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Abstract
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1. Introduction
In 1922, Banach gave a theorem, which is well-known as Banach’s Fixed Point Theo-

rem (or Banach’s Contractive Principle) to establish the existence of solutions for non-

linear operator equations and integral equations. Since then, because of their simplicity

and usefulness, it has become a very popular tools in solving the existence problems in

many branches of mathematical analysis. Since then, many authors have extended,

improved and generalized Banach’s theorem in several ways [1-11].

Recently, the existence of coupled fixed points for some kinds of contractive-type

mappings in partially ordered metric spaces, (ordered) cone metric spaces, fuzzy metric

spaces and other spaces with applications has been investigated by some authors, for

example, Bhaskar and Lakshmikantham [5], Cho et al. [12-14], Dhage et al. [15], Gordji

et al. [16,17], Kadelburg et al. [18], Nieto and Lopez [10], Ran and Rarings [11], Sintu-

navarat et al. [19,20], Yang et al. [21] and others.

Especially, in [5], Bhaskar and Lakshmikantham introduced the notions of a mixed

monotone mapping and a coupled fixed point and proved some coupled fixed point

theorems for mixed monotone mappings and discussed the existence and uniqueness

of solution for periodic boundary value problems.

Definition 1.1. [5] Let (X, ≤) be a partially ordered set and f: X × X ® X be a map-

ping. We say that f has the mixed monotone property on X if, for any x, y Î X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ f (x1, y) ≤ f (x2, y)
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and

y1, y2 ∈ X, y1 ≤ y2 ⇒ f (x, y1) ≥ f (x, y2).

Definition 1.2. [5] An element (x, y) Î X × X is called a coupled fixed point of a

mapping F: X × X ® X if x = F (x, y) and y = F (y, x).

Theorem 1.3. [5]Let (X, ≤, d) be a partially ordered complete metric space. Let f: X ×

X ® X be a mapping having the mixed monotone property on X. Assume that there

exists k Î [0, 1) with

d(f (x, y), f (u, v)) ≤ k
2
(d(x, u) + d(y, v))

for all x, y, u, v Î X with x ≤ u and y ≥ v. Also, suppose that either

(1) f is continuous or

(2) X has the following properties:

(a) if {xn} is an increasing sequence with xn ® x, then xn ≤ x for all n ≥ 1;

(b) if {yn} is a decreasing sequence yn ® y, then yn ≥ y for all n ≥ 1.

If there exist x0, y0 Î X such that x0 ≤ f(x0, y0) and y0 ≥ f(y0, x0), then f has a coupled

fixed point in X.

Very recently, Kadelburg et al. [18] proved the following theorem on cone metric

spaces.

Theorem 1.4. [18]Let (X, ≤, d) be an ordered cone metric space. Let (f, g) be a weakly

increasing pair of self-mappings on X with respect to ≤. Suppose that the following con-

ditions hold:

(1) there exist p, q, r, s, t ≥ 0 satisfying p + q + r + s + t <1 and q = r or s = t such that

d(fx, gy) ≤ pd(x, y) + qd(x, fx) + sd(x, gy) + td(y, fx)

for all comparable x, y Î X;

(2) f or g is continuous or, if a nondecreasing {xn} converges to a point x Î X, then xn
≤ x for all n ≥ 1.

Then f and g have a common fixed point in X.

Note that a pair (f, g) of self-mappings on partially ordered set (X, ≤) is said to be

weakly increasing if fx ≤ gfx and gx ≤ fgx for all x Î X.

Now, we introduce the following concept of the mixed weakly increasing property of

mappings.

Definition 1.5. Let (X, ≤) be a partially ordered set and f, g: X × X ® X be map-

pings. We say that a pair (f, g) has the mixed weakly monotone property on X if, for

any x, y Î X,

x ≤ f (x, y), y ≥ f (y, x)

⇒ f (x, y) ≤ g(f (x, y), f (y, x)), f (y, x) ≥ g(f (y, x), f (x, y))

and

x ≤ g(x, y), y ≥ g(y, x)

⇒ g(x, y) ≤ f (g(x, y), g(y, x)), g(y, x) ≥ f (g(y, x), g(x, y)).
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Example 1.6. Consider an ordered cone metric space (ℝ, ≤, d), where ≤ represents

the usual order relation and d is a usual metric on ℝ and let f, g: ℝ × ℝ ® ℝ be two

functions defined by

f (x, y) = x − 2y, g(x, y) = x − y.

Then a pair (f, g) has the mixed weakly monotone property.

Example 1.7. Consider an ordered cone metric space (ℝ, ≤, d), where ≤ represents

the usual order relation and d is a usual metric on ℝ and let f, g: ℝ × ℝ ® ℝ be two

functions defined by

f (x, y) = x − y + 1, g(x, y) = 2x − 3y.

Then both mappings f and g have the mixed monotone property, but a pair (f, g) has

not the mixed weakly monotone property. To see this, for any
( 9
8 ,

7
8

) ∈ R2 , we have

9
8

≤ f
(
9
8
,
7
8

)
,

7
8

≥ f
(
7
8
,
9
8

)
,

but

f
(
9
8
,
7
8

)
�≤ g

(
f
(
9
8
,
7
8

)
, f

(
7
8
,
9
8

))
, f

(
7
8
,
9
8

)
≥ g

(
f
(
7
8
,
9
8

)
, f

(
9
8
,
7
8

))
.

The purpose of this paper is to present some coupled common fixed point theorems

for a pair of mappings with the mixed weakly monotone property in a partially ordered

metric space. Our results generalize the main results of Bhaskar and Lakshmikantham

[5], Kadelburg et al. [18] and others.

2. Coupled common fixed point theorems
Let (X, ≤, d) be a partially ordered complete metric space. Now, we consider the pro-

duct space X × X with following partial order: for all (x, y), (u, v) Î X × X,

(x, y) ≤ (u, v) ⇔ x ≤ u, y ≥ v.

Also, let (X × X, D) be a metric space with the following metric:

D((x, y), (u, v)) := d(x, u) + d(y, v)

for all (x, y), (u, v) Î X × X.

Theorem 2.1. Let (X, ≤, d) be a partially ordered complete metric space. Let f, g: X ×

X ® X be the mappings such that a pair (f, g) has the mixed weakly monotone property

on X. Suppose that there exist p, q, r, s ≥ 0 with p + q + r + 2s <1 such that

d(f (x, y), g(u, v)) ≤ p
2
D((x, y), (u, v)) +

q
2
D((x, y), (f (x, y), f (y, x)))

+
r
2
D((u, v), (g(u, v), g(v, u))) +

s
2
D((x, y), (g(u, v), g(v, u)))

+
s
2
D((u, v), (f (x, y), f (y, x)))

(2:1)

for all x, y, u, v Î X with x ≤ u and y ≥ v. Let x0, y0 Î X be such that x0 ≤ f(x0, y0),

y0 ≥ f(y0, x0) or x0 ≤ g(x0, y0), y0 ≥ g(y0, x0). If f or g is continuous, then f and g have a

coupled common fixed point in X.
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Proof. Suppose that x0 ≤ f(x0, y0) and y0 ≥ f (y0, x0) and let

f (x0, y0) = x1, f (y0, x0) = y1.

From the mixed weakly monotone property of the pair (f, g), we have

x1 = f (x0, y0) ≤ g(f (x0, y0), f (y0, x0)) = g(x1, y1)

and

y1 = f (y0, x0) ≥ g(f (y0, x0), f (x0, y0)) = g(y1, x1).

Let

g(x1, y1) = x2, g(y1, x1) = y2.

Then we have

g(x1, y1) ≤ f (g(x1, y1), g(y1, x1)) = f (x2, y2)

and

g(y1, x1) ≥ f (g(y1, x1), g(x1, y1)) = f (y2, x2).

Continuously, let

x2n+1 = f (x2n, y2n), y2n+1 = f (y2n, x2n)

and

x2n+2 = g(x2n+1, y2n+1), y2n+2 = g(y2n+1, x2n+1)

for all n ≥ 1. Then we can easily verify that

x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · ·
and

y0 ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ yn+1 ≥ · · · .
Similarly, from the condition x0 ≤ g(x0, y0) and y0 ≥ g(y0, x0), one can show that the

sequences {xn} and {yn} are increasing and decreasing, respectively. Thus, applying

(2.1), we obtain

d(x2n+1, x2n+2)

= d(f (x2n, y2n), g(x2n+1, y2n+1))

≤ p

2
D((x2n, y2n), (x2n+1, y2n+1)) +

q

2
D((x2n, y2n), (f (x2n, y2n), f (y2n, x2n)))

+
r
2
D((x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

+
s
2
D((x2n, y2n), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

+
s
2
D((x2n+1, y2n+1), (f (x2n, y2n), f (y2n, x2n)))

=
p
2
D((x2n, y2n), (x2n+1, y2n+1)) +

q
2
D((x2n, y2n), (x2n+1, y2n+1))

+
r
2
D((x2n+1, y2n+1), (x2n+2, y2n+2)) +

s
2
D((x2n+1, y2n+1), (x2n+1, y2n+1))

+
s
2
D((x2n, y2n), (x2n+2, y2n+2))

≤ p + q
2

D((x2n, y2n), (x2n+1, y2n+1)) +
r
2
D((x2n+1, y2n+1), (x2n+2, y2n+2))

+
s
2
[D((x2n, y2n), (x2n+1, y2n+1)) +D((x2n+1, y2n+1), (x2n+2, y2n+2))]

=
p + q + s

2
D((x2n, y2n), (x2n+1, y2n+1)) +

r + s
2

D((x2n+1, y2n+1), (x2n+2, y2n+2)).
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Hence it follows that

d(x2n+1, x2n+2) ≤ p + q + s
2

(d(x2n, x2n+1) + d(y2n, y2n+1))

+
r + s
2

(d(x2n+1, x2n+2) + d(y2n+1, y2n+2))
(2:2)

for all n ≥ 1. Similarly, we have

d(y2n+1, y2n+2) ≤ p + q + s
2

(d(y2n, y2n+1) + d(x2n, x2n+1))

+
r + s
2

(d(y2n+1, y2n+2) + d(x2n+1, x2n+2))
(2:3)

for all n ≥ 1. Thus it follows from (2.2) and (2.3) that

d(x2n+1, x2n+2) + d(y2n+1, y2n+2) ≤ p + q + s
1 − (r + s)

(
(d(x2n, x2n+1) + d(y2n, y2n+1)) (2:4)

for all n ≥ 1. Moreover, if we apply (2.1), then we have

d(x2n+2, x2n+3)

= d(g(x2n+1, y2n+1), f (x2n+2, y2n+2))

≤ p

2
D((x2n+1, y2n+1), (x2n+2, y2n+2))

+
q
2
D((x2n+1, y2n+1), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

+
r
2
D((x2n+2, y2n+2), (f (x2n+2, y2n+2), f (y2n+2, x2n+2)))

+
s
2
D((x2n+1, y2n+1), (f (x2n+2, y2n+2), f (y2n+2, x2n+2)))

+
s
2
D((x2n+2, y2n+2), (g(x2n+1, y2n+1), g(y2n+1, x2n+1)))

=
p
2
D((x2n+1, y2n+1), (x2n+2, y2n+2)) +

q
2
D((x2n+1, y2n+1), (x2n+2, y2n+2))

+
r
2
D((x2n+2, y2n+2), (x2n+3, y2n+3)) +

s
2
D((x2n+1, y2n+1), (x2n+3, y2n+3))

+
s
2
D((x2n+2, y2n+2), (x2n+2, y2n+2))

≤ p + q
2

D((x2n+1, y2n+1), (x2n+2, y2n+2)) +
r
2
D((x2n+2, y2n+2), (x2n+3, y2n+3))

+
s
2
[D((x2n+1, y2n+1), (x2n+2, y2n+2)) +D((x2n+2, y2n+2), (x2n+3, y2n+3))].

Hence it follows that

d(x2n+2, x2n+3) ≤ p + q + s
2

(d(x2n+1, x2n+2) + d(y2n+1, y2n+2))

+
r + s
2

(d(x2n+2, x2n+2) + d(y2n+3, y2n+3))
(2:5)

for all n ≥ 1. Similarly, we have

d(y2n+2, y2n+3) ≤ p + q + s
2

(d(y2n+1, y2n+2) + d(x2n+1, x2n+2))

+
r + s
2

(d(y2n+2, y2n+2) + d(x2n+3, x2n+3)).
(2:6)
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Thus, using (2.5) and (2.6), we have

d(x2n+2, x2n+3) + d(y2n+2, y2n+3) ≤ p + q + s
1 − (r + s)

(d(x2n+1, x2n+2) + d(y2n+1, y2n+2)) (2:7)

for all n ≥ 1. Also, it follows from (2.4) and (2.7) that

d(x2n+2, x2n+3) + d(y2n+2, y2n+3) ≤
(

p + q + s
1 − (r + s)

)2

(d(x2n, x2n+1) + d(y2n, y2n+1)) (2:8)

for all n ≥ 1. Let A = p+q+s
1−(r+s) . Then 0 ≤ A < 1 and

d(x2n+1, x2n+2) + d(y2n+1, y2n+2) ≤ A(d(x2n, x2n+1) + d(y2n, y2n+1))

≤ A3(d(x2n−2, x2n−1) + d(y2n−2, y2n−1))

≤ A5(d(x2n−4, x2n−3) + d(y2n−4, y2n−3))

≤ · · ·
≤ A2n+1(d(x0, x1) + d(y0, y1))

and

d(x2n+2, x2n+3) + d(y2n+2, y2n+3) ≤ A2(d(x2n, x2n+1) + d(y2n, y2n+1))

≤ A4(d(x2n−2, x2n−1) + d(y2n−2, y2n−1))

≤ A6(d(x2n−4, x2n−3) + d(y2n−4, y2n−3))

≤ · · ·
≤ A2n+2(d(x0, x1) + d(y0, y1))

for all n ≥ 1. Now, for all m, n ≥ 1 with n ≤ m, we have

d(x2n+1, x2m+1) + d(y2n+1, y2m+1)

≤ (d(x2n+1, x2n+2) + d(y2n+1, y2n+2)) + (d(x2n+2, x2n+3) + d(y2n+2, y2n+3))

+ · · ·
+(d(x2m, x2m+1) + d(y2m, y2m+1))

≤ (A2n+1 + A2n+2 + · · · + A2m)(d(x0, x1) + d(y0, y1))

≤ A2n+1

1 − A
(d(x0, x1) + d(y0, y1)).

Similarly, we have

d(x2n, x2m+1) + d(y2n, y2m+1)

≤ (A2n + A2n+1 + A2n+2 + · · · + A2m)(d(x0, x1) + d(y0, y1))

≤ A2n

1 − A
(d(x0, x1) + d(y0, y1)),

d(x2n, x2m) + d(y2n, y2m)

≤ (A2n + A2n+1 + A2n+2 + · · · + A2m−1)(d(x0, x1) + d(y0, y1))

≤ A2n

1 − A
(d(x0, x1) + d(y0, y1))
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and

d(x2n+1, x2m) + d(y2n+1, y2m)

≤ (A2n+1 + A2n+1 + A2n+2 + · · · + A2m−1)(d(x0, x1) + d(y0, y1))

≤ A2n+1

1 − A
(d(x0, x1) + d(y0, y1)).

Hence, for all m, n ≥ 1 with n ≤ m, it follows that

d(xn, xm) + d(yn, ym) ≤ A2n

1 − A
(d(x0, x1) + d(y0, y1))

and so, since 0 ≤ A <1, we can conclude that

d(xn, xm) + d(yn, ym) → 0

as n ® ∞, which implies that d(xn, xm) ® 0 and d(yn, ym) ® 0 as m, n ® ∞. There-

fore, the sequences {xn} and {yn} are Cauchy sequences in X. Since (X, d) is a complete

metric space, then there exist x, y Î X such that xn ® x and yn ® y as n ® ∞.

Suppose that f is a continuous. Then we have

x = lim
k→∞

x2k+1 = lim
k→∞

f (x2k, y2k) = f ( lim
k→∞

x2k, lim
k→∞

y2k) = f (x, y)

and

y = lim
k→∞

y2k+1 = lim
k→∞

f (y2k, x2k) = f ( lim
k→∞

y2k, lim
k→∞

x2k) = f (y, x).

Taking x = u and y = v in (2.1), we have

d(f (x, y), g(x, y)) + d(f (y, x), g(y, x))

≤ p
2
D((x, y), (x, y)) +

q
2
D((x, y), f (x, y), f (y, x))

+
r
2
D((x, y), g(x, y), g(y, x)) +

s

2
D((x, y), g(x, y), g(y, x))

+
s

2
D((x, y), f (x, y), f (y, x))

p

2
D((y, x), (y, x))

+
q
2
D((y, x), f (y, x), f (x, y)) +

r
2
D((y, x), g(y, x), g(x, y))

+
s
2
D((y, x), g(y, x), g(x, y)) +

s
2
D((y, x), f (y, x), f (x, y)).

Hence we have

d(x, g(x, y)) + d(y, g(y, x)) ≤ (r + s)(d(x, g(x, y)) + d(y, g(y, x)))

and so, since r + s <1, we can get that

d(x, g(x, y)) = 0, d(y, g(y, x)) = 0.

Hence (x, y) is a coupled common fixed point of f and g.

Similarly, we can prove that (x, y) is a coupled common fixed point of f and g when g

is a continuous mapping. This completes the proof. □
Theorem 2.2. Let (X, ≤, d) be a partially ordered complete metric space. Assume that

X has the following property:

(1) if {xn} is an increasing sequence with xn ® x, then xn ≤ x for all n ≥ 1;
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(2) if {yn} is a decreasing sequence with yn ® y, then yn ≥ y for all n ≥ 1.

Let f, g: X × X ® X be the mappings such that a pair (f, g) has the mixed weakly

monotone property on X. Also, suppose that there exist p, q, r, s ≥ 0 with p + q + r + 2s

<1 such that

d(f (x, y), g(u, v)) ≤ p
2
D((x, y), (u, v)) +

q
2
D((x, y), (f (x, y), f (y, x)))

+
r
2
D((u, v), (g(u, v), g(v, u))) +

s
2
D((x, y), (g(u, v), g(v, u)))

+
s
2
D((u, v), (f (x, y), f (y, x)))

for all x, y, u, v Î X with x ≤ u and y ≥ v. If there exist x0, y0 Î X such that x0 ≤ f

(x0, y0), y0 ≥ f(y0, x0) or x0 ≤ g(x0, y0), y0 ≥ g(y0, x0), then f and g have a coupled com-

mon fixed point in X.

Proof. Following the proof of Theorem 2.1, we only have to show that

f (x, y) = g(x, y) = x, f (y, x) = g(y, x) = y.

It is clear that

D((x, y), (f (x, y), f (y, x)))

≤ D((x, y), (x2k+2, y2k+2)) +D((x2k+2, y2k+2), (f (x, y), f (y, x)))

= D((x, y), (x2k+2, y2k+2)) +D((g(x2k+1, y2k+1), g(y2k+1, x2k+1)), (f (x, y), f (y, x)))

= D((x, y), (x2k+2, y2k+2)) + d(g(x2k+1, y2k+1), f (x, y)) + d(f (y, x), g(y2k+1, x2k+1))

≤ D((x, y), (x2k+2, y2k+2)) +
p
2
D((x2k+1, y2k+1), (x, y))

+
q
2
D((x2k+1, y2k+1), (g(x2k+1, y2k+1), g(y2k+1, x2k+1))) +

r
2
D((x, y), (f (x, y), f (y, x)))

+
s
2
D((x2k+1, y2k+1), (f (x, y), f (y, x))) +

s
2
D((x, y), (g(x2k+1, y2k+1), g(y2k+1, x2k+1)))

+
p
2
D((y, x), (y2k+1, x2k+1)) +

q
2
D((y, x), (f (y, x), f (x, y)))

+
r
2
D((y2k+1, x2k+1), (g(y2k+1, x2k+1), g(x2k+1, y2k+1)))

+
s
2
D((y, x), (g(y2k+1, x2k+1), g(x2k+1, y2k+1))) +

s
2
D((y2k+1, x2k+1), (f (y, x), f (x, y)))

and so

d(x, f (x, y)) + d(y, f (y, x))

≤ d(x, x2k+2) + d(y, y2k+2) + p(d(x2k+1, x) + d(y2k+1, y))

+
q
2
(d(x2k+1, x2k+2) + d(y2k+1, y2k+2) + d(x, f (x, y)) + d(y, f (y, x)))

+
r
2
(d(x, f (x, y)) + d(y, f (y, x)) + d(y2k+1, y2k+2) + d(x2k+1, x2k+2))

+s(d(x2k+2, x) + d(y2k+2, y) + d(x2k+1, f (x, y)) + d(y2k+1, f (y, x))).

(2:9)

Letting k ® ∞ in (2.9), we obtain

d(x, f (x, y)) + d(y, f (y, x)) ≤ q + r + 2s
2

[d(x, f (x, y)) + d(y, f (y, x))].

Since q+r+2s
2 < 1 , we have

d(x, f (x, y)) + d(y, f (y, x)) = 0
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and so f(x, y) = x and f(y, x) = y. Similarly, we can show that g(x, y) = x and g(y, x) =

y. Therefore, (x, y) is a coupled common fixed point of f and g. This completes the

proof. □
Now, we give an example to illustrate Theorem 2.1 as follows:

Example 2.3. Consider (ℝ, ≤, d), where ≤ represents the usual order relation and d is

a usual metric on ℝ and let f, g: ℝ × ℝ ® ℝ be two functions defined by

f (x, y) =
6x − 3y + 33

36
, g(x, y) =

8x − 4y + 44
48

.

Then a pair (f, g) has the mixed weakly monotone property and

d(f (x, y), g(u, v)) = |f (x, y) − g(u, v)| =
∣∣∣∣6x − 3y + 33

36
− 8x − 4y + 44

48

∣∣∣∣
≤ 1

6
|x − u| + 1

12
|y − v|

≤ 1
6
(|x − u| + |y − v|).

By putting p = 1
3 and q = r = s = 0 in (2.1), we see that (1, 1) is a unique coupled

common fixed point of f and g.

Corollary 2.4. In Theorems 2.1 and 2.2, if X is a total ordered set, then a coupled

common fixed point of f and g is unique and x = y.

Proof. If (x*, y*) Î X × X is another coupled common fixed point of f and g, then, by

the use of (2.1), we have

d(x, x∗) + d(y, y∗)
= d(f (x, y), g(x∗, y∗)) + d(f (y, x), g(y∗, x∗))

≤ p

2
D((x, y), (x∗, y∗)) +

q

2
D((x, y), (f (x, y), f (y, x)))

+
r
2
D((x∗, y∗), (g(x∗, y∗), g(y∗, x∗))) +

s
2
D((x, y), (g(x∗, y∗), g(y∗, x∗)))

+
s
2
D((x∗, y∗), (f (x, y), f (y, x))) +

p
2
D((y, x), (y∗, x∗))

+
q
2
D((y, x), (f (y, x), f (x, y))) +

r
2
D((y∗, x∗), (g(y∗, x∗), g(x∗, y∗)))

+
s
2
D((y, x), (g(y∗, x∗), g(x∗, y∗))) +

s
2
D

(
((y∗, x∗), (f (y, x), f (x, y)))

= p(d(x, x∗)) + d(y, y∗)
)
+ 2s(d(x, x∗)) + d(y, y∗)

)

and hence

d(x, x∗) + d(y, y∗) = (p + 2s)(d(x, x∗) + d(y, y∗)).

Since q + 2s <1, we have d(x, x*) + d(y, y*) = 0, which implies that x = x* and y = y*.

On the other hand, we have

d(x, y) = d(f (x, y), g(y, x))

≤ p
2
D((x, y), (y, x)) + sD((x, y), (y, x))

= (p + 2s)d(x, y).

Since p + 2s <1, we have d(x, y) = 0 and x = y. This completes the proof. □
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Let f: X × X ® X be a mapping. Now, we denote

f n+1(x, y) = f (f n(x, y), f n(y, x))

for all x, y Î X and n ≥ 1.

Remark 2.5. Let (X, ≤, d) be a partially ordered complete metric space. Let f: X × X

® X be a mapping with the mixed monotone property on X. Then, for each n ≥ 1, a

pair (fn, fn) has the mixed weakly monotone property on X. In fact, let x ≤ fn(x, y) and

y ≤ fn(y, x). Then it follows from the mixed monotone property of f that

f (x, y) ≤ f (f n(x, y), y) ≤ f (f n(x, y), f n(y, x)) = f n+1(x, y),

f (y, x) ≥ f
(
(f n(y, x), x) ≥ f (f n(y, x), f n(x, y)) = f n+1(y, x)

and

f 2(x, y) = f (f (x, y), f (y, x)) ≤ f (f n+1(x, y), f n+1(y, x)) = f n+2(x, y),

f 2(y, x) = f (f (y, x), f (x, y)) ≥ f (f n+1(y, x), f n+1(x, y)) = f n+2(y, x).

Continuously, we have

f n(x, y) ≤ f n+n(x, y), f n(y, x) ≥ f n+n(y, x).

Hence we have

f n(x, y) ≤ f n(f n(x, y), f n(y, x)), f n(y, x) ≥ f n(f n(y, x), f n(x, y)),

which implies that the pair (fn, fn) has the mixed weakly monotone property on X.

Corollary 2.6. Let (X, ≤, d) be a partially ordered complete metric space. Let f: X × X

® X be a mapping with the mixed monotone property on X. Assume that there exist p,

q, r, s ≥ 0 with p + q + r + 2s <1 such that

d(f (x, y), f (u, v)) ≤ p
2
D((x, y), (u, v)) +

q
2
D((x, y), (f (x, y), f (y, x)))

+
r
2
D((u, v), (f (u, v), f (v, u))) +

s
2
D((x, y), (f (u, v), f (v, u)))

+
s
2
D((u, v), (f (x, y), f (y, x)))

for all x, y, u, v Î X with x ≤ u and y ≥ v. Moreover, suppose that either

(1) f is continuous or

(2) X has the following properties:

(a) if {xn} is an increasing sequence with xn ® x, then xn ≤ x for all n ≥ 1;

(b) if {yn} is a decreasing sequence with yn ® y, then yn ≥ y for all n ≥ 1.

If there exist x0, y0 Î X such that x0 ≤ f(x0, y0) and y0 ≥ f(y0, x0), then f has a coupled

fixed point in X.

Proof. Taking f = g in Theorems 2.1, 2.2 and using Remark 2.5, we can get the

conclusion. □
Corollary 2.7. Let (X, ≤, d) be a partially ordered complete metric space. Let f: X × X ®

X be a mapping with the mixed monotone property on X. Assume that there exists k Î [0,

1) with
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d(f (x, y), f (u, v)) ≤ k
2
(d(x, u) + d(y, v))

for all x, y, u, v Î X with x ≤ u and y ≥ v. Also, suppose that either

(1) f is continuous or

(2) X has the following properties:

(a) if {xn} is an increasing sequence with xn ® x, then xn ≤ x for all n ≥ 1;

(b) if {yn} is a decreasing sequence with yn ® y, then yn ≥ y for all n ≥ 1.

If there exist x0, y0 Î X such that x0 ≤ f(x0, y0) and y0 ≥ f(y0, x0), then f has a coupled

fixed point in X.

Proof. Taking f = g, p = k and q = r = s = 0 in Theorems 2.1, 2.2 and using Remark

2.5, we can get the conclusion. □
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