim
y↓L(y) =

	(a)	(b)
	( + a)	( + b)

=
b – 
a

(.)

for b >  +a > . Next, with the help of the integral representation (.), we observe that

L(y) =
∫ ∞
 t(t + )fy (t)dt

a
∫ ∞
 (t + )fy (t)dt

, (.)

where
∫ ∞
 fy (t)dt =

∫ ∞
 Ae–tta (t+y)b–a– dt = , t ≥ , with some normalizing constant

A for b >  + a > . Then by applying the Jensen inequality and considering the obvious
fact that b >  + a > , we deduce d

dy
L(y) ≤ , which gives the monotonicity of L(y) on

(,K) (similar discussion can be found in []).
Then we conclude that

http://www.advancesindifferenceequations.com/content/2012/1/210
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() There exists a unique solution, which satisfies L(y) = R(x) + , of (.) on (,a)
and note that P(x)� L(y) – R(x) –  >  on (a,K) under Assumption .

() The maximum value is given by

x* =
θaa

θa – 
>  (.)

under (.) and Assumption  on the interval (a,K). The proof is completed. �

Now, let us give the following lemma for our main Theorem ..

Lemma . Under Assumptions  and , the function h(s,x) :R
+ →R satisfies the follow-

ing properties ()-():
() h(s,x)≥ g(s,x) given by (.) for all x > , s > .
() For x≥ θaa

θa–
, s > ,

Af (s,x) =
∂f
∂s

+
(
rx – bx

)∂f
∂x

+


μx

∂f
∂x

≤ . (.)

() Ah = ,  < x < θaa
θa–

, s > .

Proof It is clear that Ah =  by construction, for  < x < θaa
θa–

, s > . We check that
() h(s,x) > g(s,x) for  < x < θaa

θa–
, i.e., h(s,x) > e–ρs(x – a) +w for  < x < θaa

θa–
and

() Ah(x) =Ag(x) <  for x≥ θaa
θa–

. This is easily done by routine calculation under
Assumptions  and . �

Let us give our main theorem.

Theorem . Under Assumptions  and , setting y = (s,x) and Yt = (t,Xt)T , the function
h*(y) :R

+ →R defined by

h*(y) =

⎧⎪⎨
⎪⎩

e–ρs( a
θa–

)

(θaa)θaU(a,b, b
μθ

( θaa
θa–

)θ )
((θa – )x)θaU(a,b, b

μθ
xθ ) +w,  < x < θaa

θa–
,

e–ρs(x – a) +w, x≥ θaa
θa–

is the optimal value function. Moreover, the optimal stopping region F and the optimal
stopping time τ * are given by

F =
{
y ∈R


+ : h

*(y) = g(y)
}
=

{
(s,x) : s > ,

θaa
θa – 

< x < ∞
}

(.)

and

τ * := τF = inf
{
t > ,Yy

t ∈ F
}
< +∞. (.)

Proof Let τ be any stopping time with E
x[τ ] < ∞ for the process {Yt , t > } and any t ∈R+,

then by Dynkin’s formula []

E
y[h(Yτ∧t)

]
= h(y) +E

y
[∫ τ∧t


Ah(Yt)dt

]
. (.)
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Therefore, by () and () in Lemma ., we get

h(y) ≥ E
y[g(Yτ∧t)

]
. (.)

Taking limt→∞ of both sides of (.), we have by the Fatou lemma []

h(y) ≥ E
y[g(Yτ ){τ<∞}

]
. (.)

Since τ is arbitrary with E
x[τ ] < ∞, we conclude that

h(y) ≥ h*(y), y ∈R

+. (.)

We proceed to prove h(y) ≤ h*(y).
(a) If y ∈ F , then h(y) = g(y) ≤ h*(y). So, we have h(y) = h*(y) by (.) and τ * =  is

optimal for y ∈D.
(b) Next, suppose y /∈ F . By Dynkin’s formula [] and the fact that τ * <∞ a.s. Ry for

y ∈R

+, we have

h(y) = E
y
[∫ τF∧t


Ah(Ys)ds + h(YτF∧t)

]
. (.)

So, by (), () in Lemma . and the fact that τ * < ∞ a.s. Ry for y ∈ R

+ and h ∈ C(R

+)
[], we get

h(y) = lim
t→∞E

y
[∫ τF∧t


Âh(Ys)ds + h(YτF∧t)

]

= E
y[h(YτF )

]
= E

y[g(YτF )
] ≤ h*(y). (.)

Combining the two cases (a), (b) and (.), we obtain

h(y) ≥ h*(y) ≥ h(y). (.)

So, h(y) = h*(y) and τ * = τF is optimal, y ∈ F .
We conclude that h(y) = h*(y) for all y ∈R


+ and the stopping time τ * is defined by

τ * =

⎧⎨
⎩, y /∈ F ,

τF , y ∈ F .
(.)

�

4 Conclusion and further studies/research
This paper describes the optimal harvesting problems of the stochastic Gilpin-Ayala pop-
ulationmodel as an optimal stopping problem, which is our first try.Meanwhile, we obtain
the explicit optimal value function and optimal stopping time by using the smooth pasting
technique. Finally, we prove the result. Furthermore, our work can lead a new way for the
optimal harvesting problem in the real world. In further direction, the optimal harvest-
ing problems for the stochastic predator-prey model and related stochastic models will be
considered.
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