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1 Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by (-,-) and
| - Il. Let C be a nonempty closed convex subset of H and D be a mapping from C into H.
A classical variational inequality problem, denoted by VI(D, C), is to find a vector u € C
such that

(v—u,Du)>0, VveC. @)
The solution of VI(D, C) is denoted by Q*. It is easy to observe that
weQ & u'-= Pc[u* - ADu*], where A > 0.

This alternative formulation has played a significant part in developing various projection-
type methods for solving variational inequalities. We now have a variety of techniques to
suggest and analyze various iterative algorithms for solving variational inequalities and
the related optimization problems; see [1-29].

We introduce the following definitions which are useful in the following analysis.

Definition 1.1 The mapping 7: C — H is said to be
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(a) monotone if
(Ix—Ty,x—y) >0, Vx,yeC

(b) strongly monotone if there exists & > 0 such that
(Tx—Ty,x-y) = allx-yl’, VryeC

(c) a-inverse strongly monotone if there exists « > 0 such that
(Tx — Ty,x—y) > || Tx - Ty||>, Vx,y€C;

(d) nonexpansive if
ITx =Tyl < llx=yll,  Vx,yeC

(e) k-Lipschitz continuous if there exists a constant k > 0 such that
ITx - Tyl < kllx—yll, VxyeC;

(f) contraction on C if there exists a constant 0 < k < 1 such that
ITx - Tyl < kllx—yl, Vx,yeC.

It is easy to observe that every w«-inverse strongly monotone 7 is monotone and

Lipschitz continuous. It is well known that every nonexpansive operator T : H; — H sat-
isfies, for all (x,y) € H; x Hj, the inequality

(= T) ~ (= T, T0) - TW) = 5| (769 ~2) ~ (16) )| @)
and therefore we get, for all (x,y) € H; x F(T),

e Ty~ T0) = 5 | 76—

(3)

see, e.g., [9], Theorem 1 and [10], Theorem 3.
A mapping T : C — H is called a k-strict pseudo-contraction if there exists a constant
0 < k <1 such that

2
1T - Tyl < llx =yl + k|| (1 = T)x = (I - T)y

, Vx,yeC. (4)
The fixed point problem for the mapping T is to find x € C such that

Tx = x. (5)
We denote by F(T) the set of solutions of (5). It is well known that the class of strict pseudo-

contractions strictly includes the class of nonexpansive mappings, then F(T) is closed and
convex and Pr(r) is well defined (see [29]).
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The equilibrium problem denoted by EP is to find x € C such that
F(x,y)>0, VyeC. (6)

The solution set of (6) is denoted by EP(F). Numerous problems in physics, optimization
and economics reduce to finding a solution of (6); see [7, 12, 23, 24]. In 1997, Combettes
and Hirstoaga [8] introduced an iterative scheme of finding the best approximation to the
initial data when EP(F) is nonempty. Recently Plubtieng and Punpaeng [23] introduced
an iterative method for finding the common element of the set F(T') N Q* N EP(F).

Recently, Censor et al. [4] introduced a new variational inequality problem which we call
the split variational inequality problem (SVIP). Let H; and H; be two real Hilbert spaces.
Given operators f : Hy — H; and g : H, — H,, a bounded linear operator A : H; — Hy,
and nonempty, closed and convex subsets C € H; and Q € H», the SVIP is formulated as
follows: Find a point x* € C such that

(f(x*),x—x")>0 forallxeC (7)
and such that

y =Ax*€Q solves (g(y*),y-y*)=0 forallyeQ. (8)
In [22], Moudafi introduced an iterative method which can be regarded as an extension of
the method given by Censor et al. [4] for the following split monotone variational inclu-
sions:

Find x* € H; such that 0 ef(x*) +B; (x*)
and such that

Yy =Ax* € H, solves 0¢€g(y*)+Bx(y"),
where B; : H; — 2/ is a set-valued mapping for i = 1,2. Later Byrne et al. [3] generalized
and extended the work of Censor et al. [4] and Moudafi [22].

Very recently, Kazmi and Rivzi [13] studied the following pair of equilibrium problems
called a split equilibrium problem: Let F; : C x C — R and F; : Q X Q — R be nonlin-
ear bifunctions and A : H; — H, be a bounded linear operator, then the split equilibrium
problem (SEP) is to find x* € C such that

Fl(x*,x) >0, VxeC 9)
and such that

Y =Ax"€Q solves F(y%,y)>0, VyeQ. (10)

The solution set of SEP (9)-(10) is denoted by A = {p € EP(F,) : Ap € EP(F,)}.
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Let S : C — H be a nonexpansive mapping. The following problem is called a hierarchi-
cal fixed point problem: Find x € F(T) such that

(x—Sx,y—x)>0, VyeF(T). (11)

It is known that the hierarchical fixed point problem (11) links with some monotone varia-
tional inequalities and convex programming problems; see [11, 27]. Various methods have
been proposed to solve the hierarchical fixed point problem; see Moudafi [21], Mainge and
Moudafi in [15], Marino and Xu in [17] and Cianciaruso et al. [5]. In 2010, Yao et al. [27]
introduced the following strong convergence iterative algorithm to solve problem (11):

Yn = ﬁnsxn + (1 - /Sn)xm

Xnl = PC[anf(xn) +(1-ay) Tyn]’ Vn >0,

12)

where f : C — H is a contraction mapping and {«,} and {8,} are two sequences in (0,1).
Under some certain restrictions on parameters, Yao et al. proved that the sequence {x,}
generated by (12) converges strongly to z € F(T'), which is the unique solution of the fol-
lowing variational inequality:

(U-f)zy-2z)=0, VyeF(T). (13)

By changing the restrictions on parameters, the authors obtained another result on the
iterative scheme (12), the sequence {x,} generated by (12) converges strongly to a point
z € F(T), which is the unique solution of the following variational inequality:

<%(1—f)z+(1—5)z,y—z>20, Vy e F(T). (14)

Let S: C — H be a nonexpansive mapping and {T;}7% : C — C be a countable family
of nonexpansive mappings. In 2011, Gu et al. [11] introduced the following iterative algo-
rithm:

Yn = Pc[BnSn + (1= Bu)xa),

n (15)
¥ni1 = Pc [anf () + Y (i1 — oai)Tiyn], Vn=1,

i=1

where og = 1, {@,,} is a strictly decreasing sequence in (0,1) and {8, } is a sequence in (0, 1).
Under some certain conditions on parameters, Gu et al. proved that the sequence {x,}
generated by (15) converges strongly to z € ()5, F(T}), which is the unique solution of one
of variational inequalities (13) and (14).

In this paper, motivated by the work of Censor et al. [4], Moudafi [22], Byrne et al. [3]
Kazmi and Rivzi [13], Yao et al. [27] and Gu et al. [11] and by the recent work going on in
this direction, we give an iterative method for finding an approximate element of the com-
mon set of solutions of (1), (9)-(10) and (11) for a strictly pseudo-contraction mapping in a
real Hilbert space. We establish a strong convergence theorem based on this method. The
presented method improves and generalizes many known results for solving equilibrium
problems, variational inequality problems and hierarchical fixed point problems; see, e.g.,
[5, 11, 15, 27] and relevant references cited therein.
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2 Preliminaries
In this section, we list some fundamental lemmas that are useful in the consequent anal-
ysis. The first lemma provides some basic properties of the projection of H onto C.

Lemma 2.1 Let P¢ denote the projection of H onto C. Then we have the following inequal-

ities,
(z—PC[z],PC[z]—v)zO, VzeH,veC; (16)
(u—v,Pclul - Pelvl) > |Pclul - PelV]|?,  Vu,v e H; (17)
|Pclu] = Pc| < lu—vl, Vu,veH; (18)

|u-Pclal|? < Iz - ull® - |z - Pclzl|,

VzeH,uecC. (19)

Assumption 2.1 [2] Let F: C x C — R be a bifunction satisfying the following assump-
tions:

(i) F(x,x)=0,VxeC;
(ii) Fis monotone, i.e., F(x,y) + F(y,x) <0, Vx,y € C;

)
)

(iii) For eachx,y,z € C, lim;_.o F(tz + (1 — t)x,y) < F(x,7);

(iv) For eachx € C, y — F(x,y) is convex and lower semicontinuous;
)

(v) Fixed r >0 and z € C, there exists a bounded subset K of H; and x € C N K such
that

1
Fiy,x)+-(y—x,x—-2) >0, VyeC\K.
r

Lemma 2.2 [8] Assume that F; : C x C — R satisfies Assumption 2.1. For r >0 and Vx €
H,, define a mapping T/ :H, — C as follows:

r 1
T,'(x)=1z€ C:Fi(zy) + ;(y—z,z—x) >0,VyeCyt.

Then the following hold:
G) T/ is nonempty and single-valued,;
(i) T/ is firmly nonexpansive, i.e.,

| TF ) - TR o) |* < (TP (@) - TP (), =), Vx,y € Hi;

(iii) F(T;") = EP(Fy);
(iv) EP(Fy) is closed and convex.

Assume that F; : Q x Q — R satisfies Assumption 2.1. For s > 0 and Yu € H,, define a
. Fy
mapping T > : Hy — Q as follows:

sz(u): {VGQ:Fz(V,W)+ %(w—v,v—u) >0,Ywe Q}.

Then T?? satisfies conditions (i)-(iv) of Lemma 2.2. F(T*?) = EP(E,, Q), where EP(E,, Q) is
the solution set of the following equilibrium problem:

Find y* € Q such that F,(y*,y) >0, VyeQ.

Page 5 of 27
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Lemma 2.3 [6] Assume that F; : C x C — R satisfies Assumption 2.1, and let TH be de-
fined as in Lemma 2.2. Let x,y € Hy and r,r, > 0. Then

ry

|77 0) - T <y - =l + | 772 0) -]

-n
r
Lemma 2.4 [28] Let C be a nonempty closed convex subset of a real Hilbert space H. If
T : C — Cis a k-strict pseudo-contraction, then:

(i) The mappingI — T is demiclosed at 0, i.e., if {x,} is a sequence in C weakly

converging to x and if {(I — T)x,} converges strongly to 0, then (I — T)x = 0;
(ii) The set F(T) of T is closed and convex so that the projection Pr(ry is well defined.

Lemma 2.5 [16] Let H be a real Hilbert space. Then the following inequality holds:
e+ 217 < ll* + 20 x +5),  Vay € H.

Lemma 2.6 [26] Assume that {a,} is a sequence of nonnegative real numbers such that
anit < (1= Yu)dn + 8y,

where {y,} is a sequence in (0,1) and {3,} is a sequence such that

(1) Z;l.il Vn = 00;
(2) limsup,_, . 8u/yu <0 o0r > ;2 184 < 00.

Then lim,—, o a,, = 0.

Lemma 2.7 [1] Let C be a closed convex subset of H. Let {x,} be a bounded sequence in H.
Assume that

(i) the weak w-limit set wy,(x,) C C, where wy,(x,,) = {x : x,,, = x};

(ii) foreach z € C,lim,_, o ||, — z|| exists.
Then {x,} is weakly convergent to a point in C.

Lemma 2.8 [29] Let H be a Hilbert space, C be a closed and convex subset of H, and
T :C — C be a k-strict pseudo-contraction mapping. Define a mapping V : C — H by
Vx=xx+(1-X)Tx,Vx € C. Then, as k < x <1, V is a nonexpansive mapping such that
F(V)=F(T).

Lemma 2.9 [11] Let H be a Hilbert space, C be a closed and convex subset of H, and T :
C — C be a nonexpansive mapping such that F(T) # (. Then

[ Tx — xl|* < 2(x — Tx,x —x'), V&' € F(T),Vx € C.

3 The proposed method and some properties
In this section, we suggest and analyze our method for finding common solutions of the
variational inequality (1), the split equilibrium problem (9)-(10) and the hierarchical fixed
point problem (11).

Let H; and H; be two real Hilbert spaces and C € H; and Q € H; be nonempty closed
convex subsets of Hilbert spaces H; and Hy, respectively. Let A : H; — H, be a bounded
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linear operator. Let D : C — H; be an a-inverse strongly monotone mapping. Assume that
Fi:Cx C— Rand F;: Q x Q— R are the bifunctions satisfying Assumption 2.1 and F,
is upper semicontinuous in the first argument. Let S : C — H; be a nonexpansive mapping
and {7;}7% : C — C be a countable family of k;-strict pseudo-contraction mappings such
that F(T) N Q* N A # W, where F(T) = (5, F(T;). Let f be a p-contraction mapping.

Algorithm 3.1 For a given x, € C arbitrarily, let the iterative sequences {u,}, {x,}, {y.}
and {z,} be generated by
Uy = Tr‘;l (xn + )/A"‘(Tfn2 —I)Ax,,);
zy = Pcluy, — AyDuy);
Yn = PC[,anxn + (1 - ﬁn)zn]; (20)
Xns1 = Pc |:0‘nf(xn) + Z(ai—l - O‘i)viynj|; Vn >0,
i=1

where V; = kI + (1 -k)T;, 0 < k; <1, {r,} C (0,00), {L,} C (0,2c) and y € (0,1/L), L is
the spectral radius of the operator A*A and A* is the adjoint of A and oy =1, {e,,} is a
strictly decreasing sequence in (0,1) and {3, } is a sequence in (0, 1) satisfying the following
conditions:

() lim, oo, =0and ) 7) a, = 00,

(b) limy,— oo (Bu/atn) = 0,

(© Y2y w1 — el <00 and 302, 1Bt = Bul < 00,

(d) liminf,—oor, >0and Y o) |Fy_1 — 1yl < 00,

(e) liminf, oo Ay <limsup,_, oAy <2 and Y o) [Ay_1 — Ayl < 00.

Lemma 3.1 Let x* € F(T) N Q* N A. Then {x,}, {u,}, {z,} and {y,} are bounded.

Proof First, we show that the mapping (I — A,D) is nonexpansive. For any x,y € C,

| = 3,D)x = (1 = 2,D)y|* = || & =) = 2 (Dx - Dy)|*
= lle = y11* = 24 (x ~ y, Dx = Dy) + & || Dx — Dy||*
< llx =y = %u(20 = 1,) || Dx — Dyl|?

< flx -yl
Letx* € F(T)NQ* N A, we have x* = Tfnl (x*) and Ax* = Tf;z (Ax*). Then

0 = [* = | 5} (o + 7 A%(T]2 D) A% ="
= |77 (en + v A (T2 = 1) Ay) - T2 ()
< || + yA* (T2 - 1) Ax, — 7|
= JJan = |* + P2 |A* (T2 = 1) Ax, |* + 2y (s -, A* (T2 - 1) Ax,)
= Jlan = |* + 2((TE = 1) Ax,y, AA* (TE2 — 1) A,

+ 2y (% — &, A* (TS = 1) Axy). (21)
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From the definition of L, it follows that
v (T2 = 1) Ax, AA* (T2 = 1) Axy) < Ly?((T]2 = 1) Ay, (T} — 1) Axy)
- Ly (72 - D
It follows from (3) that
2y (xy — %, A*(T)> — 1) Ax,)
=2y (A %y —2*), (T2 - 1) Axy)
=2y (A (% —&*) + (TrF”2 —1)Ax, - (Tf:f —1)Ax, (T,Fn2 —1)Ax,)
=2y (TP Ax, — Ax*, (T2 = 1) Ax,) - | (T2 - 1) Ax,|)*)
<2 (1152 - Dam |- (72 - D)
=y (772 - DAw "
Applying (23) and (22) to (21) and from the definition of y, we get
= = =[P 9Ly =D (T2 ~ Dt | < -
Since the mapping D is «-inverse strongly monotone, we have

Hz,, —-x* Hz = ||Pc[un — AxDu,] —Pc[x* - A,,Dx*] HZ
< Hu,, . A,,(Du,, —Dx*) ||2
< Hu,, —x* H2 — (20 — )»,,)”Duy, - Dx* ”2

< Jaen "’

< o ="

Page 8 of 27

(22)

(24)

(25)

Next, we prove that the sequence {x,} is bounded, without loss of generality, we can as-

sume that 8, <, for all # > 1. From Lemma 2.8, we have V; is a nonexpansive mapping

and Vix* =x*. Since Y . (@i — ;) =1 —a,,, we get

n

|1 —&*| = | Pc [anf () + Y (eti - ai)\ﬁyn} -

i=1

IA

af(x,) + Z((XH —a)Viyy —x*

i=1

= [l Gon) + D (it — @) iy — o™ = Y (etiq — o) Vix®

i=1 i=1

< anl[f o) = () | + el () = [ + D (i — e[ Vig = V'

i=1

n

< ) ) |+l (5) = + Do - ) [y =]

i=1
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= oy [[fGen) = f (%) || + cn|lf (%) = %] + (1= @) || BuS + (1 = Bu)zw —x* |
< a||[f(en) = f (&) || + ot | £ (x*) =2

+ (1= at) (B || Sn = S™ || + B | Sx* = x*|| + (1= Bo) || 2w — ¥ )
< o [y = || + £ (%) — 27

+ (1= ) (Buflan =" [ + Bl 2™ 27| + (1= B) [ — ")
L—au(L=p))|wn =& | +an|f (5) =" || + @ = 0t) B[ Sx* — 2|
1 ay(1= ) [ =" + o[ (") = 2" + B[ Sx" = 27|
1 a,(1= ) v ="+ o ([[f (") =27 | + [ 5" =] )
)

* 1’1(1_ ) * * * *
-t )=+ 2 () 4 [ )

= (
= (
=(
= (

() -+ s -} 26)

< max{ ||x,, —x*

By induction on #, we obtain |x, — x*|| < max{|lxo — x*], ﬁ(l[f(x*) — x| + |ISx* — x* |},
for n> 0 and x¢ € C. Hence {x,} is bounded and consequently, we deduce that {u,}, {z,}

and {y,} are bounded. O

Lemma 3.2 Letx* € F(T) N Q* N A and {x,} be the sequence generated by Algorithm 3.1.
Then we have

(@) im0 1041 — %4l = 0;

(b) The weak w-limit set w,,(x,,) C F(T) (W (%) = {2 : 2, = x}).

Proof From the nonexpansivity of the mapping (I — 1,,D) and P, we have

2w = zuall < H (tn = ApDuy) = (U1 — Ay1Dthy 1) ”
= H (un - un—l) - )Ln(Dun - Dun—l) - ()‘n - )Ln—l)Dun—l ||
= H(un - un—l) - )"n(Dun - Dun—l) || + |)\n - }\n—l|”Dun—1”

< ”un - un—l” + |)\n - }\n—l|”Dun—1”' (27)
Next, we estimate

lyn = ynall
= H BuSxn + (1= Bu)zn — (,Bn—lsxn—l +(1- ,Bn—l)zn—l) ”
= ”,Bn(sxn = 8xu-1) + (Bu = Bu-1)Sxn-1 + (1 = Bu)(2n — 2p-1) + (Buo1 — Bu)zua “

< Bullxn = xnall + (L= Bu)llzw = Zua | + [ Bu — ﬂn—1|(”5xn—1” + ”Zn—l”)' (28)
It follows from (27) and (28) that

195 = ynall < Bullxn —xuall + (1 - lsn){ ety — v a |l + [Ay = Apal ”D”n—ln}
+ 181 = Bucal (11521 |l + 1 zna ) (29)
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On the other hand, u,, = Tanl (%, + )/A*(sz2 - DAx,) and u,_; = Tf:l{l (%1 + )/A*(Tff1 -
1Ax,_;). It follows from Lemma 2.3 that
||Ll,, — Up-1 ”
< [0 = + ¥ (A* (T2 = 1) Ax, — A* (T2 — 1) Ax,) |

n-1
Ty

+|1—

H TZI (x,, + yA*(T:;Z —I)Ax,,) - (xn + )/A*(Tf;z —I)Ax,,) ”

< || %0 = Hno1 = YA*AGn — x01) | + ¥ IAN| T2 A%, - T2 Ay |

'n-1

Ty
+11-

751 (5 + y A (T2 1) A,) = (5 + y A" (T2 1))

T

[

< (It = 2n1 1> = 27 [ AG =20 0) | + V2 1A 120 — %1 11%)

rnl

+ Al (||A(xn - %) +

}’l

|75 Az, - Ax, ”)

In-1

+[1- H Tot (g + yA* (T2 —=1)Ax,) — (20 + yA* (T2 —1)Ax,) |

< (L-2y[IAl* + y2||A||4)7 %6 = Xt |l + ¥ IAN 1% — %1

Yn-1
+V||AII‘1——"
Ty

|75 A, - A,

Tn-1
+1—"

| TH (o + yA* (T2 = 1) Axy) — (30 + yA* (T2 = 1) Ax) |

= (L= Y IAIP) %0 = ucal + Y 1A % = K +J/||A||‘1— — - Ax,|

Ty

+ 11— H TF1 (x,, + )/A*(TF2 )Ax,,) - (x,, + )/A*(Tri2 —I)Axn) H

= oy = x| + V”A”‘l - |TF2Axn Axy ”

In-1
+1—"

|75 (o + yA* (T2 — 1) Axy) — (30 + yA*(T22 = 1) Ax) |

'y =Ty
= ||xn _xn—IH +
n

Ly lAllow + x),

where o, := ||T,1:2Axy, — Ax,| and x, := ||Tfn1 (%, + )/A*(T,i2 - DAx,) — (%, + )/A*(T,Fn2 -
DAx,)||. Without loss of generality, let us assume that there exists a real number p such
that r, > > 0 for all positive integers n. Then we get

1
”un—l - un” = ”xn—l _xn” + ; |rn—1 - rn|(y”A”0n + Xn)~ (30)
It follows from (29) and (30) that

”yn _yn—IH

1
< Bullwn —xpall + (l_lgn){”xn —Xpall + ;'rn—l - rn|(y||A||Un + Xn)
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+An = Apa ||| Dutny II} + 180 = Bual (IS2a 1l + 1121 11)

= [ltn = ®uall + (1= ,Bn){ i“’n—l = 1l (Y 1Allow + X) + [ = Do IIDun1II}
+1Bn = Bua | (1111l + [l 21 ]l)- (31
Next, we estimate
%1 = %l

=

n n-1
of @) + Y (@tiy = ) Viyn — (a“f(xnl) + Y (et - ) Wynl)

i=1 i=1

n

n(f (en) = f (K1) + (tn = o )f (60) + Z(ai—l — ) (Viyn = Viyu-1)

i=1

+(0to1 — ) VauYn-

n

< |f () = f @) | + D (tica — @)1 Viyn = Vigaal

i=1

+ lotw = ot | ([[f @nt) | + 1 Vi )
n

< @y = Xpall + Y (@it = ) 19 = Yl

i=1
+ lotn = ot | ([[f @n1) | + 1 Vi)
=Py — Xp |l + (1- an)”yn _yn—IH

+ latn = anaa | (|f @) || + 1 Vi ) (32)
From (31) and (32), we have
%41 — Xl

< oppllxy — x|l + 1 - Oln){ llocy — %1 |l
1
+(1-Bu) n Pu1 = Pal (Y IANl0w + Xn) + 1w = Anca || Ditya |
+Bn— ,Bn—ll(”'gxn—l” + ”Zn—l”)} + lay _an—1|(Hf(xn—1)” + | Vnyn—lll)

1
= (1_ (1 _p)an)”xn —%pall + ;Vn—l _rn|(y||A”Un + Xn)

+ 2w = At Dttt | + 18 = Bt | (1St [l + 20|l
+ lotw = ot | ([ @nt) | + 1 Vi )

= (1 - (1 - ,O)Oln) ll%, — %1

1
+M<;|rn = Tl + Ay = Al + 1By = Bua| + |y _an—ll)» (33)
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where

M = max{sup(y 1Al + x:), sup |1Dit1 1, sup(IS%s-1]) + 12011

n>1 n>1 n>1

Slilf( If @nt) | + Vi ll) }

Since {x,}, {#,}, {z,} and {y,} are bounded, we deduce that {Ax,}, {Du,1}, {Sx,-1},
{f(xs-1)} and {V,;9,_1} are bounded. We can conclude that sup,.,(y||Allo, + xx.) < oo,
sup,,~ [[Duty-1l < 00, sup,,-; (1Sxu-1l + 1zu-11) < 00, sup,o1 (IIf (xu-) | + | Viiya ll) < 00, and
M < 0.

It follows by conditions (a)-(e) of Algorithm 3.1 and Lemma 2.6 that

lim %41 — x4 = 0.
n—00

Next, we show that lim,,_, o [|#, — %, = 0. Since x* € F(T) N Q*N A and a, + Y 1y (tiq —
a;) =1, by using (24) and (25), we obtain

Y 2
a1 = 2" ||2 = |Pc |:oz,f(x,,) + Z(OZH - ozi)\/iy,,] —x*
-1
" 2
< llof @) + ) (et — ) Vi — &°
i1
n n 2
= [l @) + Y (s — @) Vigy —ax® = Y (ois — ) Vi
i=1 i=1

o[£ Gen) =% |* + > (@1 — )| Vi — Vi)

i=1

o | o) =2+ > et — ) [ — 7|
i=1

IA

IA

Ay Hf(xn) - x* Hz + (1 - an)(ﬂn stn - x" ”2 + (1 - ;Bn) ”Zn - Hz)
o7 Hf(xn) —-x* HZ + (1 - an),Bn ||an - HZ

+ Q=)@ =B [n = |* + y Ly =D (T2 - 1) Ax,|?

IA

IA

— hn(2a = 4,,) | Duty, — Dx*||*)
e A N ey e
~ (-1 - By (- Ly)|(TE2 1) Ax, |
+ 32 = A) | Duty — Dx*||*). (34)

Then, from the above inequality, we get

(1- @)1 - By A= LY)| (T2 = 1) Ax,||* + hn(20 = 1) | Dite - D*|*)
< oulf o) =2 + Bl S0 =" [* o+ o =" = s =2

< o [f o) =% | + Bl St — % |7+ (|20 = %% + %o = &) o1 = .

Page 12 of 27
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Since y(1-Ly) > 0, liminf,_, o A, <limsup,_, A, < 20, lim,,—, o ||%441 — %[l =0, ¢, = O

and 8, — 0, we obtain

lim | (T/> - I)Ax,| =0 (35)

n—00

and

lim | Du, — Dx*|| = 0.

n—00
. B . .
Since T} is firmly nonexpansive, we have

i =" = |75 e+ yA* (T2 = D) Am,) - T ) |

<ty — ", 20 + )/A*(T,iZ ~1)Ax, — x*)

1

= {2 + o+ 74" (T2 DAy~
~ oty — 2" =~ [ + A" (T2 - 1) A, 7]}
1

Yl o oy (57— |

= Nt =00 =y A (172 = 1) A )
= %{Hun =2 =P = ot =0~y A* (772 = DA}
LR B A
= [t =l + 2| A" (732 = D A | = 20t = 00, A" (132 = 1) A},

where the last inequality follows from (21) and (24). Hence, we get
ot = |* < [0 = 2| = Nt = 21 + 2 Aty — A || (T2 = 1) A, |-
From (34), (25) and the above inequality, we have

[t =" | < anllf @) =2 + A= @) (Bu S =2 [* + (1 = o) |20 — 5[
< o[£ () =2 + (1= ) (B | S = 2% * + (U = B) ||t — 27| %)
< o[ o) =" [* + (1= ) B[ S0 — 7
+ (U= B) ([0 =2 |* = et = 2411 + 29 1Aty — A || (TE2 = 1) Ay )}
e AR A N I e &

= (1= )X = By — xa1? + 27 1Aty — Ayl | (T12 = 1) Ax ).
Hence

1 - )1~ Ba)lltty — x4

< ol = 4 Bul S5 =[P+ =[P = [ =
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+ 2y Aty — Ay || | (T2 = 1) A
< o [f o) =% | + B St — |7+ (|20 =% | + |21 = 27| r —

+ 2y Ay — Ay ||| (T2 = 1) Ax .
Since lim,,_, o || %41 — %]l = 0, @, — 0, B, — 0 and lim,,_, » ||(T,Fn2 —)Ax,|| = 0, we obtain
lim ||u, —x,|| = 0. (36)
n—>o0
From (17), we get

||zn —x* ||2 = ||Pc[u,, — AxDu,] —Pc[x* - A,,Dx*] H2

< <zy, —x*, (u, — M,Du,) — (x* - )»,,Dx*))

| e PR W 1 §
— ||t = & = 2o (Dt — Dx*) = (2, — x*) |}
< %{Hzn — o)+ (st = 2| * = |t~ 20— 2 (D1t — D) |}
< %{Hzn —x*||2 + ||t —x*HZ — Nt = zull* + 22(t4yy = 24, Duty — Dx*)}
< w17 + = = s = 2012 + 20,1, = 2,1 D, ~ D).

Hence

”Zn - ”2 = ”un —-x" “2 = llun _Zn||2 + 20| Uy — 24| ”Dun - Dx* ”

=< Hxn —x Hz = |latn _Zn||2 + 20|66y — 2| ||Dun - Dx* ”

From (34) and the above inequality, we have

Joenss =2 < @l ) =" | + (=) (B S =2 [+ 0 = Bu) 2w ")
< £ ) =& ” + (1= ) { B S — a7 |°
+ (0= B (|0 = #* | = N1t — 21 + 20ntn — 2| Dt — D)}
R e A e R e

— (1 =o)X = Btk — Zull® + 24|16 — 24| | Dety — D).
Hence

(1= o) (1 = B4 — 2u®
< [[f () =>4 B[ Sw = P+ 0w =% |* = g1 =%
+ 20|ty = Zull | Doty — D* |
< ol =2 [+ Bull S "+ (oo =2 + Jowar = 2* ) s =5l

+ 2)"n||un - Zn” ”Dbln — Dx* ||

Page 14 of 27
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Since lim,,_, o || %41 — %] = 0, @, — 0, B, — 0 and lim,,_, », || Du,, — Dx*|| = 0, we obtain
lim ||, —z,]| = 0. (37)
n— 00

It follows from (36) and (37) that
lim |, —z,] = 0. (38)
n—0oQ

Now, let z € F(T) N Q* N A, since for each i > 1, Vix, € Cand a, + Y 1 (i1 — ) =1, we
have Y7 (eti1 — o) Vi + a0z € C, and

D (e — ), — Vi)

i=1

= PC |:anf(xn) + Z(ai—l - ai)‘/iyni| + (1 - an)xn

i=1

n
- ( E (0t — ) Vi, + an2> + pZ — Xyl

i=1

i=1

=Pc [anf (@) + D (ticy = ai)Viyn} + (2 — K1)

_PC |:Z(ai—1 - ai)‘/ixn + anzi| + (1 - an)(xn _xn+l)'

i=1

It follows that

n

> iy = o) {wn = Vit 6 — x7)

i1
= <PC |:ar(f(xn) + Z(ai—l - Oli)Viyn] - Pc |:Z(0li—1 —a;)Vix, + Oan:|,xn —x*>
i1 i1

+ an(z — Xpe1r Xp —x*) +(1- a,,)(xn — X1, X —x*)

e =]

o (f@n) —2) + Y _(ctis — o) (Vi — Vi)

i=1

=

+ an”Z - xn+1” ||xn - x* || + (1 - an)”xn - xn+1|| ||xn - x* ||

n

< ot | @) = 2| | n — %[ + D (etica — )1y — Xl 0 — 27|

P
+ 12 = K || 200 = %] + (1= ) 10 = e ||| 20 — %
= oty |[f (%) — 2| 200 — & || + @ = ) 1y — 2l | 2 — x|
+ 12 = K || 260 = %] + (1= ) 120 = e ||| 20 — %
< oty |[f o) = 2| 0w — |

+ (1= )| BuStn + (1= Bu)zu — % || |60 — % || + tnllz = e Il |26 — |
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+ (1= ) [ = X | ”xn —x* “
= oy ”f(xn) - Z“ ”xn - ” + (1= 0) Bl Sxy — x| ”xn - ”
+ (1 =) (L= Bu)llzn —xull ”xn —-x" ”

+ |z = K|l 260 = || + (1 = 0t) 60 = e |l 260 — 7.

From Lemma 2.9 and the above inequality, we get
1 n
3 Z(ai—l = aj)lltn = Vi |®
i=1

n
< (@i — )y — Vit 0 — &7)
i=1

< 0t ||f o) = 2| 200 = &% || + (1= 00) Bull St — 2l |26 — |
+ (1 - arz)(l - ,Bn)”Zn _xn” ”xn _x* || + an”Z _xn+1|| ||xn _x* ||

+ (1 =) lln — X ll ”xn —x* “

Since lim,,_, o [| %41 — %]l = 0, @, — 0, B, — 0 and lim,,_, » ||%,, — 2, || = 0, we obtain
n
. 2
lim E (i1 — i) ll%, = Vixu||* = 0.
i

Since (i1 — o)1y — Vixu | < D1y (i1 — o)1, — Vi ||? and {e,} is strictly decreasing,

we have
lim (lx, — Vix,|l = 0.
n— o0

Hence, we obtain

”xn - len” _

. e T _ o
im [lx, — Tioe,[| = lim A=k) 0, Vizl

Since {x,} is bounded, without loss of generality, we can assume that x,, — w € C. It follows
from Lemma 2.4 that w € F(T). Therefore w,,(x,) C F(T). |

Theorem 3.1 The sequence {x,} generated by Algorithm 3.1 converges strongly to z =

Posnanrenf(z), which is the unique solution of the variational inequality
((I—f)z,x—z)EO, Vx e Q*NANFE(T), (39)
which is the optimality condition for a minimization problem
1
I;g){ ol - h(x)},

where h is a potential function for f (i.e., W' (x) = f(x) forx € H) and Y = Q*N A NF(T).

Page 16 of 27
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Proof Since {x,} is bounded x, — w and from Lemma 3.2, we have w € F(T). Next, we
show that w € EP(F)). Since u,, = T,f,l (%, + )/A*(Tﬁ:2 —1)Ax,), we have

1 1
Fi(tn,y) + r—(y— Upy Uy — Xy) — —(y— un,yA*(Tan2 —I)Axn> >0, VyeC.

n r}’l

It follows from the monotonicity of F; that

1 1
=y =t YA* (T2 = 1) Ap) + — (¥ = thpy thy — %) > F1(018), Vy€C

n r}’l

and

1 Uy, —X
——(y—unk,yA*(T,";zk—I)Axnk)+<y—unk,%>zﬂ(y,unk), VyeC. (40)
3

Ty

Since lim,,_, o ||t4,; — % || = 0, lim,,_, o ||(qu2 —DNAx,| =0 and x, — w, it is easy to observe
that u,, — w. It follows by Assumption 2.1(iv) that Fi(y,w) <0, Vy € C.
ForanyO<t<1landyeC,lety, =ty+ (1-t)w, we have y, € C. Then, from Assump-

tion 2.1(i) and (iv), we have

0 = Fi(ysy)) <thFi(ysy) + 1= )Fi(ys, w)

< tF1()’t>)’)'

Therefore Fy(y;,y) > 0. From Assumption 2.1(iii), we have F;(w,y) > 0, which implies that
w € EP(F,).

Next, we show that Aw € EP(F,). Since {x,} is bounded and x,, — w, there exists a sub-
sequence {x,, } of {x,} such that x,, — w and since A is a bounded linear operator so that
Ax,, — Aw. Now set v, = Ax,, — T2

V'nk
_7h
. = T,nk

Axy, . It follows from (35) that limy_, o v, = 0 and

Axpy — vy Axy, . Therefore from the definition of ngk , we have

1
Fo(A%y, — Vs y) + r—(y— (A% = Vi) (AXy, — Vi) —Axy,k> >0, VyeC.
ni
Since F, is upper semicontinuous in the first argument, taking limsup to the above in-
equality as k — oo and using Assumption 2.1(iv), we obtain

FZ(AW,J’)ZO; V)/G C;

which implies that Aw € EP(F,) and hence w € A.
Furthermore, we show that w € Q*. Let

Dv+Ncv, VveC(C,
V=
0, otherwise,

where Ncv:={we H:(w,v—u) > 0,Yu € C} is the normal cone to C at ve C. Then T is
maximal monotone and 0 € 7v if and only if v € Q* (see [25]). Let G(T') denote the graph
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of T and let (v,u) € G(T). Since u — Dv € Ncv and z,, € C, we have
(v—z,,u—-Dv)>0. (41)
On the other hand, it follows from z, = Pc[u,, — A,Du,] and v € C that
(v =224 — (ty — 2nDuy)) = 0
and
<v—zn, o +Du,,> >0.
An
Therefore, from (41) and inverse strong monotonicity of D, we have

<V - an: u) Z (V - anrDV>

Zy — Up
> (v =2y, Dv) —<V—Z,,k, i L +Du,,k>
-
Zy — Uny
> (V= 2y, Dv—Dzy ) + (v =24, Dzyyy — Dty ) =V — 2y, B
nk
Zy — Uny
> (v = zu, Dz — Dy, ) —<V—Z,,k, _ )
-

Since lim,,_, o |44 — 24|l = 0 and u,, — w, it is easy to observe that z,, — w. Hence, we
obtain (v—w,u) > 0. Since T is maximal monotone, we have w € 7710 and hence w € Q*.
Thus we have

weQ*NANE(T).

Since *, A and F(T) are convex, then Q* N A N F(T) is convex. Next, we claim that
limsup,_, . {f(z) — z,x, — z) <0, where z = Posqanrnf (2).
Since {x,} is bounded, there exists a subsequence {x,, } of {x,} such that

limsup(f(z) — 2,4, — z) = limsup{f (z) — z,%s, —2) = f(2) —z,w —2) < 0.
n—o0 k— o0

Next, we show that x, — z. From (16), we get

n

[E Z||2 = <xn+1 - anf(xn) - (0t — ai)viymxrwl - Z>

i=1

* <oenf () + Y (@i = ) Vi = 2,Xps1 — Z>

i=1

= <anf(xn) + Z(ai—l - ai)Viyn —Z,Xn41 — Z>

i=1

=< an(f(xn) _f(z)7xn+1 - Z) + Oln(f(Z) —Z,Xn+1 — Z)
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n
+ Z(ai—l - ai)(‘/iyn —Z, %41 — 2)
i=1
=y Hf(xn) -f(2) ” 16011 — 21 + an(f(z) —Z,Xn+1 — Z>
n
+ Y (@i — )| Viy = 2|l |1 — 2]
i=1
< o pll%n = 2|l 1%ns1 — 2| + Oln(f(Z) — 2, Xn+1 — Z)
n
Y (@i = i) llyn = 2l 1% — 2l
i=1
< @np s — 2| %01 — 2]l + ulf (2) — 2, %001 — 2)
+ (1= o) { Bull Sz — Szl| + BullSz — 2ll + (1 = Bu)l|2u — 21| } %01 — Il
< 1% — 2|l 1Xns1 = 2l + &ulf (2) — 2, %001 — 2)
+ (1= o) {Bullxn — 2|l + BullSz — 2l + (1 = Bu)l|%n — 211 } 101 — Il
< (1=l - ) 1%n — 2l %041 — 2ll + 2u{f (2) — 2, %011 — 2)
+ (1= an)BullSz = zll |1%441 — 2]

< 1- 0[,,,(1 - ,0)
- 2
+ (1 - 0[,,)/3,,“52 - Z” ”xn+l - Z”:

(l2n = 211% + 11 = 201%) + 2{f (2) = 2, 2001 — 2)

which implies that

20,(1 - p) 2a
”xn+1 _Z||2 = (1 - nip) ”xn _2”2 + m(f(z) — 2, Xn+1 _Z)

1+a,01-

2(1_an)ﬁn

+ ————||Sz - z||||», -z

o gy 15~ Zlln =2l
20,(1-p) 20,(1 - p) 1

< (1-—F— Jllm -zl + — (f@) - 2,61 — 2)

1+a,(1-p) T+a,(1-p) [1-p

(1 -a,)p

+ —— 1Sz = 2 loter — 2]l {-

an(l_p)

Let y, = £2200k and 8, = 2228 A (f(2) - 2,501 — 2) + 028 |1S2 - 2| 01 - 211}

Since
Za,,:oo, 1+a,(1-p)<2 and

(1 —au)Bu

Sz—z||||xn1 — 2|} <0,
iy 157l ||}_

hmsup{l—(f(z) Z, %1 — 2) +

n—0oQ

it follows that

3n
Zy,,:oo and limsup — <0.

n—00 y}’l

Thus all the conditions of Lemma 2.6 are satisfied. Hence we deduce that x,, — z.
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Posnaneeryf is a contraction, there exists a unique z € C such that z = Posnanrnf (2).
From (16), it follows that z is the unique solution of problem (39). This completes the
proof. O

Theorem 3.2 Let Hy and H, be two real Hilbert spaces and C C Hy and Q C H, be
nonempty closed convex subsets of Hilbert spaces H, and H,, respectively. Let A : H — H,
be a bounded linear operator. Let D : C — H; be an «-inverse strongly monotone mapping.
Assume that F) : C x C — Rand F, : Q x Q — R are the bifunctions satisfying Assump-
tion 2.1 and F, is upper semicontinuous in the first argument. Let S : C — H; be a nonex-
pansive mapping and {T;}?°, : C — C be a countable family of k;-strict pseudo-contraction
mappings such that F(T) N\ Q* N A # W, where F(T) = (i, F(T}). Let f be a p-contraction
mapping. For a given xo € C arbitrarily, let the iterative sequences {u,}, {x,}, {y,} and {z,}

be generated by

Uy = T:;l (wn + )/A*(T,Fn2 —1)Axy);
2, = Pclu, — AAuyl;

Yn = ﬂnsxn + (1 - ﬂn)zn; (4'2)

Xni1 =Pc [anf () + D (tica — ai)\/iyn} Vn >0,

i=1

where Vi =k + (1 - k)T;, 0 < k; <1, {r,} C (0,00), {A,} C (0,2ct) and y € (0,1/L), L is
the spectral radius of the operator A*A and A* is the adjoint of A and oy =1, {a,} is a
strictly decreasing sequence in (0,1) and {B,} is a sequence in (0,1) satisfying the following
conditions:

(a) limy oo, =0andy 2 o, =00,

(b) hmn—>o<> g_z =T€ (O’ OO);

(© Y2y (@nat — ) <00 and Y5 |Buct — Bul < 00,

o lrn=rnot [+ A= hnct [+ It =0t |+ | Bu-1 =Bl 0
anpPn 1_ ’

(e) there exists a constant K > 0 such that allﬁ— - ﬁl <K,
n n n—

(f) liminf, o7y >0 and Y o) [Fy-1 — rul < 00,

(d) limy— o0

(g) liminfy,_ o Ay <limsup,,_, ., Ay < 2a and Z:Zl (A1 — Ayl < 00.
Then the sequence {x,} generated by Algorithm (42) converges strongly to x* € Q* N A N

F(T), which is the unique solution of the variational inequality
1
<—(1 )"+ (I - S)x*,x—x*> >0, VxeQ*NANF(T). (43)
T

Proof From lim,_,«(B,./a,) = T € (0,00), without loss of generality, we can assume that
Bn < (1 + 7)ay, for all n > 1. Hence B, — 0. By a similar argument as that in Lemmas 3.1
and 3.2, we can deduce that {x,} is bounded, lim,,_, oc ||X,41 — %[ = 0, lim,,_, o ||, — 2, || = O
(see (38)) and (I — V;)x,, — 0. Then we have

"yn - xn” = ,Bn”xn - an” + (1 - lgn)”xn - Zn” — 0 asn— oo. (44)
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It follows that for all i > 1,

lyn = Vixull < lyn = xull + 1%, = Vixull = 0 as n— oo.

From (44) and (45), we have

1Yn = Viyvall < Nyn = Vixull + 1 Vixy = Vivull <y = Vixull + |lyn —xull = 0 asn — oo.

Set wy, = o, f (%) + >y (i1 — ;) Viyy. From (32) and (33), we obtain

”xn+1 _xn” < ”Wn - erl”

Bn B Bn

Xy — Xy—
5(1—(1—/0)0{;1)” n nl”
B
(1 70 —=Tnal  Au=Auc1l | Bn = Buail |an_an—1|>
+ M| — + + +
no Bu B B B
lloey — %1 |l 1 1
= (1-A-play) ———— + (1= A= plan)llxn —xpall| — -
( n) :Bn—l ( Vl) g ! ,Bn /371—1
(1 7y =Tu-1l A= Apal 1Bu = Bul |Oln_05n1|>
+ M| — + + +
wo B Bn B B
||xn _xn—IH 1 1
<(1-A=plon) ——7—— + = xpall | -
( n) ﬂn—l ! " /3;'1 ,Bn—l
<1 |rn_rn—1| I}‘n_}\n—ll |/3n_:3n—1| |Oln—0l,,_1|>
+ M| — + + +
w Bn Bn B Bn
|
= (1 -(1- P)an)# + o K|y — %1 ||
,Bn—l
(1 [0 —=Tnal  Au=Auc1l | Bn = Bual |an_an—1|>
+ M| — + + +
Ho Bu B B B
< (1= (= pag) =2l g e, — ]
ﬁn—l
(1 [0 =1nal  Au—=Aua1l | Bu = Bu-il |an_an—1|>
+ M| — + + + .
w Bn Bn Bn B

)

Let y, = (1- ,O)Oln and 8, = a, K ||%, — %1 ]| + M(i lrn;ﬂ:mll + P»n;slnfl\ + |/5n7£n—1‘ + \an—an,l\).

n

From conditions (a) and (d), we have

d b}
Zy,,:oo and lim = =0.
pry n—>00 Y,
By Lemma 2.6, we obtain
lim ”xnﬂ _xn” -0 lim ||Wn+l - Wn” - lim ”WVI+1 - Wn” -0
n—00 ’ n— 00 ’

n— 00 oy

n n

Bn
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From (42), we have

Xni1 = Pelwul = Wy + ot () + Y (it = @) (Vi = ) + (1= ).

i=1
Hence it follows that
X = Xna1 = (L= )y + tuixy
- (PC[Wn] = Wy + ayf (%) + Xn:(aH =) (Viyn —yn) + (1 - an)yn>
i=1

=(1- Oln)[,Bn(xn = Sx) + (1= Bu) (% — Zn)] + (Wn _PC[Wn])

+ D (@tics = )y = Viyn) + (0 —f (%)),
i=1

and hence
KXn — Xn+l _ (1 - ﬂn) 1
A
1 i oy,
YA ab, ;(ai—l =)y = Viyn) + m(xn —f ().
Letv, = (’i”_;’;’;/";n .Forany z € Q*N A N F(T), we have
Vi, X —z)—;(w — Pclw,], Pclw, ]—z)+7an ((I—f)x X —z)
e - (1—0[,,)/3,1 g ¢ e o (l_an)ﬂn e
+ <xn - an:xn - Z) + (1 ’_Bﬁn) <xn = Zpy Xy — Z)
1 n
+ m Z(aifl - C(i) (yn - ‘/iymxn - Z)~ (46)

i=1

Since S is a nonexpansive mapping, f is a p-contraction mapping and V; is a k;-strict
pseudo-contraction mapping. Then (I — S) and (I — V;) are monotone and f is strongly
monotone with a coefficient (1 — p). We can deduce

(X — Sxpy %y — 2) = <(1 - S, — (I -S)z,x, — z) + ((1 -8z, %, — z>

> ((1 - 8)z,x, — z), (47)
(U =f)Lns 0 = 2) = (U = on = U = )z, %00 — 2) + (U = )z, %0 — 2)
> (1= p)lixn -2l + (I -z, 2, - 2), (48)

(= Vi 2n = 2) = (I = Vi)yu = (L = V)2, 20 = ) + (L = Vi)yu = (I = Vi)Z, Y0 — 2)
> (I = Vi)yn = I = V)2, %0 — yu)
= (I = Vi)Y %0 = In)
= (I = Vi)Ys Bu(tn — Sx) + (1 = B) (@ — 20)). (49)
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From (16), we get

(Wn — Pc[wy], Pcwy1] _Z>
= (Wn _PC[Wn]rPC[Wn—l] _PC[Wn]) + (Wn _PC[Wn]rPC[Wn] _Z>

= (Wn — Pc[wy], Pc[wy-1] _PC[Wn]>'

Then, from (46)-(49), we have

(VX —2) > mwn = Pc[wy), Pc[wy-1] = Pclw,]) + (l—OiTn,,)ﬁ,,((I ~f)z, %, — 2)
+(U = S)z,x, —2) + a /_gﬂ") (% — Zu, X — Z)
+ % ;(ai—l - C\!l’)((l - Vi)ymxn — Zn>
T —la,,) (oti-1 = ){(I = Vi)yms 2 — Su) + % %, — 21

Then we obtain

2l < ﬁ [wn = Pelwal [ 1was = wall = 7 . =122
(1 _an),Bn
T e, (=2 = (U = S)2, 7))
_(0-B)A -an) G — 200y — 2)
(1 - p)an ! e
— (1_'3% ;(Oli—l - 0([)((1 = Vi)V %y — an)
W1 — wall 1
TU-pa, |wn = Pclw,]| - m((] —f)z, % - 2)
(1 _an),Bn
T, (wn=2) = (=), -2))
T L P [ e
1-p) Bn ay
1 (1 - IBn) ,Bn "
T B e el
B “
_ m ;(ai—l - ai)((l = V)Y X — an)

By condition (e) of Theorem 3.2, there exists a constant N > 0 such that 1;& < N. Since
IWna-wall
o

lim,— o0 [|%, — 24|l =0, v, > 0, (I — V})y, — 0 and '
ery weak cluster point of {x,} is also a strong cluster point. Since {x,} is bounded, by

— 0 as 1 — oo, then ev-
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Lemma 3.2 there exists a subsequence {x,, } of {x,} converging to a point x* € F(T), and
by some similar arguments in Theorem 3.1, we can show that x* € Q* N A N F(T).
From (4:6)-(49), it follows that for any z € Q* N A N F(T),

((I _f)x"k’x"k - Z)
_ (1- ank),Bnk 1

<Vn1<;xnk - Z) - —(Wnk _PC[Wnk]xPC[Wnk—l] _Z>
ot,,k ank
A -aw)B (1 - ay)d - By)
- T (xnk - ank:xnk - Z> -k e (xnk - an’xnk - Z>
Oy Oy

1 n
o Z(ai—l =)V = ViVngr Xny — 2)

Mk =1

(1-a,)B 1
< i = 2) + — Wi = P W ][I Waget = Wil
Ay Xy

(1 - ank)ﬂnk (1 - ﬁnk) @

- (xy, —Sxpy,x, —2) + ———— Xp, — 2 Xn, —Z
0, (X = SXyr Xy = 2) B ank” e = Zmg 1%y, — 2|

1- 1) B &
+ 0= Pn) P Z(ai—l =) | (= Viy | 16, = 2

Bue w5

s

_ P Z(Oli—l =) = Vi)ymgs By — Siny)- (50)

Mk =1

[Wn-1-Wall
n

Since lim,,, » ||%, — 24|l =0, v, = 0, (I = V})y, — 0 and ‘
(50), we obtain

— 0, letting k — oo in

((I —f)a*, x* — z) < —t(x* —Sx*,x* - z),

<%(1 -+ (I—S)x*,z—x*> > 0.

In the following, we show that (43) has a unique solution. Assume that «’ is another solu-

tion. Then we have

(U =f)a o —x*) < —1(x - Sa', &’ —x¥), (51)

(=" =) = —t(a" = Sx" 27 - ). (52)
Adding (51) and (52), we get

(1= p)|w —* | < (I =P)x = (I —f)x*, % — )
< —r(([ -8’ — (I - S)x*, % —x*)

<0.
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Then " = x*. Since (43) has a unique solution, it follows that w,,(x,) = {x*}. Since every
weak cluster point of {x,} is also a strong cluster point, we conclude that {x,} — x*. This
completes the proof. d

4 Applications

In this section, we obtain the following results by using a special case of the proposed
method. The first result can be viewed as an extension and improvement of the method
of Gu et al. [11] for finding an approximate element of the common set of solutions of a
split equilibrium problem and a hierarchical fixed point problem in a real Hilbert space.

Corollary 4.1 Let H; and H, be two real Hilbert spaces and C C Hy and Q C H, be
nonempty closed convex subsets of Hilbert spaces Hy and H,, respectively. Let A : H; — H,
be a bounded linear operator. Let D : C — H; be an «-inverse strongly monotone mapping.
Assume that F; : C x C —> R and F, : Q x Q — R are the bifunctions satisfying Assump-
tion 2.1 and F, is upper semicontinuous in the first argument. Let S : C — H; be a nonex-
pansive mapping and {T;}7°, : C — C be a countable family of k;-strict pseudo-contraction
mappings such that F(T) N\ Q* N A # (), where F(T) = (5, F(T;). Let f be a p-contraction
mapping. For a given xy € C arbitrarily, let the iterative sequences {u,}, {x,}, {y.} and {z,}
be generated by

U, = Tril (x,, + yA*(Tf;Z —I)Axn);

Y = BuSxy + (1 = Byt (53)

xns1 = Pc |:ar(f(xn) + Z(ai—l - Oli)TiJ/n:|, Yn >0,

i=1

where {r,} C (0,00) and y € (0,1/L), L is the spectral radius of the operator A*A and A*
is the adjoint of A and ay =1, {o,} is a strictly decreasing sequence in (0,1) and {B,} is a
sequence in (0,1) satisfying the following conditions:

(a) limy oo, =0and ) 2 o, =00,

(b) lim,;, o f_: =T€ (O¢ OO);
(© X1 —an) <00 and 37, By = Bl < 0,
. 7 rn=rn-1l+lan_1—0n|+|Bp-1-Pnl
(d) hmn%oo £ anlgn = 0:
(e) there exists a constant K > 0 such that i | ﬂ%, - ﬂ—{ll <K,

(f) liminf, o7y >0 and Y oo, [1p-1 — | < 00.
Then the sequence {x,} generated by Algorithm (53) converges strongly to x* € A N F(T),
which is the unique solution of the variational inequality

<%(1—f)x* + (I—S)x*,x—x*> >0, Vxe ANF(T).

Proof Put A, =0 and k; = 0, Vi > 1 in Theorem 3.2. Then conclusion of Corollary 4.1 is
obtained. a

The following result can be viewed as an extension and improvement of the method of
Yao et al. [27] for finding an approximate element of the common set of solutions of a split
equilibrium problem and a hierarchical fixed point problem in a real Hilbert space.
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Corollary 4.2 Let Hy and H, be two real Hilbert spaces and C C Hy and Q C H, be
nonempty closed convex subsets of Hilbert spaces H, and H,, respectively. Let A : H — H,
be a bounded linear operator. Let D : C — H; be an «-inverse strongly monotone mapping.
Assume that Fy : C x C — Rand F, : Q x Q — R are the bifunctions satisfying Assump-
tion 2.1 and F, is upper semicontinuous in the first argument. Let S : C — H; be a non-
expansive mapping and T : C — C be a k-strict pseudo-contraction mapping such that
F(T)N A # 0. Let f be a p-contraction mapping. For a given xo € C arbitrarily, let the
iterative sequences {uy}, {x,}, {y,} and {z,} be generated by

Uy = TE (% + yA* (T2 - 1) Ax,);
Y = BuSxy + (1= Bu)un; (54)

%1 = Pefanf () + 1= ) Ty, Vi =0,

where {r,} C (0,00) and y € (0,1/L), L is the spectral radius of the operator A*A and A*
is the adjoint of A and ay =1, {o,} is a strictly decreasing sequence in (0,1) and {B,} is a
sequence in (0,1) satisfying the following conditions:

() lim, oy =0andy o2 a, =00,

(b) lim,_ oo f—: =1 €(0,00),

(© Y02y (otuor — ) < 00 and Y 2 |Buct — Bul < 00,

i A i A 0

anPn ’
(e) there exists a constant K > 0 such that i | ﬂLn - ﬁl_l | <K,
(f) liminf, o7y >0 and Y oo, |11 — 1yl < 00.

(d) limy o

Then the sequence {x,} generated by Algorithm (54) converges strongly to x* € A N F(T),
which is the unique solution of the variational inequality

<%(1 —f)a* + (I—S)x*,x—x*> >0, Vxe ANF(T).

Proof Put A, =0, k;=0and T; = T, Vi > 1 in Theorem 3.2. Then conclusion of Corol-
lary 4.2 is obtained. O
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