
Laubach et al. BMC Bioinformatics 2012, 13:110
http://www.biomedcentral.com/1471-2105/13/110

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
SOFTWARE Open Access
TreeSnatcher plus: capturing phylogenetic trees
from images
Thomas Laubach1*, Arndt von Haeseler2,3,4 and Martin J Lercher1
Abstract

Background: Figures of phylogenetic trees are widely used to illustrate the result of evolutionary analyses.
However, one cannot easily extract a machine-readable representation from such images. Therefore, new software
emerges that helps to preserve phylogenies digitally for future research.

Results: TreeSnatcher Plus is a GUI-driven JAVA application that semi-automatically generates a Newick format for
multifurcating, arbitrarily shaped, phylogenetic trees contained in pixel images. It offers a range of image pre-
processing methods and detects the topology of a depicted tree with adequate user assistance. The user supervises
the recognition process, makes corrections to the image and to the topology and repeats steps if necessary. At the
end TreeSnatcher Plus produces a Newick tree code optionally including branch lengths for rectangular and
freeform trees.

Conclusions: Although illustrations of phylogenies exist in a vast number of styles, TreeSnatcher Plus imposes no
limitations on the images it can process with adequate user assistance. Given that a fully automated digitization of
all figures of phylogenetic trees is desirable but currently unrealistic, TreeSnatcher Plus is the only program that
reliably facilitates at least a semi-automatic conversion from such figures into a machine-readable format.

Keywords: Newick format, Phylogenetic tree recognition, Image digitization, Phylogeny preservation
Background
Every scientific field that processes information with
the aid of computers needs to maintain and preserve
its technical illustrations in a machine-readable fash-
ion for later reuse. For this, the structure of an illus-
tration has to be decomposed into its geometric
primitives. The more previous knowledge of the
image content is available to the computer, the less
errors will occur during the decomposition process.
Computer programs today digitally capture and arch-
ive decades-old architectural drawings, for which the
usage of symbols, icons and font types is standar-
dized. Conversely, no computer program can auto-
matically convert arbitrarily shaped phylogenetic
trees from an illustration into a machine-readable ex-
pression, e.g., the Newick format [1]. The styles in
which phylogenetic trees have been published are as
* Correspondence: laubach@cs.uni-duesseldorf.de
1Department of Bioinformatics, Heinrich-Heine-University Duesseldorf,
Universitaetsstrasse 1, Duesseldorf 40225, Germany
Full list of author information is available at the end of the article

© 2012 Laubach et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
manifold as are the software packages used for the
creation of the trees and the pictures. A comprehen-
sive list of such programs is published in [2]. Because
there are no strict design rules, a program intended
for the recognition of arbitrary trees must not assume
any previous knowledge beyond the existence of a
depicted phylogeny.
TreeSnatcher Plus (Figure 1) is not the first program

aimed at the digitization of phylogenies. Indeed,
TreeThief [3] was the first application that converts a
tree image into a computer-readable representation of
the tree. It allowed the user to digitize a tree by clicking
on each of its nodes in turn. It is restricted to Apple
Macintosh computers running Mac OS 9. In 2007, we
presented TreeSnatcher [4], an application that identified
the topology of an arbitrarily shaped tree (e.g., a figure
from a publication) semi-automatically with user inter-
action. However, it required the user to pre-process an
image using an external drawing package, to follow a strict
succession of program stages and lacked any Undo func-
tionality. Finally, the program TreeRipper by Joseph
Hughes [5] automatically converts images of rectangular
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

https://core.ac.uk/display/192494752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:laubach@cs.uni-duesseldorf.de
http://creativecommons.org/licenses/by/2.0


Figure 1 TreeSnatcher Plus main screen. The default view is a blend between the current processing state and the original image. Here, after
gray-scale conversion, binarization and skeletonization, the thinned branches were manually complemented where text overlaps the tree. The
program then recognized all tree node locations and measured the branch lengths. At this moment, the Newick expression can be calculated.

Laubach et al. BMC Bioinformatics 2012, 13:110 Page 2 of 5
http://www.biomedcentral.com/1471-2105/13/110
trees that fulfil a strict set of criteria into the Newick
format. However, TreeRipper’s success rate is relatively
low, with only about one third of sample images converted
correctly [5].
Using already published trees in research projects would

be trivial if all phylogeny related data were also published
in open-access online repositories, e.g., TreeBASE [6],
MorphoBank [7], or Dryad [8]. Leebens-Mack et al. [9]
propose a roadmap for the development of minimal
reporting standards for phylogenetic analyses, MIAPA
(Minimal Information about a Phylogenetic Analysis).
They maintain a website on which they discuss potential
barriers to re-use data from scientific analyses [10]. In
principle, electronic data could also be obtained from the
authors. This obvious approach appears not to be
practical. In an example from another field of study,
73% of the authors refused to share their data when
approached [11].
Thus, to reuse most published phylogenetic results,

it appears that reliable digitization of tree images is
currently the only realistic option.

Implementation
TreeSnatcher Plus is an extended and fully re-
conceptualized version of TreeSnatcher; it is both easier
to use and more accurate than its predecessor. The new
program features a graphical user interface that is based
on the JAVA Swing API. A more flexible workflow is com-
plemented with multiple Undo functionality and the pos-
sibility to restore the program state ('snapshot'). The user
can now pre-process any image within TreeSnatcher Plus,
selecting from a full range of pre-processing tools. The
current state of processing can be saved as an image that
may contain different layers of visual information. The
program calculates the branch lengths in freeform and
skewed rectangular trees and can mix calculated and user
defined branch lengths. Additionally, the user can modify
an existing tree or to construct a new tree.
The application opens image files in the formats PNG,

JPG/JPEG or GIF. The PDF format is currently not sup-
ported, but tools for the extraction of images from PDF
documents are readily available (e.g., the Xpdf suite for
Linux operating systems [12]). The program offers the
following pre-processing tools, most of which were
modified from standard algorithms [13]: pencil, rubber,
line, fill, stencil, histogram stretch, colour reduction,
gray-scale conversion, local and global thresholding,
colour manipulation, inversion, median and minimum
filter, blurring and sharpening, lightening and darkening,
and thinning [14].



Laubach et al. BMC Bioinformatics 2012, 13:110 Page 3 of 5
http://www.biomedcentral.com/1471-2105/13/110
Prior to automated node placement, the user has to
prepare the image within TreeSnatcher Plus, analogous
to the requirements of its predecessor [4]. In particular,
the tree has to be converted into a line drawing without
intersections with text or graphics unrelated to the tree
topology. If the image does not meet those requirements
when the automatic node placement is issued, the tree
topology is unlikely to be identified correctly.
Working with TreeSnatcher Plus takes place along a

general succession of global tasks, which are executed at
least once, either on the whole image or on parts. The
user supervises all image manipulations and recognition
tasks performed by the program, makes corrections and
repeats steps if necessary. This process is explained in
detail in the tutorials accompanying the program.
The workflow is thus as follows:

1. The program reads the specified image file. The user
trims and cuts the image at will. In this way, one
can select sub-trees or a subset of taxa from the
image.

2. Image pre-processing: The user prepares the image
with the pre-processing tools.

3. Binarization: The user thresholds the image to
ensure that the foreground is black and the
background is white and both are clearly separated.

4. Skeletonization: The user semi-automatically thins
the foreground of the image portion that contains
the tree. This is necessary to enable the program
to find the paths between the line intersections
(step 8).

5. Foreground flooding: The user marks a position in
the tree. The program colours ('floods') the
foreground reachable from there. In subsequent
steps, the flooded area will be treated as the tree.
Everything else is ignored.

6. Inner nodes and outer nodes placement: The
program suggests locations for line intersections and
end of lines. These represent branching locations
and tips. A logical node is assigned to each location.
The user can move, remove and add nodes. In the
thinned image, black pixels adjacent to exactly one
other black pixel become a tip location. Black pixels
adjacent to at least three black pixels are candidates
for a branching location. If several candidate pixels
are adjacent to each other, the branching location is
averaged from their positions.

7. Choice of tree type: The program can distinguish
and calibrate freeform and rectangular trees. The
choice of the tree type influences how the program
treats branch lengths. The tree type must be chosen
prior to step 8.

8. Recognition of branches: The program traces gapless
foreground paths between each pair of nodes in
order to find the branches of the tree. If there are
several candidate paths, the shortest is selected. If a
branch is missing or wrong, the user either modifies
the image with the drawing tools and repeats step 8,
or he/she drags a new branch and manually specifies
its length.

9. Determination of branch lengths: The accuracy
depends on the congruence of thinned tree
structure, node placement, and original tree. For
freeform trees, the branch length in pixels is based
on the entire foreground path between the two
defining nodes. For rectangular trees, the branch
length is the sum of the lengths of the horizontal
path segments. The user may type in self-defined
branch lengths and mix them with the calculated
lengths. The tree can be scaled using a line of
known length in the image, e.g., a scale bar.

10.Assignment of species names: The user right-clicks
on each leaf node in turn in order to type in the
corresponding species name.

11.Choice of the tree root: The program, assisted by
the user if necessary, chooses the inner node based
on which the rooted Newick expression is
calculated.

12.Construction of the Newick string: The program
calculates and displays the Newick tree code for the
tree depicted. The user may save it to the clipboard
or export it into a text file.

Results
An image that shows a uniformly dark, rectangular
phylogenetic tree on a uniformly light background in
sufficient resolution, without foreground elements
overlapping with the tree, will need almost no pre-
processing. If the user then settles for consecutively
numbered tip labels, the whole recognition process can
be finished within minutes. However, in general there
will be image portions which require manual correc-
tion, e.g., a branch of the tree is not clearly separated
from other foreground elements such as lettering.
TreeSnatcher Plus offers a special tool that surrounds
black drawings with a white border.
For the determination of branch lengths, the program

needs to assess the path length in pixels between
branching positions on the skeletonized foreground.
Additionally, it must reliably detect bends in a branch
and horizontal branch portions. These tasks work better
if the structures come with a sufficiently high number of
pixels. The better the branches in the original image and
those in the skeletonized image align, the more accurate
are the branch lengths.
The time needed for the complete tree digitization

depends on several factors, among them image size and
quality, tree size and complexity, whether or not branch



Laubach et al. BMC Bioinformatics 2012, 13:110 Page 4 of 5
http://www.biomedcentral.com/1471-2105/13/110
lengths are desired and species names are typed in, how
much pre-processing is necessary, and how experienced
the user is in the usage of TreeSnatcher Plus.
We benchmarked TreeSnatcher Plus using the set of

100 rectangular trees published by Hughes [5], nine add-
itional images with non-standard tree styles, and another
image modified from the benchmark set of Hughes. The
topologies of all trees and their branch lengths were
recognized correctly, with necessary user interaction
ranging from minor to extensive (Additional file 1, table
'BenchmarkTreeSet'). All tip labels were typed manually.
As TreeSnatcher Plus is not meant to work autono-
mously, the user is required to initiate all pre-processing
and analysis steps. For different users, the time needed
for a particular task may vary. For the benchmark set
[5], the time needed for topology reconstruction was on
average 165 s, ranging from 30 to 1,800 s on a PC
equipped with a Core i7-960 processor. Typing the tip
labels required on average 4.4 min, the minimum time
was 0 min for an image without labels and the max-
imum time 35 min. The shortest tree digitisation job
finished within one minute, the longest job required 45
min. Recognizing the topology of a tree with 100+ tips
(image 1471-2148-6-93 in the tree set by Hughes) and
entering the tip labels required 17 min. Using the
TreeRipper web frontend [5], we obtained the topology
and the tip labels for the same tree within five minutes,
the processing time was 272 s. However, all tip labels
needed manual correction.
Additionally, we processed nine images of non-

rectangular trees (Additional file 1, table 'InternetTrees').
Again, we obtained the topologies and the branch
lengths for all trees. TreeSnatcher Plus can measure the
branch lengths in freeform trees but not in circular and
polar trees. For three circular trees ('bustard', 'TreeofLife'
and 'Phylogenetic_Tree_of_Life'), we therefore approxi-
mated the lengths of the horizontal branch portions with
the 'Line Selection' tool. In one case ('vert_tree'), we
needed to retrace the tree manually.
We rotated image 1471-2148-6-99-1 from the bench-

mark set by 6° in order to test how well the program can
recognize the rectangular branch portions in the new
image ('RotatedTree'). While the editing steps were simi-
lar for the original and the modified image, TreeSnatcher
Plus failed to recognize 10 out of a total 81 horizontal
branch portions, compared to 3 in the original image.
In general, the correction of overlapping structures in

a tree and typing the branch lengths are the most
demanding tasks. For some images, we needed several
attempts until we found a suitable order of processing
steps.
For all jobs, we provide TreeSnatcher Plus snapshot

data that can be reloaded into the program in order to
reproduce the recognition results (Additional file 2,
Additional file 3, Additional file 4, Additional file 5,
Additional file 6.
On the TreeSnatcher Plus project website, we offer

tutorials and sample recognition projects for the applica-
tion. They provide a comprehensive overview about the
performance of the program and the expected effort
with different illustration styles and topologies.

Discussion
Given the performance of today's image analysis and
OCR methods, two distinct strategies are feasible: either
a fully-automated approach requiring one specific tree
type and a fixed illustration style, or a semi-automated
approach for arbitrary trees.
TreeRipper, which to our knowledge is the only cur-

rently available program with comparable functionality,
aims at a fully automatic recognition. To achieve this, it
restricts itself to rectangular trees fulfilling a set of strin-
gent criteria. For the trees fulfilling these criteria in the
same benchmark set analysed here, TreeRipper was able
to recognise the topology correctly in 32% of cases with-
out any manual pre-processing.
TreeSnatcher Plus, on the other hand, accepts the ne-

cessity for manual image pre-processing and thus
achieves a 100% success rate. It allows the user to
process virtually any phylogenetic tree, albeit sometimes
with extensive user interaction. On average, extraction
of one phylogenetic tree topology required less than
three minutes. Currently, tip names have to be entered
by hand - using OCR here is very difficult to implement,
as the tip labels can be anywhere on the image and in
any orientation. TreeSnatcher Plus is easy to install, the
single prerequisite being a working Java 1.6 Runtime
Environment.
Further improvements are planned. The next version

of TreeSnatcher Plus will be able to compute branch
lengths for circular tree topologies. Moreover, it is
planned to include an experimental OCR option for the
recognition of tip label names in rectangular trees. The
thinning technique could be improved as it is not tai-
lored specifically to TreeSnatcher Plus.

Conclusions
Although TreeSnatcher Plus does not work fully auto-
matically, it can be used to preserve virtually any phylo-
genetic tree for future research. Today, automatic
digitization, let alone batch processing, of even a sub-
class of phylogenetic tree images including labels seems
hardly realizable. We are nevertheless convinced that
novel programs will recognize a large number of differ-
ent tree topologies in diverse styles. They will combine
classical methods from the field of pictorial pattern rec-
ognition and image segmentation with new approaches.
Until then, TreeSnatcher Plus can be used, with an



Laubach et al. BMC Bioinformatics 2012, 13:110 Page 5 of 5
http://www.biomedcentral.com/1471-2105/13/110
acceptable effort for the user, for the semi-automated rec-
ognition of arbitrarily shaped trees in images. If the images
to be digitised fulfil its requirements, TreeRipper may in-
stead be used for the automatic recognition of topologies.
A greater acceptance of increased minimum data

reporting standards in phylogenetic research would
guarantee that phylogenetic data communicated in fu-
ture research papers is machine-readable and available
to other scientists. It has been mandatory for years to
publish DNA sequences electronically in one of the uni-
versally accepted formats, and one may hope that a simi-
lar requirement will be enforced by scientific journals
for phylogenies.

Availability and requirements
Project name: TreeSnatcher Plus: capturing phylogenetic
trees from images
Project home page: http://www.cs.uni-duesseldorf.de/

AG/BI/Software/treesnatcher/
Operating Systems: Windows, Mac OS X, Linux
Programming language: Sun/Oracle Java 1.6
Other requirements: Sun/Oracle Java Runtime Envir-

onment Version 1.6 or higher
License: GNU General Public License

Additional files

Additional file 1: MS Excel XLS table with Benchmark tree set results
and results on non-rectangular trees.

Additional file 2: ZIP files containing several folders, each of which with
TreeSnatcher Plus snapshot files, the original image and a text file.

Additional file 3: ZIP files containing several folders, each of which with
TreeSnatcher Plus snapshot files, the original image and a text file.

Additional file 4: ZIP files containing several folders, each of which with
TreeSnatcher Plus snapshot files, the original image and a text file.

Additional file 5: ZIP files containing several folders, each of which with
TreeSnatcher Plus snapshot files, the original image and a text file.

Additional file 6: ZIP files containing several folders, each of which with
TreeSnatcher Plus snapshot files, the original image and a text file.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
I am very thankful to Martin J. Lercher for making it possible to develop
TreeSnatcher into TreeSnatcher Plus and for supervising the development
process. I am also very thankful to Arndt von Haeseler who supervised the
design of the first incarnation of the program, TreeSnatcher. I thank Yannick
Schrader-Schilkowsky who proofread and followed the tutorials and pointed
out discrepancies.
This work was supported by the Wiener Wissenschafts-, Forschungs- und
Technologiefonds awarded to Arndt von Haeseler; and the DFG (Deutsche
Forschungsgemeinschaft) through a Collaborative Initiative (SFB 680).

Author details
1Department of Bioinformatics, Heinrich-Heine-University Duesseldorf,
Universitaetsstrasse 1, Duesseldorf 40225, Germany. 2Center for Integrative
Bioinformatics Vienna, Max F Perutz Laboratories, Dr-Bohr-Gasse 9, Vienna,
Austria. 3University of Vienna, Vienna, Austria. 4Medical University Vienna,
Vienna, Austria.
Authors’ contributions
TL developed the idea, realized the program, tested the software and
drafted the manuscript. MJL and AVH helped to shape the features of the
application and revised and approved the manuscript.

Received: 21 November 2011 Accepted: 24 May 2012
Published: 24 May 2012

References
1. Felsenstein J: The Newick tree format. http://evolution.genetics.washington.

edu/phylip/newicktree.html.
2. Felsenstein J: Phylogeny Programs. http://evolution.genetics.washington.edu/

phylip/software.html#Plotting.
3. Rambaut A: TreeThief: a tool for manual phylogenetic tree entry. http://

microbe.bio.indiana.edu:7131/soft/iubionew/molbio/evolution/phylo/
TreeThief/main.html.

4. Laubach T, von Haeseler A: TreeSnatcher: Coding trees from images.
Bioinform (Oxf, Engl) 2007, 23:3384–3385.

5. Hughes J: TreeRipper web application: towards a fully automated optical
tree recognition software. BMC Bioinforma 2011, 12:178.

6. TreeBASE: a database of phylogenetic knowledge. http://www.treebase.org/.
7. O'Leary MA, Kaufman SG: MorphoBank 3.0: Web application for

morphological phylogenetics and taxonomy.
8. Dryad. www.datadryad.org.
9. Leebens-Mack J, Vision T, Brenner E, Bowers JE, Cannon S, Clement MJ,

Cunningham CW, dePamphilis C, deSalle R, Doyle JJ, Eisen JA, Gu X,
Harshman J, Jansen RK, Kellogg EA, Koonin EV, Mishler BD, Philippe H, Pires
JC, Qiu YLL, Rhee SY, Sjölander K, Soltis DE, Soltis PS, Stevenson DW, Wall K,
Warnow T, Zmasek C: Taking the first steps towards a standard for
reporting on phylogenies: Minimum information about a phylogenetic
analysis (MIAPA). Omics: J Integr Biol 2006, 10:231–237.

10. BarriersToReUse. http://www.evoio.org/wiki/BarriersToReUse.
11. Wicherts JM, Borsboom D, Kats J, Molenaar D: The poor availability of

psychological research data for reanalysis. American Psychologist 2006,
61:726–728.

12. Xpdf suite. http://www.foolabs.com/xpdf.
13. Burger W, Burge MJ: Digitale Bildverarbeitung. Heidelberg, Berlin: Springer

Verlag; 2005.
14. Zhang TY, Suen CY: A fast parallel algorithm for thinning digital patterns.

Image Process Comput Vis 1984, 27:236–239.

doi:10.1186/1471-2105-13-110
Cite this article as: Laubach et al.: TreeSnatcher plus: capturing
phylogenetic trees from images. BMC Bioinformatics 2012 13:110.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.cs.uni-duesseldorf.de/AG/BI/Software/treesnatcher/
http://www.cs.uni-duesseldorf.de/AG/BI/Software/treesnatcher/
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S2.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S3.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S4.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S5.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-13-110-S6.zip
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/newicktree.html
http://evolution.genetics.washington.edu/phylip/software.html#Plotting
http://evolution.genetics.washington.edu/phylip/software.html#Plotting
http://microbe.bio.indiana.edu:7131/soft/iubionew/molbio/evolution/phylo/TreeThief/main.html
http://microbe.bio.indiana.edu:7131/soft/iubionew/molbio/evolution/phylo/TreeThief/main.html
http://microbe.bio.indiana.edu:7131/soft/iubionew/molbio/evolution/phylo/TreeThief/main.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation

	link_Fig1
	Results
	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Acknowledgements
	Author details
	Authors&rsquo; contributions
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14

