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Abstract

Background: RNA-Seq technology has been used widely in transcriptome study, and one of the most important
applications is to estimate the expression level of genes and their alternative splicing isoforms. There have been
several algorithms published to estimate the expression based on different models. Recently Wu et al. published a
method that can accurately estimate isoform level expression by considering position-related sequencing biases
using nonparametric models. The method has advantages in handling different read distributions, but there hasn’t
been an efficient program to implement this algorithm.

Results: We developed an efficient implementation of the algorithm in the program NURD. It uses a binary interval
search algorithm. The program can correct both the global tendency of sequencing bias in the data and local
sequencing bias specific to each gene. The correction makes the isoform expression estimation more reliable under
various read distributions. And the implementation is computationally efficient in both the memory cost and
running time and can be readily scaled up for huge datasets.

Conclusion: NURD is an efficient and reliable tool for estimating the isoform expression level. Given the reads
mapping result and gene annotation file, NURD will output the expression estimation result. The package is freely
available for academic use at http://bioinfo.au.tsinghua.edu.cn/software/NURD/.
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Background
As the high-throughput sequencing technology develops,
using RNA-Seq data to estimate gene expression and iso-
form expression becomes an important task. There have
been some different methods to estimate expression level
from RNA-Seq data. Mortazavi et al. used a concept called
RPKM to measure the gene expression [1], which had
been widely used when alternative splicing is not consid-
ered. Jiang & Wong developed a method to estimate the
abundance of transcripts of alternative spliced genes [2].
This can be called isoform expression estimation. As it is
now known that most human genes can have alternative
splicing, estimating isoform expression is becoming a key
question in RNA-Seq study. The main idea of Jiang and
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Wong’s method is to model the sequencing procedure as
a random sampling process, and to infer the best estima-
tion of isoform expression by maximizing a likelihood
function. However, the method is based on the assump-
tion that reads are uniformly sampled from all transcripts,
while many experiments have shown that the distribution
of real sequencing reads is not uniform. Instead, read dis-
tribution usually has some position-related biases and
context-related biases. Based on such observations, people
developed some new methods to deal with different types
of biases [3-7]. In our experiments, we observed that
position-related biases are a major cause of non-uniform
distribution and has the most significant influence on ex-
pression estimation. We have developed a method to deal
with such position-related biases using nonparametric
models [3]. The nonparametric nature of the model allows
the method to be capable for describing different types
of read distributions. Experiments on both simulated
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iginal work is properly cited.
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non-uniform distribution well and outperforms other
methods [3]. However, the method was implemented with
a set of experimental codes that cannot be scaled up for
applications on large RNA-Seq data and this hindered the
availability of the method for public use. In this paper, we
developed a software NURD as an efficient implementa-
tion of the method under C++ using a binary interval
search algorithm. The software can handle large-scale data
and have shown advantages in both memory use and run-
ning time comparing to some other popular software.

Implementation
Brief introduction to Wu et al’s method
Wu et al’s method is based on the original method by Jiang
& Wong [2]. The original method assumes that the reads
are uniformly sampled from the whole transcripts and
models the reads count on a specific exon as a Poisson
random variable with parameter λj ¼ ljw∑m

i¼1aijθi . Here, m
is the number of isoforms of the specific gene, θi is the ex-
pression level of the i-th isoform, w is the total reads count
in this sample, lj is the length of the j-th exon and (aij) is a
matrix that indicates the gene structure, with aij = 1 or 0
indicating that exon j is included or excluded in isoform i.
Thus the likelihood function of isoform expression based

on the observation of j-th exon is LðΘjxjÞ ¼ e−λjλj
xj

xj!
. Assum-

ing that exons are independent, we can get the joint log
likelihood function of the whole gene as:

logðLðΘjx1; x2; :::; xnÞÞ ¼ −w
Xn
j¼1

Xm
i¼1

ljaijθi

þ
Xn
j¼1

xj log ljw
Xm
i¼1

aijθi

 !

−
Xn
j¼1

log xj!
� �

ð1Þ
The setting of aij = 1 for all exons of an isoform im-

plies that reads are distributed uniformly across the
whole isoform. To compensate for non-uniform distri-
bution, Wu et al’s method takes nonparametric models
of read distribution across an isoform [3]. It can deal
with different kinds of read distribution. The nonpara-
metric read models used include a global bias curve
(GBC) for all genes and a local bias curve (LBC) for each
gene. The GBC is used to capture the general trend of
non-uniform read distribution with regard to the relative
position in a gene, shared by all genes in the dataset,
and LBC reflects the distribution pattern specific to each
gene. Methods for estimating the GBC and LBC curves
are described in [3]. Based on GBC curve and LBC
curves, we get two corrected gene structure matrices:
(GBM)ij and (LBM)ij, short for Global Bias Matrix and
Local Bias Matrix respectively. The corrected structure
matrices are weighted indicator matrices, instead of the
0–1 indicator matrices (aij). Weights in these two matri-
ces reflect the bias tendency of corresponding exons in
this gene. We mix these two matrices as the bias-
corrected gene structure which is denoted as (bij):

bij
� � ¼ GBMij

� �
αþ LBMij

� �
1−αð Þ ð2Þ

where α is a weight parameter indicating the relative im-
portance of (GBM)ij matrix verse the (LBM)ij matrix in
the final gene structure matrix.
By replacing the 0–1 indicator gene structure matrix

(aij) with the weighted gene structure matrix (bij), we re-
define the log-likelihood function as:

logðLðΘjx1; x2; :::; xnÞÞ ¼ −w
Xn
j¼1

Xm
i¼1

ljbijθi

þ
Xn
j¼1

xj log ljw
Xm
i¼1

bijθi

 !

−
Xn
j¼1

log xj!
� �

ð3Þ

Further, we can get the gradient of this log-likelihood
function by taking derivates for each θi:

∂ logðLðΘjx1; x2; :::; xnÞÞ
∂θi

¼ −w
Xn
j¼1

ljbij þ
Xn
j¼1

xjbij
∑m
i¼1bijθi

ð4Þ
The isoform expression levels can be estimated by maxi-

mizing this log-likelihood function. The log-likelihood
function has been proved concave in previous work [3]
and global optimum can be found by proper optimization
algorithm.

Procedures of NURD
The input data of our NURD are the read-mapping file
and gene annotation file. The output is isoform expres-
sion of each gene. Figure 1 shows the detailed flowchart
of the algorithm.
Using NURD to estimate isoform expression typically

involves the following five steps.

1 Read-mapping. This procedure is not a part of our
algorithm, but is a preparation step for it. There have
been many read-mapping tools published, such as
Bowtie [8] or Tophat [9]. The current implementation
of NURD requires that the reads mapping file be in
the SAM format.

2 Gene annotation. Gene annotation file can be
downloaded from a database or assembled by



Figure 1 Flowchart of NURD algorithm. Using NURD to estimate the isoform expression mainly consists of five steps: (1) read mapping, which
is not a part of NURD, but the preparation for it; (2) getting gene annotation; (3) counting reads based on gene annotation and read mapping;
(4) getting likelihood function based on read counts and gene annotation; (5) estimating isoform expression by maximize the likelihood.
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another software such as Cufflinks [5]. The current
implementation of NURD requires that the gene
annotation file be in the GTF format or refflat format.
We extract the basic information of all genes from the
gene annotation file, including gene names, number of
isoforms and isoform names, number of exons of each
gene, length of each exon, and gene structure. Gene
structure information tells which exons are contained
by each isoform.

3 Reads counts. Using reads mapping file and gene
annotation file, NURD gets read counts for all exons
of all genes in the annotation file.

4 Log-likelihood function. Based on the information
we get in step 2 and step 3, NURD calculates the
GBC of the whole data, LBC for each gene and the
bias-corrected gene structure matrix, and furthermore
get the corrected log-likelihood function.

5 Expression estimation. After the log-likelihood
functions are calculated, the major task for NURD is to
infer the best expression estimations that maximize the
log-likelihood functions. The optimization algorithm
we use here is the binary search algorithm, which is
very effective and widely used in dealing with search
problem [10].

Implementation of the NURD software
The key step for the efficient implementation of the
method is the optimization of the log-likelihood func-
tions for all genes and isoforms. We use the binary inter-
val search technique for the optimization.

Binary search for single-isoform genes
First, we will illustrate how to use the binary interval
search technique to optimize the log-likelihood function
if one gene has only one isoform.
The log-likelihood function has been proved to be

concave in our previous work [3], so the optimization
problem can be transformed to finding the point where
the gradient function is equal to zero. Since the objective
function is concave and the gene has only one isoform,
the corresponding gradient function is a univariate mono-
tone function, in which situation binary interval search
can be used. Obviously, the log-likelihood function is a
real number function and the search space is a real num-
ber interval, so the objective of the algorithm is to find a
very short interval to cover the optimum point. We
initialize the search algorithm with a large enough interval
and after each step of binary search algorithm, the length
of the interval will shrink to half of the previous interval’s
length. As the algorithm goes on, the length of interval
will exponentially decrease. As a result, given the precision
limit ε which is a small real number, the running time
complexity of finding the interval covering the optimum
point with the gradient equal to zero is O(log(1/ε)) .
Gradient ascending algorithm [11] is another tech-

nique that is widely used in optimization problem. The
binary search algorithm has advantages over the gradient
ascending algorithm: Binary search algorithm guarantees
to converge to the optimum point in O(log(1/ε)), which
is really a short time and is fixed given the precision ε,
while time complexity of gradient ascending algorithm
usually depends on step length and the shape of the op-
timized function. If the step size is not proper, it can be
sometime difficult for gradient ascending algorithms to
converge. Binary search algorithm doesn’t need to find
the proper step size. In some kind of gradient ascending
algorithm, there need be another procedure called line
search for finding a proper step size.
A limitation of binary search compared with gradient

ascending algorithm is that the binary search is not as
general as the latter for it requires the optimized func-
tion to be concave. This is not a problem for the prob-
lem in NURD as the log-likelihood function in NURD
has been proved concave.



Figure 2 Illustration of 2-dimension coordinate binary search
algorithm. This is a visualization of a bivariate concave function
with its contours. The maximum point is (1, 2). The arrowed line
segments show the procedures of coordinate binary search
algorithm when optimizing this function. The initial search point is
(2.5, 0.5) and search direction is parallel with y axis. In this step of
optimization, we fixed x = 2.5 and the bivariate function
degenerated in to a univariate function with respect to only y. Since
the original function is concave, this degenerated function is also
concave and can be optimized by binary search algorithm. After we
get the optimum of this degenerated function, the next step of
coordinate binary search algorithm is to fix y to the current
optimum’s projection on y axis and search in the direction parallel
with x axis. These procedures are iterated and the optimum of this
function will be finally reached.
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Coordinate binary search for multi-isoform genes
Because binary search is a 1-dimension search tech-
nique, it can only handle the optimization problem of
univariate functions. When estimating the expressions of
multi-isoform genes, the objective function will be a
multivariate function and we need to use coordinate bin-
ary search technique. The strategy of coordinate binary
algorithm is described in the following pseudo code:

In the innermost loop, we hold all the expressions of
isoforms fixed except for some θi and the log-likelihood
function degenerates to a 1-dimension function. In each
step of innermost loop, we maximize the log-likelihood
with respect to θi, given the expressions of other
isoforms. Because the log-likelihood function is concave,
the 1-dimension objective function is also concave, in
which case binary search is suitable.
The pseudo code clearly shows that after each step of

the innermost loop, the log-likelihood function will as-
cend in some degree. As the log-likelihood function is
concave, the global optimum will be found after a num-
ber of iterations.
The coordinate optimization in 2-dimension case is

illustrated in Figure 2.
Usage of the software
NURD is implemented in C++ and the runtime environ-
ment is the Linux systems. The source code is available for
free for academic use at http://bioinfo.au.tsinghua.edu.cn/
software/NURD/. After getting the source code, one can
compile it and get the executable file by simply using make
command. The software can be efficiently executed with
command line inputs. The acceptable gene annotation file
format is GTF and refFlat. The acceptable read mapping
file is SAM. Short reads should be mapped to genome
reference.
The current implementation has not taken the charac-

teristic of paired-end sequencing into consideration,
which means NURD regards paired reads as two inde-
pendent single end reads.

http://bioinfo.au.tsinghua.edu.cn/software/NURD/
http://bioinfo.au.tsinghua.edu.cn/software/NURD/


Figure 3 Comparison of estimation accuracies. Isoform
expression estimation accuracies (measured by MIRR) of compared
tools on the simulation data generated with genes on human
chromosome 1 with different sequencing depths.
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Results and discussion
In this section, we will mainly focus on the performance
of the NURD implementation in terms of accuracy of es-
timation, computing speed and memory requirement by
comparing it with other three published isoform expres-
sion estimation related tools. Cufflinks [5] is a widely
used tool in RNA-Seq data analysis. It can be used to es-
timate isoform level expression and assemble the new
transcripts based on the RNA-Seq reads. In this manu-
script, we will only consider the expression estimation
function of Cufflinks for the consideration of fairness of
the comparison between different tools. Cufflinks offers
an option –G to estimate expression without assembling
the transcripts. Cufflinks can also do bias correction if
option –b is specified. RSEM [4,6] is another published
expression estimation related tool. RSEM is based on a
generative model and estimate transcripts’ expression by
EM algorithm. When running experiments on RSEM,
we will only consider the time and space complexity of
parsing reads mapping file and EM algorithm, i.e. the
sub-tools named rsem-parse-alignments and rsem-run-
em of RSEM, which are the most important parts of this
tool when estimating the isoforms’ expression. Further-
more, we don’t specify the option of –calc-ci and no
confidence interval is estimated. eXpress [7] is a recently
published tool to estimate isoform level expression with
RNA-Seq data. It’s based on online EM algorithm, which
processes data one fragment at a time.

Comparing the estimation accuracy on simulated data
A systematic comparison with existing methods on the
accuracy of estimating isoform expression has been
conducted in Wu et al. [3] that presented the non-
parametric method for correcting non-uniform read dis-
tribution. Significant advantages over the compared
methods have been observed. However, some available
tools have been updated since then and some of them
also have taken non-uniform distriubion into consider-
ation. Therefore, we further conducted experiments to
compare the estimation accuracy of NURD with other
recently proposed or updated tools on a set of simulated
datasets. The simulations were done with the software
flux simulator [12] and the simulated datasets are short
read sequences in fastq format. We simulated different
sequencing depths, with single-end reads of the length
75 bp sampled from genes of the human genome. Both ref-
erence and annotation are from UCSC’s human database
(http://hgdownload.cse.ucsc.edu/downloads.html#human).
We choose all genes on chromosome 1 to generate the
simulated data. NURD and Cufflinks require the reads be
mapped to genome reference, while RSEM and eXpress re-
quire the reads be mapped to transcriptome reference.
Therefore we mapped the reads to both the reference gen-
ome and transcriptome.
The measurement of accuracy we use is Major Isoform
Recovery Rate (MIRR for short) [3]. MIRR is defined as
the percentage of genes whose major isoforms are cor-
rectly identified and it’s a robust measurement of the ac-
curacy of some estimated result. Higher MIRR indicates
the higher accuracy of estimation. To simplify the com-
parison, we only focus on the genes on chromosome 1
annotated with two alternative isoforms. We also filter
out the genes that share some common exon regions
with other genes. There are 391 genes used in total to
compare the MIRR of the different tools. The true ex-
pression levels in the simulation data can be found in
Profile (.PRO) file generated by the flux simulator.
The sequencing depth is defined as the total number

of reads generated by software flux simulator. The se-
quencing depths of our simulating experiments range
from 0.01 million reads to 10 million reads sampled
from chromosome 1, which covers the typical sequen-
cing depths in current RNA-Seq research.
Figure 3 summaries the accuracies of the compared

tools on the simulated data. We can see that the accur-
acy of RSEM, NURD and Cufflinks are very close with
each other. All of them perform better when the sequen-
cing is deeper. eXpress does not perform well using the
default parameters. By specifying eXpress’s option –B
with 10 or 20, which will cause the additional batch EM
rounds, the accuracy becomes closer to those of the
other methods at moderate sequencing depths, but the
performance degrades when the sequencing depth is
higher. Also using the –B 10 or 20 option causes the
running time to rise to about ten or twenty times of that

http://hgdownload.cse.ucsc.edu/downloads.html#human
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with the default option (Table 1). Although there’s a sig-
nificant improvement by specifying the –B 10 option
when compared with the accuracy with default option,
the further improvement by specifying the –B 20 option
is small.

Comparing running time and memory usage on real data
To compare the running time and memory usage of dif-
ferent tools, we conduct some experiments on three real
datasets with different sequencing depths. The first data
set is an early RNA-Seq data set published by Marioni
et al. [13] [SRA Accession Number: SRA000299]. We
refer it as the Marioni data for short. It contains
the least and shortest reads among the three datasets.
There are about 3.7 M single-end reads of 36 bp length.
The second data set is referred as the Yale data [SRA
Accession Number: ERP000799], which was submitted
by Yale Center for Genomic Analysis, 2013. We call this
data as Yale data for short. It represents a moderate scale
of current RNA-Seq data. There are about 39 M single-
end reads of 74 bp. The largest data set is an ENCODE
data with about 213 M paired-end reads of 76 bp [EN-
CODE Data Coordination Center: wgEncodeEH000140].
This data was granted by Gingeras, CSHL, 2010. We call
this data as Encode data for short.
Both Cufflinks and RSEM support multi-threads com-

putation, while NURD does not support in current ver-
sion of implementation. So we will only consider the
single-thread computational mode in our experiments.
eXpress will automatically compute in multi-thread
mode and the its running time is somehow incompar-
able with the other three tools. If the computer has only
one core, the eXpress’s running time may be longer than
the experiments in this manuscript. All the experiments
are conducted on an 8-core 2.1GHz linux server with a
32GB RAM.
Table 1 summarizes the running time and memory

usage of the compared software on the three datasets.
We can see the advantages of NURD over the other
Table 1 Comparison of computation performances on 3 typic

Marioni data

(size:3.7 M, length:36 bp) (size:

Methods Time Memory Time

NURD 36 s 60 MB 3 m 37

Cufflinks 1 h 31 m 25 s 417 MB 2 h 43 m

RSEM 1 h 38 m 11 s 832 MB 9 h 00 m

eXpress 17 m 50s 1.44GB 41 m 1

eXpress* 1 h 1 m 5 s 1.44GB 3 h 42 m

eXpress** 1 h 45 m 54 s 1.44GB 6 h 51 m

eXpress: results with the default parameters.
eXpress*: results by specifying option –B with 10.
eXpress**: results by specifying option –B with 20.
three tools on both running time and memory usage are
significant. This is partially because that the other three
tools are all based on the EM algorithm, which usually
requires a number of iterations between E-step and M-
step. Each M-step alone needs to solve an optimization
problem whose complexity can be comparable with the
optimization problem in NURD. Besides, both Cufflinks
and eXpress estimate the confidence interval of isoform
expression along with point estimation. Cufflinks adopts
importance sampling from posterior distribution to do
confidence interval estimation, which is usually very
time-consuming.
The main reason that NURD consume much less

memory than the other three tools is that NURD esti-
mate isoform expression based on the read counts in
each exon of each gene. Read counts compress the infor-
mation of large mapping file into a small space which is
only slightly larger than the corresponding annotation
information. The computation based on read counts
usually can save a lot of running time and consumed
memory. The procedure of NURD mainly consists of
following three steps: parsing the annotation file, parsing
the read-mapping file and expression estimation. The
running time and memory usage of the first and last
steps roughly scales linearly with the annotation file size,
while the time spent on the second step scales linearly
only with the number of reads. The memory usage in ex-
pression estimation will not increase as the reads number
grows, because NURD is based on read counting in exons
and the memory usage only scales linearly with the anno-
tation file size. Typically, the total time will increase
roughly as a linearly function of the number of reads since
RNA-Seq produce more and more short reads and
the time spent on reads parsing will dominant the total
running time.

Conclusion
We developed an efficient and robust implementation of
Wu et al’s algorithm. It takes the nonparametric read
al RNA-Seq datasets

Yale data Encode data

39 M, length:74 bp) (size:213 M, length:76 bp)

Memory Time Memory

s 60 MB 19 m 27 s 60 MB

17 s 776 MB 3 h 55 m 49 s 2.58GB

55 s 3.65GB 26 h 13 m 6 s 10.3GB

7 s 1.44GB 1 h 41 m 26 s 1.44GB

41 s 1.44GB 13 h 26 m 39 s 1.44GB

13 s 1.44GB 25 h 3 m 41 s 1.44GB
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distributions into consideration to improve the accuracy
of isoform expression estimation. Experiments on simu-
lated and real datasets have shown that NURD performs
one of the best among the compared tools in terms esti-
mation accuracy, and has significant advantage on com-
putational performance. If one wants to get expression
estimating from RNA-Seq data both accurately and
quickly, NURD could be a competitive alternative.
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