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Abstract

In this article, a novel and systematic Low-density parity-check (LDPC) code construction, verification and
implementation methodology is proposed. The methodology is composed by the simulated annealing based LDPC
code constructor, the GPU based high-speed code selector, the ant colony optimization based pipeline scheduler
and the FPGA-based hardware implementer. Compared to the traditional ways, this methodology enables us to
construct both decoding-performance-aware and hardware-efficiency-aware LDPC codes in a short time. Simulation
results show that the generated codes have much less cycles (length 6 cycles eliminated) and memory conflicts
(75% reduction on idle clocks), while having no BER performance loss compared to WiMAX codes. Additionally, the
simulation speeds up by 490 times under float precision against CPU and a net throughput 24.5 Mbps is achieved.
Finally, a net throughput 1.2 Gbps (bit-throughput 2.4 Gbps) multi-mode LDPC decoder is implemented on FPGA,
with completely on-the-fly configurations and less than 0.2 dB BER performance loss.

Keywords: low-density parity-check codes, simulated annealing, ant colony optimization, graphic processing unit,
decoder architecture

1. Introduction
Low-density parity-check (LDPC) code is first proposed
by Gallager [1] and rediscovered by Mackay and Neal
since they introduce Tanner Graph [2] into LDPC code
[3]. LDPC code with soft decoding algorithms on Tanner
Graph can achieve outstanding capacity and approach
Shannon limit over noisy channels at moderate decoding
complexity [4]. Most algorithms root from the famous
believe propagation (BP) algorithm, such as min-sum
algorithm (MSA) with simplified calculation, modified
MSA (MMSA) [5] with improved BER performance and
layered versions [6] with fast decoding convergence.
The existence of “cycle” in Tanner Graph is a critical

constraint of the above algorithms, as it breaks the
“message independence hypothesis” and degrades the
BER performance. As a result, “girth” becomes an impor-
tance metric of estimating the performance of the LDPC
code. The progressive edge-growth (PEG) algorithm [7]
is a girth-aware construction method that tries to make
shortest cycle as large as possible. Approximate cycle
extrinsic (ACE) message degree constraint is further

combined into PEG [8] to lower error floor. However,
these performance-aware methods do not take hardware
implementation into account, which usually result in low
efficiency or high complexity.
As to the decoder implementation, the fully-parallel

architecture [9] is first proposed for achieving the highest
decoding throughput, but the hardware complexity due to
the routing overhead is very high. The semi-parallel
layered decoder [10] is then proposed to achieve the trade-
off between hardware complexity and decoding through-
put. Memory conflict is a critical problem for layered
decoder, which is modeled as a single-layer traveling sales-
man problem (TSP) in [11]. However, this model ignores
“element permutation”, i.e., the order assignment of the
edges in each layer, and its search does not cover the entire
solution space. Further, fully-parallel graphic processing
unit (GPU) based implementation is also proposed in [12].
In this article, a novel and systematic LDPC code con-

struction, verification, and implementation methodology
is proposed, and a software and hardware platform is
implemented, which is composed by four modules as
shown in Figure 1. The simulated annealing (SA) based
LDPC code constructor continuously constructs good
candidate codes. The BER performance of the generated
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codes, especially the error floor, is then evaluated by the
high-speed GPU based simulation platform. Next, the
hardware pipeline of the selected codes are optimized by
the ant colony optimization (ACO) based scheduling
algorithm, which can reduce much of the memory con-
flicts. Finally, detailed implementation schemes are pro-
posed, i.e., reconfigurable switch network (adopted by [13]),
offset-threshold decoding, split-row MMSA core, early-stop-
ing scheme and multi-block scheme, and the corresponding
multi-mode high-throughput decoder of the optimized
codes is implemented on FPGA. The novelties of the pro-
posed methodology are listed as follows:

• Compared to traditional methods (PEG, ACE), the
SA-based constructor takes both decoding perfor-
mance and hardware efficiency into consideration dur-
ing construction process.
• Compared to existed work [11], the ACO-based sche-
duler covers both layer and element permutation, and
maps the problem to a double-layer TSP, which is a
complete solution and can provide better pipelining
schedule.
• Compared to existed works, the GPU-based evaluator
first implements the semi-parallel layered architecture
on GPU. The obtained net throughput is similar to the
highest report [12] (about 25 Mbps), while the pro-
posed scheme has higher precision and better BER per-
formance. Further, we put the whole coding and
decoding system into GPU rather than a single decoder.
• Compared to existed FPGA or ASIC implementa-
tions [14-16], the proposed multi-mode high-through-
put decoder not only supports multiple modes with
completely on-the-fly configurations, but also has a
performance loss within 0.2 dB against float precision
and 20 iterations, and a stable net-throughput 721.58
Mbps under code rate 1/2 and 20 iterations. With

early-stopping scheme, a net-throughput 1.2 Gbps is
further achieved on Stratix III FPGA.

The remainder of this paper is organized as follows.
Section 2 presents the background of our research.
Sections 3, 4, and 5 introduces the ACO based pipeline
scheduler, the SA based code constructor and the GPU
based performance evaluator, respectively, followed by
hardware implementation schemes and issues of the
multi-mode high-throughput LDPC decoder discussed in
Section 6. Simulation results are provided in Section 7 and
hardware implementation results are given in Section 8.
Finally, Section 9 concludes this article.

2. Background
2.1. LDPC codes and Tanner graph
An LDPC code is a special linear block code, character-
ized by a sparse parity-check matrix H with dimensions
M × N; Hj,i= 1 if code bit i is involved in parity-check
equation j, and 0 otherwise. An LDPC code is usually
described by its Tanner Graph, a bipartite graph defined
on the code bit set ℝ and parity-check equation set ℂ,
whose elements are called a “bit node” and a “check
node”, respectively. An edge is assigned between bit
node BNi and check node CNj if Hj,i = 1. A simple 4 ×
6 LDPC code and the corresponding Tanner Graph is
shown in Figure 2.
Quasi-cyclic LDPC codes (QC-LDPC) is a popular class

of structured LDPC codes, which is defined by its base

matrix Hb, whose elements satisfying −1 ≤ Hb
j,i < zf .zf is

called the expansion factor. Each element in the base
matrix should be further expanded to a zf × zf matrix to

obtain H. The elements Hb
j,i = −1 are expanded to zero

matrices, while L(Qi) = L(ci) +
∑
j′∈ci

L(rj′i) = L(qij) + L(rji)

Figure 1 LDPC code construction and verification platform.
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are expanded to a cyclic-shift identity matrices with per-

mutation factors Hb
j,i ≥ 0 . QC-LDPC is naturally avail-

able for layered algorithms, whose j-th row is exactly

layer j. We call the “1"s of j-th row as the set p = Hb
j,i .

See Figure 3 for an example of a 4 × 6 base matrix with
zf = 4.

2.2. The BP algorithm and effect of cycle
The BP algorithm is a general soft decoding scheme for
codes described by Tanner Graph. It can be viewed as
the process of iterative message exchange between bit
nodes and check nodes. For each iteration, each bit
node or check node collects the messages passed from
its neighborhood, updates its own message and passes
the updated message back to its neighborhood. BP algo-
rithm has many modified versions, such as log-domain
BP, MSA, and layered BP. All of them originate from
the basic log-domain message passing equations, given
as follows.

{Hb
j,i

∣∣∣Hb
j,i ≥ 0} (1)

L(qij) = L(Qi) − L(rji) (2)

L(Qi) = L(ci) +
∑
j′∈ci

L(rj′i) = L(qij) + L(rji) (3)

where L(ci) is the initial channel message, L(qij) is the
message passing from BNi to CNj, L(rji) is the message
of inverse direction, and L(Qi) is the a-posteriori of bit
node BNi. Ci is the neighbor set of BNi, ℛj is the

neighbor set of CNj. �(x) = log
ex + 1
ex − 1

. These equations

can also be applied in layered BP, the difference is that
the L(qij) and L(rji) should be updated in each layer of
the iteration.
The above equations requires the independence of all

the messages L( qi′j), i′ Î ℛj and Hb
j,k . However, the

existence of “cycle” in Tanner Graph invalidates this
independence assumption, thus degrades the BER per-
formance of BP algorithm. A length 6 cycle is shown
with bold lines in Figure 2. In this case, if BP algorithm
proceeds for more than three iterations, the receive
messages of the involved bit nodes v2,v4,v5 will partly
contain its own message sent three iterations before. For
this reason, the minimum cycle length in the Tanner
Graph, called “girth”, has a strong relationship with its
BER performance, and is considered as an important
metric in LDPC code construction algorithms (PEG,
ACE) [7,8].

2.3. Decoder architecture and memory conflict
The semi-parallel structure with layered MMSA core is
a popular decoder architecture due to its good tradeoff
among low complexity, high BER performance and high
throughput. As shown in Figure 4, the main compo-
nents in the top-level architecture include an LLRSUM
RAM storing L(Qi), an LLREX RAM storing L(rji) and a
layered MMSA core pipeline. The two RAMs should be
readable and writable. Old values of L(Qi) and L(rji) are
read, and new values are calculated through the pipeline
and written back to RAMs. For QC-LDPC codes, the
values are processed layer by layer, and the “1"s in each
layer is processed one by one.
Memory conflict is a critical problem that constrains

the throughput of the semi-parallel decoder. Essentially,
memory conflict occurs when the read-after-write
(RAW) dependency of L(Qi) is violated. Note that the
new value of L(Qi) will not be written back to RAM
until the pipelined calculation finishes. If L(Qi) is again
needed during this calculation period, the old value will
be read, while the new one is still under processing, see
L(Q6) in Figure 4. This case happens when the layers j
and j + l have “1"s in the same position

i (Hb
j,i ≥ 0,Hb

j+l,i ≥ 0) . We call it a gap-l conflict.

Memory conflict slows the decoding convergence and
thus reduces the BER performance. The traditional
method of handling memory conflict is to insert idle
clocks in the pipeline, with the cost of throughput
reduction. It’s obvious that the smaller l, the more idle
clocks should be inserted, since the pipeline need to
wait at least K stages before writing back the new
values. Usually, the number of gap-1, gap-2, gap-3

Figure 2 H matrix and Tanner Graph of LDPC.

Figure 3 A simple 4 × 6 base matrix Hb with zf = 4.
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conflicts, denote c1, c2 and c3, are considered as the
metrics of measuring memory conflict.

3. The ACO-based pipelining scheduler
In this section, we propose the ACO-based pipeline
scheduling algorithm to minimize memory conflict. We
first formulate this problem, then map it to the double-
layered TSP and finally use ACO to solve it.

3.1. Problem formulation
Consider a QC LDPC code described by its base matrix
H with dimensions M × N. Thus, there are M layers.
Denote wm,1 ≤ m ≤ M as the number of elements ("1"s)
in m-th layer. Denote hm,n, 1 ≤ n ≤ wm as the column
index in H of the n-th element, m-th layer. Additionally,
we assume the core pipeline is K stages.
As discussed above, the decoder processes all the “1"s

in H exactly once by processing layer-by-layer in each
iteration, and element-by-element in each layer. How-
ever, the order can be arbitrary, which enables us to
schedule the elements carefully to minimize memory
conflict. We have two ways to solve it.

• Layer permutation: We can assign which layer to
be processed first and which to be next. If two layers
i,j have 1s at totally different positions, i.e., such j,l
do not exist that hi,k = hj,l, they tend to be assigned
as the adjacent layers with no conflict.
• Element permutation: In a certain layer, we can
assign which element to be processed first and
which to be next. If two adjacent layers i,j still have
conflict, i.e., hi,k = hj,l for some k,l, then we can
assign element k to be first in layer i, and l to be last
in layer j. By this way, we increase the time interval
between the conflicting elements k and l.

Therefore, the memory conflict minimization problem
is exactly a scheduling problem, in which layer permuta-
tion and element permutation should be designed to
minimize the number of idle pipeline clock insertions.
We denote layer permutation as m ® lm, 1 ≤ m, lm ≤

M, and element permutation of layer m as n ® µm,n, 1
≤ n,µm,n ≤ wm.
Based on the above definitions, a memory conflict

occurs between layer i, element k and layer j, element l if
the following conditions are satisfied: (1) layers i,j are
assigned to be adjacent, i.e., lj = li + 1; (2) hi,k = 1 and hj,
l = 1; (3) the pipeline time interval is less than pipeline
stages, i.e., wi−µi,k+µj,l ≤ K. Further, we define the “conflict
set” C as C(i, j) = {(k, l)|elements (i,k) and (j, l) cause a
memory conflict}, and the “conflict stages”, also the mini-
mum number of idle clocks inserted due to this conflict, as

c(i, k; j, l) = max{K − (wi − μi,k + μj,l), 0} (4)

3.2. The double-layered TSP
This part introduces the mapping from the above memory
conflict minimization problem to a double-layered TSP.
TSP is a famous NP-hard problem, in which the salesman
should find the shortest path to visit all the n cities exactly
once and finally return to the starting point. Denote di,j as
the distance between city i and city j. TSP can be mathe-
matically described as follows: given distance matrix D =
[di,j]n×n, find the optimal permutation of the city indices
x1,x2, ...,xn to minimize the loop distance,

min

(
n−1∑
i=1

dxi,xi+1 + dxn ,x1

)
(5)

Compared to layer permutation which can contribute
most part of the memory conflict reduction, element
permutation only deals with minor changes for the opti-
mization when layer permutation is already determined.
Therefore, we map the problem to a double-layered
TSP, where layer permutation is mapped to the first
layer, and element permutation is mapped to the second
layer based on result of the first layer. Details are
described as follows:

• Layer permutation layer: In this layer we only deal
with layer permutation. We define the “distance”,

Figure 4 The layered MMSA decoder architecture and memory conflict.
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also “cost” between layers i and j as the minimum
number of idle clocks inserted before the processing
of layer j. If more conflict position pairs exist, i.e.,∣∣C(i, j)∣∣ > 1 , then we should take the maximum

one. Thus in this layer, the distance matrix should
be defined by

di,j = max
(k,l)εC(i,j)

C(i, k; j, l) (6)

and the target function remains the same as (5).
• Element permutation layer: In this layer we inherit
the layer permutation result, and map element per-
mutation of each layer to an independent TSP. In the
TSP for layer i, we fix the schedule of the prior layer
p (lp = li − 1) and next layer q (lq = li + 1), and only
tune the elements of layer i. We define the “distance”
dk,l as the change on the number of idle clocks if ele-
ment k is assigned to the position l, i.e., µi,k = l. Note
that element k can conflict with layer p or q, and dk,l
varies by different conflict cases, given by

dk,l =

⎧⎪⎨
⎪⎩
0 both conflict or neither conflict

k − l k only conflict with layer p

l − k k only conflict with layer q

(7)

Since the largest dk,l becomes the bottleneck of ele-
ment permutation, the target function should change
to the following max form:

min max{dx1,x2 , dx2,x3 , . . . , dxn−1,xn , dxn ,x1} (8)

3.3. The ACO-based algorithm
This part introduces the ACO based algorithm to solve
the double-layered TSP discussed above. ACO is a heuris-
tic algorithm to solve computational problems which can
be reduced to finding good paths through graphs. Its idea
originates from mimicking the behavior of ants seeking a
path between their colony and a source of food. ACO is
especially suitable for solving TSP.
Algorithm 1 [see Additional file 1] gives the ACO-

based double-layered memory conflict minimization
algorithm. First we try layer permutation LAYER1_MAX
times, and for each layer permutation, we try element
permutation for LAYER2_MAX times. We record the
pipeline schedule with smallest idle clocks as the best
solution for this algorithm.
The detailed ACO algorithm for TSP is described in

Algorithm 2. We try SOL_MAX solutions, and for each
solution, all ants should finish CYCLE_MAX cycles, in

which the shortest cycle is recorded as the best solution.
One ant cycle is finished in VERTEX_NUM ant-move
steps, where one step is consist of four sub-steps: Ant
Choose, Ant Move, Local Update and Global Update.
Further, the Bonus is rewarded to the shortest cycle. All
specific parameters (e.g., p and �) are referred to the
suggestion of [17].

4. The SA-based code constructor
In this section, we propose a joint optimized construc-
tion algorithm that takes both performance and effi-
ciency into consideration during construction the H
matrix of the LDPC code. We first give the SA based
framework and then discuss the details of the algorithm.

4.1. Problem formulation
We now deal with the classic code construction pro-
blem. Given the code length N, code rate R, and perhaps
other constraints such as QC-RA type (e.g., WiMAX,
DVB-S2), or fixed degree distribution (optimized by
density evolution), we should construct a “good” LDPC
code described by its H matrix that meets practical
need. The word “good” here mainly have the following
two metrics.

• High performance, which means the code should
have high coding gain and good BER/BLER perfor-
mance, including early water-fall region, low error
floor and anti-fading ability. This is strongly related
to large girth, large ACE spectrum, few trapping
sets, and etc.
• High efficiency, which means the implementation of
the encoder and decoder should have moderate com-
plexity, and high throughput. This is strongly related
to QC-RA type, high degree of parallelism, short
decoding pipeline, few memory conflicts, and etc.

Traditional construction methods mainly focus on
high performance of the code, such as PEG and ACE,
which motivates us to find a joint optimized construc-
tion method concerning both performance and
efficiency.

4.2. The double-stage SA framework
In this part, we introduce the double-stage SA [18]
based framework for the joint optimized construction
problem. SA is a generic probabilistic metaheuristic for
the global optimization problem which should locate a
good approximation to the global optimum of a given
function in a large search space. Since our search space
is a large 0-1 matrix space, denoted as {0, 1}M×N, SA is
very useful for this problem.
Note that the performance metric is the more impor-

tant metric for LDPC construction compared with
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efficiency metric. Therefore, we divide the algorithm
into two stages, aiming at performance and efficiency,
respectively, and regard performance as the major stage
that should be satisfied first. For a specific target mea-
sured by “performance energy” e1 and “efficiency
energy” e2, we set two thresholds: upper bound e1h = e1,
and lower bound e1l <e1. The algorithm enters in the
second stage when the current performance energy is
less than e1l. At the second stage, the algorithm ensures
the performance energy to be not larger than e1h, and
try to reduce the e2. Algorithm 3 shows the details.

4.3. Details of the algorithm
This part discusses the details of the important func-
tions and configurations of Algorithm 3.

• sample_temperature is the temperature sampling
function, decreasing with k. It can be an exponential
form ae−bk.
• prob is the accept probability function of the new
search point h_new. If h_new is better (E_new <E), it
returns 1, otherwise, it decreases with E_new−E, and
increases with t. It can be an exponential form ae−b

(E_new−E)/t
• perf_energy is the performance energy function. It
evaluates the performance related factors of the
matrix h, and gives a lower energy for better perfor-
mance. Typically, we can calculate the number of
length-l cycles cl, then calculate a total cost given by
∑l wlcl, where wl is the cost weight of a length-l
cycle, decreasing with l.
• effi_energy is the efficiency energy function, similar
as perf_energy except that it gives a lower energy for
higher efficiency. Typically, we can calculate the the
number of gap-l memory conflicts cl, then calculate
a total cost given by ∑l wlcl, where wl is the cost
weight of a layer gap l conflict, decreasing with l.
• perf_neighbor searches for a neighbor of h in the
matrix space when aiming at performance, which is
based on minor changes of h. For QC LDPC, we can
define three atomic operations for the base matrix
Hb as follows.

- Horizontal swap: For chosen row i,j and col-

umn k, l, swap values of Hb
i,k and Hb

i,l , then

swap values of Hb
j,k and Hb

j,l .

- Vertical swap: For chosen row i,j and column k,

l, swap values of Hb
i,k and Hb

j,k , then swap values

of Hb
i,l and Hb

j,l .

- Permutation change: Change the permutation

factor for chosen element Hb
i,k .

For a higher temperature t, we allow the neighbor
searching process to search in a wider space. This is
done by performing the atomic operations more
times.
• effi_neighbor searches for a neighbor of h in the
matrix space when aiming at efficiency. This is simi-
lar as perf_neighbor, however, typically we should
remove the permutation change operation, as it does
nothing to help reduce conflicts.

5. The GPU-based performance evaluator
In this section, we introduce the implementation of
high-speed LDPC verification platform based on com-
pute unified device architecture (CUDA) supported
GPUs. We first give the architecture and algorithm on
GPU, and then talk about some details.

5.1. Motivation and architecture
Compute unified device architecture is NVIDIA’s parallel
computing architecture. It enables dramatic increases in
computing performance by executing multiple parallel
independent and cooperated threads on GPU, thus is
particularly suitable for the Monte Carlo model. The BER
simulation of LDPC code is Monte Carlo since it collects
huge amount of bit error statistics of the same decoding
process, especially in the error floor region when the BER
is low (10−7 to 10−10). This motivates us to implement
the verification platform on GPU where many decoders
run parallel like hardware such as ASIC/FPGA to provide
statistics.
Figure 5 shows our GPU architecture. CPU is used as

the controller, which puts the code into GPU constant
memory, raises the GPU kernels and gets back the sta-
tistics. While in GPU grid, we implement the whole
coding system for each GPU block, including source
generator, LDPC encoder, AWGN channel, LDPC deco-
der and statistics. Our decoding algorithm is layered
MMSA. In each GPU block, we assign zf threads to cal-
culate new LLRSUM and LLREX of the zf rows in each
layer, where zf is the expansion factor of QC LDPC. The
zf threads cooperate to complete the decoding job.

5.2. Algorithm and procedure
This part introduces the procedure that implements the
GPU simulation, given by Algorithm 4. P × Q blocks run
parallel, each simulating an individual coding system,
where P is the number of multiprocessors (MP) on the
device and Q is the number of cores per MP. In each sys-
tem, zf threads cooperatively do the job of encoding,
channel and decoding. When decoding, the threads pro-
cess data layer after layer, each thread performing
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LMMSA for one row of this layer. The procedure ends
up with the statistics of P × Q LDPC blocks.

5.3. Details and instructions
• Ensure “coalesced access” when reading or writing
global memory, or the operation will be auto-serial-
ized. In our algorithm, the adjacent threads should
access adjacent L(Qi) and L(rji).
• Shared memory and registers are fast yet limited
resources and their use should be carefully planned. In
our algorithm, we store L(Qi) in shared memory and L
(rji) in registers due to the lack of resources.
• Make sure all the P × Q cores are running. This calls
for careful assignment of limited resources (i.e., warps,
shared memory, registers). In our case, we limit the
registers per thread to 16 and threads per block to
128, or some of the Q cores on each MP will “starve”
and be disabled.

6. Hardware implementation schemes
6.1. Top-level hardware architecture
Our goal is to implement a multi-mode high-throughput
QC-LDPC decoder, which can support multiple code rates
and expansion factors on-the-fly. The proposed decoder
consists of three main parts, namely, the interface part, the
execution part and the control part. The top level architec-
ture is shown in Figure 6.
The interface part buffers the input and output data as

well as handling the configuration commands. In the
execution part, the LLRSUM and LLREX are read out
from the RAMs, updated in the Σ parallel LMMSA cores,
and written back to the RAMs, thus forming the
LLRSUM loop and the LLREX loop, as marked red in
Figure 6. The control part generates control signals,
including port control, LLRSUM control, LLREX control
and iteration control.

Note that the reconfigurable switch network is designed
in the LLRSUM loop to support multi-mode feature. As to
achieve high-throughput, we propose the split-row MMSA
core, the early-stopping scheme and the multi-block
scheme. The split-row core has two data inputs and two
data outputs, hence it also “splits” the LLRSUM RAM and
LLREX RAM into two parts, meanwhile, two identical
switch networks are needed to shuffle the data simulta-
neously. We also propose the offset-threshold decoding
scheme to improve BER/BLER performance. The above
five techniques are described in detail as follows.

6.2. The reconfigurable switch network
A switch network is an S-input, S-output hardware struc-
ture that can put the input signals in the arbitrary order at
the output. Formally, given input signals x1,x2,...,xS with
data width W, the output of switch network has the form
xa1 , xa2 , ..., xaS where a1,a2,...,aS is any desired permutation
of 1,2,...,S. For the design of reconfigurable LDPC deco-
ders, two special kinds of output order are more impor-
tant, described as follows.

• Full cyclic-shift: The output has the cyclic-shift
form of the total S inputs, i.e., xc, xc+1,...xS, x1,x2...,xc
−1, where 1 ≤ c ≤ S.
• Partial cyclic-shift: The output has the cyclic-shift
form of the first p inputs, while other signal can be
in arbitrary order, i.e., i.e., xc, xc+1,...xp, x1,x2...,xc−1,
x*,...x*, where 1 ≤ c<p <S, and x* can be any signal
from xp+1 to xS.

For the implementation of QC-LDPC decoder, the
switch network is an essential module. Suppose

Hb
j,i �= Hb

k,i ≥ 0, j < k , and for any j < l < k, Hb
l,i = −1 ,

then the same data is involved in the processing of the
above two “1"s, i.e., LLRSUM and LLREX of BNi × Zf to

Figure 5 GPU architecture of the BER simulation for LDPC code.
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BN(i+1) × zf−1. However, after processing Hb
j,i , the above

data should be cyclic-shifted to ensure correct order for

the processing Hb
j,k which corresponds to the full cyclic-

shift case with

S = zf , c = (Hv
k,i − Hb

j,i + S) mod S (9)

Further, in the case of multiple expansion factors,
such as WiMAX [19] (zf = 24: 4: 96), the partial cyclic-
shift is required with

S = zmax
f , p = zf , c = (Hb

k,i − Hb
j,i + p) mod p (10)

The existing schemes to implement switch networks
include the MS-CS network [20] and Benes network
[13,21,22]. The former structure can handle the case
when S is not a power of 2, while the latter is proved
more efficient in area and gate count. In [13], the most
efficient on-the-fly generation method of control signals
is proposed. Therefore, we adopt the Benes network
proposed in [13] for our decoder. The structure is
shown in Figure 7 and the features is given in Table 1.

6.3. The offset-threshold decoding scheme
In this part, we propose the offset-threshold decoding
method, which is adopted in our decoder architecture.
Unlike existed modifications of MSA [5], the proposed
scheme uses an offset-threshold correction to further
improve the BER/BLER performance.
The traditional MSA is a simplified version of BP, by

replacing the complicated Equation (2) with simple min
operation, shown as follows.

sgn (L(rji)) =

⎛
⎝ ∏

i′∈Rj\i

sgn (L(qi′ j))

⎞
⎠ (11)

abs(L(rji)) = min
i′∈Rj\i

(
∣∣L(qi′j)∣∣) (12)

In [5], the normalized and offset MMSA schemes (13)
(14) are proposed to compensate the loss of the above
approximation, described as follows.

abs(L(rji)) = α · abs(L(rji)) (13)

abs(L(rji)) = max (abs(L(rji)) − β , 0) (14)

In our simulation, for BLER, the offset MMSA per-
forms better than normalized one. However, as to BER,
both schemes show error floor at 10−6, as shown in
Figure 8. The problem here is that, for most cases, the
offset MMSA works well, while in a few cases, the
decoding fails with many bit errors in one block. The
intuitive explanation of such phenomenon is existence
of extremely large likelihoods (L(qij), L(rji)). In high SNR
region, the L(qij) likelihoods converge fast to a large
value, for both correct and wrong bits in some cases.
The wrong bits not only remain wrong, but also propa-
gate large L(rji) to other bits, resulting in more wrong
bits and finally failure of decoding. For this reason, we
need to set threshold upon offset MMSA to limit the
likelihoods of becoming extremely large, which leads to
the proposed offset-threshold scheme, done by the fol-
lowing equation.

Figure 6 Top-level multi-mode high-throughput LDPC decoder architecture.
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abs(L(rji)) = min (max(abs(L(rji)) − β , 0), γ ) (15)

The difference between traditional MSA, normalized
MMSA, offset MMSA and offset-threshold MMSA is
shown in Figure 9. Simulation result (Figure 8) shows
that the proposed scheme has lowest error floor (10−8)
among the above schemes, while achieving good BLER
performance as offset MMSA.

6.4. The split-row MMSA core
This part presents the split-row MMSA core. In tradi-
tional semi-parallel structure with layered MMSA core
(see Figure 4), since the “1"s in j-th row will be processed
one by one to find the minimum and sub-minimum of
all L(qij), the decoding stages K for one iteration is pro-
portional to the number of “1"s in each row of the base
matrix Hb. The idea is that, if k “1"s can be processed at
the same time, the decoding time of one iteration will be
shortened by a factor of k, and the throughput will have a
gain of k. This is done by split-row scheme, which verti-
cally splits Hb into multiple part. The “1"s in each part
are processed simultaneously to find the local minimum,
and the results are merged together. In this way, for Hb

with maximum row weight w, the minimum and sub-
minimum can be obtained in w/k clocks. See Figure 2 as
an example, we split the 4 × 6 Hb into two parts, each
has one or two “1"s in every row. The corresponding

architecture with k = 2 is shown in Figure 10. The
LLRSUM (L(Qi)), LLREX (L(rji)) and LLR (L(qij)) of the
left part and right part are stored in two individual RAM/
FIFOs, respectively. Two minimum/sub-minimum fin-
ders pass result to the merger for final comparison, thus
approximately shorten the process pipeline by half. Note
that the split position must exist for the code Hb such
that each row in each part contains nearly the same num-
ber of “1"s. Otherwise, we need RAMs with multiple read
ports and write ports, which is not practical for FPGA
implementation.

6.5. The early-stopping scheme
This part introduces the early-stoping scheme applied in
our decoder. In practical scenario, the decoding process
often gets to convergence much earlier than the preset
maximum iterations is reached, especially under favor-
able transmission conditions when SNR is large. Thus, if
the decoder can terminate the decoding iterations as

Figure 7 The structure of Benes network.

Table 1 Features of reconfigurable Benes network

Scale W = 9, S = 256, 15 stages, 128 × 15 MUX

Support p = 64:8:256, 1 ≤ c ≤ p

Resource 20866 LE, 388 memory bits

Clock 100 MHz for Cyclone II, 240 MHz for Stratix III

Delay Two clocks for control signals, four clocks for output
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Figure 8 BER/BLER performance of different MSA schemes.
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soon as it detect the convergence, the power of the cir-
cuit can be reduced as well as the decoding delay.
Throughout is also increased if the system dynamically
adjusts the transmission rate according to statistics of
average iteration numbers under current channel state.
Traditional stopping criterions focus on whether the

code can be decoded successfully or not, which either cost
too much extra resource to store iteration parameters,
such as HDA [23] and NSPC [24], or use floating-point
calculation to evaluate the current iteration situation, such
as VNR [25] and CMM [23]. All these methods are not
suitable for the hardware implementation.
Here, we propose a simple and effective scheme to

detect the convergence of the decoding. The “conver-
gence” means at some time, all of the hard decisions sgn
(L(Qi)) satisfy the check equations, The detection of con-
vergence usually demands parallel calculation of each
equation, However, due to the layered structure (QC) and
lack of the hardware resources, we can use a semi-parallel

algorithm to implement iteration-stopping module, which
evaluates one layer (zf equations) simultaneously. If the
number of the continuously successful-check layers reach
a threshold ω, the module will trigger a signal meaning
the decoding have got to convergence and the iteration
can be stopped.
One important issue of Algorithm 5 is the estimation of

threshold ω. The BER/BLER performances and average
iteration times of different ω are shown in Figure 11,
where the stopping criterion of ideal iteration is HcT = 0.
We choose ω = 2.5 × M to achieve tradeoff between time
and performance. In this case, if the average iteration
times is Iave (ideal iteration case), the decoding terminates
at approximately Iave + 2 iterations.

6.6. The multi-block scheme
Suppose the LDPC code with code length N and expan-
sion factor zf still has serious memory conflicts though
being optimized by our SA and ACO algorithms, which
is common for large zf and relatively small N. To
address this problem, we propose a hardware method
called “multi-block” to further avoid memory conflicts
and increase pipeline efficiency. The “multi-block”
scheme is explain as follows.
We construct a new matrix Hv by the parity-check

matrix H with M rows:

Hυ =
(
H 0
0 H

)
(16)

Here “virtual matrix” Hv is the combination of two
codes H without “cross constraint” (edge between nodes
from different codes in Tanner Graph) between each
other. Suppose v1, v2 are any two legal encoded blocks
satisfying that

Figure 9 Comparison of the correction types of different MSA
schemes.

Figure 10 The architecture of split-row MMSA core.
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Figure 11 BER/BLER performance and average iterations under
different ω.
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v1.HT = 0 v2.HT = 0 (17)

Thus the vector (v1 v2) is also one legal block for Hv:

(
v1 v2

)
.HT

υ =
(
v1 v2

)
.
(
HT 0
0 HT

)
= 0 (18)

The key observation is that there are no memory con-
flicts between the two codes H due to the diagonal form
of Hv. This enables us to reorder and combine the
decoding schedule of the two codes to reduce memory
conflict of each code. We rewrite H and Hv as follows:

H =

⎛
⎜⎝

H1
...

HM

⎞
⎟⎠ Hvopt =

⎛
⎜⎜⎜⎜⎜⎜⎝

H(1)
1 0

0 H(2)
1

...
...

H(1)
M 0

0 H(2)
M

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

where H(j)
i

denotes the i-th row of the j-th code. The

decoding schedule is given by above equation, i.e., H(1)
i

comes first, followed by H(2)
i

, and then H(1)
i+1

, and so on

so forth. The benefit of this “multi-block” scheme is that

the insertion of H(2)
i

provides extra stages for the con-

flicts between H(1)
i

and H(1)
i+1

.

To sum up, the “multi-block” scheme changes any gap-
l memory conflict to gap-(2l − 1), thus can improve the
pipeline efficiency significantly. Meanwhile, it demands
no extra logic resources (LE) for the design, but may
double the memory bits for buffering two encoded
blocks. Since the depth of memory is not fully used on
our FPGA, the proposed method can make full use of it
with no extra resource cost.

7. Numerical simulation
In this section, we show how our platform produces
“good” LDPC codes with outstanding decoding perfor-
mance and hardware efficiency. For comparison, we tar-
get on the WiMAX LDPC code (N = 2304, R = 0.5, zf =
96). We use the same parameters and degree distribu-
tions as WiMAX for our SA-based constructor. We set
“cycle” as performance metric and memory conflict as
efficiency metric. The performance of one of the candi-
date codes and the WiMAX code are listed in Table 2.
The candidate code has much less length-6/8 cycles and
gap-1/2/3 memory conflict. Usually, the candidate codes
can eliminate length-6 cycles and gap-1 conflicts, which
ensures a larger-than-or-equal-to 8 girth and no conflict
under short pipeline (when K ≤ wm).

We simulate the candidate code and WiMAX code
through the GPU platform. The BER/BLER performance
is shown in Figure 12, while the platform parameters
and throughput are listed in Table 3. The water-fall
region and the error floor of our candidate code is
almost the same as WiMAX code. For speed compari-
son, we also include the fastest result that ever reported
[12]. The “net throughput” is defined by the decoded
“message bits” per second, given by:

net throughput =
P · Q · N · R

t
(20)

where t is the consumed time for running through the
GPU kernel (for us is Algorithm 4). As shown in Table
3, our GPU platform speeds up 490 times against CPU
and achieves a net throughput 24.5 Mbps. Further, our
throughput approaches the fastest one, while providing
better precision (floating-point vs. 8 bit fixed-point) for
the simulation.
Finally, we optimize the pipeline schedule by ACO-

based scheduler, shown in Table 2. The “pipeline occu-
pancy” is given by running/total clocks required for one
iteration. For the candidate code, the number of idle
clock insertions after ACO is 5, compared with 12
before ACO, achieving a 58.3% reduction. While for
WiMAX code, 20 idle clock insertions remain required
after layer-permutation-only (single-layer) scheme

Table 2 Cycle and conflict performance of the two codes

Candidate code WiMAX code

Cycle:length 6/8 0/55 5/150

Conflict:gap 1/2/3 0/3/9 5/11/15

Pipeline occupancy Before ACO: 76/88 Only layer

After ACO: 76/81 permu.: 76/96
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Figure 12 BER and BLER performance of the two codes.
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proposed by [11]. In this case, the double-layered ACO
achieves a 75% reduction against the single-layer scheme
(5 vs. 20 idle clocks).

8. The multi-mode high-throughput decoder
Based on the above techniques, namely, reconfigurable
switch network, offset-threshold decoding, split-row MMSA
core, early-stoping scheme and multi-block scheme, we
implement the multi-mode high-throughput LDPC deco-
der on Altera Stratix III FPGA. The proposed decoder
supports 27 modes, including nine different code lengths
and three different code rates, and maximum 31 iterations.
The configurations for code length, code rate, and itera-
tion number are completely on-the-fly. Further, it has a
BER gap less than 0.2 dB against floating-point LMMSA,
while achieving a stable net-throughput 721.58 Mbps
under code rate R = 1/2 and 20 iterations (corresponding
to a bit-throughput 1.44 Gbps). With early-stopping mod-
ule working, the net-throughput can boost up to 1.2 Gbps
(bit-throughput 2.4 Gbps), which is calculated under aver-
age 12 iterations. The features are listed in Table 4.
One great advantage of the proposed multi-mode high-

throughput LDPC decoder is that more modes can be
supported with only more memory bits consumed and
no architecture level change. Since the reconfigurable
switch network supports all expansion factors zf ≤ 256,
and the layered MMSA cores supports arbitrary QC-

LDPC codes, more code lengths and code rates are natu-
rally supported, for example, the WiMAX codes (zf = 24:
4: 96, R = 1/2, 2/3, 3/4, 5/6, 114 modes in total). The
only cost is that more memory bits are required to store
the new base matrices Hb.

9. Conclusion
In this article, a novel LDPC code construction, verifica-
tion, and implementation methodology is proposed, which
can produce LDPC codes with both good decoding perfor-
mance and high hardware efficiency. Additionally, a GPU
verification platform is built that can accelerate 490×
speed against CPU and a multi-mode high-throughput
decoder is implemented on FPGA, achieving a net-
throughput 1.2 Gbps and performance loss within 0.2 dB.

Additional material

Additional file 1: Algorithm. This file contains Algorithm 1, Memory
conflict minimization algorithm; Algorithm 2, ACO algorithm for TSP;
Algorithm 3, The SA based LDPC construction framework; Algorithm 4,
The GPU based LDPC simulation; and Algorithm 5, Semi-parallel early-
stopping algorithm.
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