
Estimation of genetic merit from bivariate
« all or none » responses

J.L. FOULLEY D. GIANOLA

* 1.N.R.A., Station de Génétique quantitative et appliquee
Centre de Recherches zootechniques, F 78350 Jouy-en-Josas

** Department of Animal Science, University of Illinois
Urbana, Illinois 61801, U.S.A.

Summary

A method of analysis of bivariate « all or none » categorical responses arising in animal

breeding is presented. Conceptual bivariate normal variates following a mixed linear model are
mapped onto a discrete scale via fixed thresholds. Parameters of the underlying scale are estimated
in a Bayesian framework by finding the mode of a joint posterior distribution. The method requires
iterative implementation and evaluation of bivariate normal integrals ; estimation equations are
presented. An application of the method to data on calf viability and calving ease is presented.
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Résumé

Estimation de la valeur génétique à partir de deux variables tout-ou-rien

Cet article présente une méthode d’analyse bidimensionnelle de caractères tout-ou-rien interve-
nant en sélection animale. La modélisation des réponses tout-ou-rien postule l’existence d’une
distribution binormale de variables sous-jacentes à seuils qui suivent un modèle linéaire mixte. Les
paramètres sur l’échelle sous-jacente sont estimés selon une procédure bayesienne à partir du mode
de la distribution a posteriori. La méthode implique une résolution itérative et le calcul d’intégrales
normales à 2 dimensions. Le système correspondant d’équations est décrit. La méthode est illustrée
par une application à des données de viabilité et conditions de naissance de veaux.

Mots clés : Evaluation multicaractères, variables tout-ou-rien, méthode bayesienne.

1. Introduction

Categorical traits are ubiquitous in animal production. They play an important role
as components of 

" numerical productivity ", e.g., fertility, prolificacy, and viability.
Variables of this type are often dealt with as if they were continuous, and analyzed via



linear model methodology. Unfortunately, this approach is very difficult to justify because
most hypotheses required to proceed with a linear analysis are clearly violated when
the response variables are categorical (GIANOLA, 1982).

A general approach for prediction of genetic merit from categorical responses has
been developed recently by GIANOLA & FOULLEY (1982, 1983). This methodology relates
discrete responses in mutually exclusive, exhaustive and ordered categories to conceptual
underlying variates following a normal or a logistic distribution. The mapping from the
conceptual to the discrete scale is done via a set of hypothetical successive thresholds
which partition the real line into disjoint intervals. The underlying variates are modeled
such that the sampling variability of levels of factors affecting the position of the
distribution with respect to the thresholds is taken into account. This satisfies assumptions
usually required in genetic analyses and gives considerable flexibility to the method,
particularly when contrasted with others which accommodate a restricted set of models
only (e.g., QUAAS & VAN VLECK, 1980). The Bayesian framework of the procedure
furnishes a conceptual liaison with mixed model prediction techniques for quantitative
data (HENDERSON, 1973). This link becomes particularly clear in terms of the system
of equations requiring solution : if the binomial or multinomial likelihood functions
involved (GIANOLA & FOULLEY, 1982, 1983) are replaced by a normal one, the method
retrieves the « mixed model » equations of HErrnExsoN (1973).

An extension of the methodology to include mixtures of correlated normal and
binary responses, with and without recursive relationships, was presented by FOULLEY
et al. (1983). The objective of this article is to extend the procedure to multiple categorical
responses. For simplicity, 2 binary responses are considered, and an example in the
domain of multiple trait evaluation for calving difficulty and calf viability is presented.

II. Methodology

A. Data

The data can be arranged as an s x 2 x 2 contingency table, where the s rows

represent combinations of levels of factors or, in its most extreme form, individuals
themselves. The 2nd and 3rd dimensions of the table correspond to 2 binary variates
(A, B), each with 2 mutually exclusive and exhaustive categories of response [1, 2]. It
is simpler to arrange the table as an s x 4 array, with the 4 categories indicated as
[11], [12], [21], [22]. For example, [12] denotes a response in the 1st category for
variable A and a response in the 2nd category for variate B. Let n. J, be the number
of responses in category k (k = 11, 12, 21, 22) within the jth row of the table (see
table 1), j = 1, ..., s. The marginal totals nl., ..., n!., ..., ns. are assumed fixed by sam-
pling but can vary from row to row. The data are represented symbolically by the
4xs matrix :

where Yj is a 4 x 1 vector with :

and Y,, is a 4 x 1 vector having a 1 in the position corresponding to the category of
response and zeroes elsewhere.



B. Underlying model

As in TALUS (1962), it is assumed that the probability that an experimental unit
responds in the k th category is related to 2 conceptual variables, e^ and eB. Multivariate
normality for these 2 variates can be justified if the hypothesis of multifactorial inheri-
tance acting upon a non-negligible environmental background (the sum of many such
effects) is tenable. The models for the 2 variables are :

where q§! and qf are location parameters, and Etq and s q are residuals associated
with the q th experimental unit (q = 1, ..., nj) in the j th row of the table (j = 1, ..., s).
The distribution of the residuals is :

Given TIt and qf, the probability of response in a particular category (11, 12,
21, 22) is mapped via thresholds t! and tJJ, such that :



where 4) (x, y) is a bivariate normal density function with means 1! and TI’3, and
covariance matrix as in (5). Making the changes of variable :

one can write (7) as :

where f1t = (tA - TIA i )/(3A and pf = (tB - I-lY)/°B’ and <))(.,.; p) and 4) (., . ; e) are
standard bivariate normal density and distribution functions, respectively, with a corre-
lation coefficient p. The following relationships hold :

where <1>(.) is the standard normal distribution function. Let J1.A = {f1t} and J1.B = {f1Y}
be s x 1 vectors with structure :

where XI (XB) and Z, (ZB) are known matrices relating J.1A (J.1B) to PA ((iB) and to
UA (uB), respectively. In particular,

where XJA (xjB) is the j th row of XI (XB), and ZJA (zJJJ) is the j th row of Z, (ZB).
More generally, (11) can be written as :

where, without loss of generality, X can be taken as a full-rank matrix.

C. Inference

With 0’ = [[3’, u’], inferences are based on Bayes theorem (e.g., LINDLEY, 1965) :



where f (81 Y) is the posterior density, g (Y 10) is the likelihood function and h (8) is
the prior density.

A priori, we take :

In genetic applications, u’ = (uA, u!] is usually a vector of additive genetic values or
of &dquo; transmitting abilities &dquo;, in which case G is a function of the additive relationship
matrix between individuals and of the genetic variances and covariances for traits A

and B. For example, when u, and uB are vectors of additive genetic values to be

predicted in the same individuals :

where A is the additive relationship matrix, 6,!,A (O!B) is the additive genetic variance
of trait A (B), and OUAB is the additive genetic covariance between traits A and B.

Apart from a proportionality factor, the prior density is then from (15) to (18) :

Given 0, the vectors Yj in (2) are conditionally independent and the likelihood
function is then :

The posterior density in (14) is then proportional to the product of (20) and (21).
The selection rule which maximizes the expected merit of a fixed number of selected
candidates (GOFFINET, 1983) is based on :

E (0 1 Y) is called the posterior mean. Unfortunately (22) is technically impossible
to evaluate. In the present paper, we calculate the posterior mode and regard it as an

approximation to E (6!Y). If the posterior density is symmetric and unimodal, E (91 Y)
and the posterior mode are identical. Otherwise, as n!. increases, the likelihood function
and the posterior density become normal so, in the limit, the posterior mean and mode



become the same. Alternatively, the posterior mode corresponds to a Bayesian estimator
which minimizes the expected posterior loss when the loss function is :

where E is an arbitrarily small positive number (PRATT et al., 1965).

III. Computations

A. Principles

The log-posterior density can be written from (14), (20) and (21) as :

where C is a constant. In this paper we assume that prior knowledge about [3 is vague,
i.e., r- ’- 0, so we can write :

Finding the mode requires solving :

which in this case yields a non-linear system ; therefore, an iterative solution is required.
We use the method of Newton-Raphson (DAHLQUIST & B.roRCx, 1974) which consists
in iterating with : 

- - - -

where !f!1 = Olil - Oli - -11, and Olil is a solution at the ith iterate. Iteration stops when
Al’l < e, the latter being a vector of arbitrarily small numbers.

B. Derivatives

As shown in Annex A, the first derivatives are :



and v, and vB as shown in the Annex.

It is shown in Annex B that the second derivatives can be written as :

where WAA, WBB and WAB are diagonal matrices, with WAB = WBA’



C. Estimation equations

Using (26 a-d) and (28 a-j) in (25) yields the system :

where the brackets indicate the round of iteration, and :

Equations (29) can be rewritten as :

The parallel between (30) and the multiple trait &dquo; mixed model &dquo; equations (e.g.,
HENDERSON & QUAAS, 1976 ; FOULLEY et al., 1982) is remarkable. With normal data,
the W matrices are segments of the inverse of the residual variance-covariance matrix,
and the &dquo; working &dquo; variates (YA, yB) in (31) are replaced by observations in traits A
and B.



IV. Numerical example

A. Data

We consider a hypothetical example discussed by SCHAEFFER & Wtt,TOrr (1976).
These authors gave data for calf viability and for a subjective assessment of degree of
calving difficulty. Response categories for calf viability were &dquo; alive &dquo; or &dquo; dead &dquo;. Those
for calving difficulty were &dquo; normal &dquo; or &dquo; assisted &dquo; ; these resulted by regrouping
SCHAEFFER & WILTON’S (1976) 3 classes into 2 : normal (or not observed) vs. light or
extreme difficulty. The data comprised 28 calving records classified by herd-year
(2 levels), calf’s dam age (heifers vs. cows), calf sex (male vs. female) and sire of calf
(4 levels). The records were arranged as a 20 x 4 contingency table as shown in table
2. The rows consisted of 20 combinations of herd-year x age of dam x sex of calf x sire
subclasses ; the 4 columns were [11] (alive, normal birth), [12] (alive, assisted birth), [21]
(dead, normal birth) and [22] (dead, assisted birth).

(a) M : male ; F: female. ,

(b) [11] : alive, normal ; [12] : alive, assisted ; [21] : dead, normal ; [22] : dead, assisted.



Bivariate and univariate marginal relative frequencies, by level of each of the

4 factors considered, are presented in table 3. Overall, about 71 p. 100 of the calves

were born alive and 68 p. 100 of the calvings were normal. Differences among sires
for calf livability ranged between 67 and 78 p. 100 ; the corresponding figures for calving
difficulty were 33 and 86 p. 100. When the 2 traits are considered jointly, the data
suggest an association between calf mortality and calving difficulty. Given that the calves
were alive at birth, the frequency of normal calvings was about 75 p. 100 ; among dead
calves, only 50 p. 100 of the calves were normal.

B. Models

The same explanatory variables were included in the models for the 2 conceptual
variables for calf viability (A) and calving difficulty (B). The models for the parameters
in (12 a) and (12 b) were :

where Hf is the effect of the k th herd-year (k = 1, 2), A! is the effect of the e th

age of dam (f = heifers, cows), S&dquo; is the effect of the m th sex of calf (m = males,
females), and u8 is the effect of the n th sire of the calf (n = 1..., 4). In order to have



XA and XB in (11) with full-column rank, the corresponding P-vectors were taken as :

The first 2 elements of (3X correspond to location parameters for male calves born out
of heifers in herd-years 1 and 2, respectively. Likewise, the 3rd and 4th elements of
P. represent contrasts between cows and heifers, and female and male calves, respecti-
vely.

C. Prior information

As pointed out in section III, prior information about !A and (3B was assumed to
be vague. Now, from (18) and (19) :

where gAA (gBB) is the variance among sires for trait A (B), gAB is the sire component
of covariance between traits A and B, and I is an identity matrix of order 4. The

inverse of G, required in (29) or (30), is :

where :

Qx is the Kronecker product ;
rG is the genetic correlation between calf mortality and calving difficulty, assumed

equal to .70 (PHILIPPSON et al., 1979) ; and

! _ (4 - hx)/hX (X = A, B ; h’! _ .05 ; hi .20 ; PHILIPrsON et al., 1979).

The parameter Q, required to evaluate 4) (., ., ; p), and (D LD), the probabilities
of response (eqs. 10 a - 10 d), was assumed to be equal to .40. This correlation can be
interpreted as the intra-sire residual correlation between the two conceptual variates.

D. Iteration

Equations (29) were used to proceed with iteration. Two sets of starting values
were used :

a) the solution to (29) with :



These starting values are, in fact, solutions to univariate &dquo; mixed model &dquo; equations
arising from treating separately each of the 2 binary traits, calf viability and calving
difficulty. The variance ratios used were X, = 79 and kB = 19, which correspond to
the heritability values described previously ;

b) the solution to (29) with :

The criterion used to stop iterations was :

where A is the vector of corrections in (29), p = order of [3A = order of !iB, q = order
of u, = order of uB. Bivariate normal integrals were computed using formulae described
by DUCROCQ (1984) ; these are shown in Annex C.

F. Results

Five iterations were required to satisfy the above stopping rule and convergence
to the same solution occurred irrespective of the starting set. The results of iteration
using the set (a) of initial values are presented in table 4. Although the stopping rule
was not satisfield until the 5th round (E = .7 x 10- 9), iteration could have stopped in
the 4th one as the solutions remained virtually unchanged thereafter.

Estimates of the components of 0 and the square root of their estimated posterior
variances are presented in table 5 ; posterior dispersion was calculated from elements
of the inverse of the coefficient matrix in (29) with W!, WBB and WAB evaluated after
the solutions stabilized. Also shown in table 5 are estimates of 0 obtained from 2

separate univariate evaluations, one for calf viability and the other for calving difficulty.
In order to interpret the results, it is convenient to refer to equations (10 a - 10 d) and
(32) and to the way that the data were classified (table 1). Thus, the marginal probabilities
of a live birth or of a normal calving for the jth row of the contingency table increase
as f1t or f1Y increase. In the conceptual scale, the results from the bivariate analysis
indicate that female calves had higher viability (.293 ± .539) and easier births

(.341 ± .529) than male calves. Cows had easier calvings than heifers (.413 ± .533) but
their calves were less viable than those out of heifers (&mdash; .742 ± .562). This surprising
result, peculiar to the hypothetical data set used, was also obtained in the univariate



analysis. Sire rankings for the conceptual variable for calving ease were the same in
the univariate and bivariate analyses. This did not happen in the case of calf viability,
where sire solutions were strongly pulled towards zero because of low heritability.

,

As pointed out by GIANOLA & FOULLEY (1983) and FOULLEY et al. (1983), it may
be of interest in animal selection to rank sires on the basis of response probabilities
rather than on values of conceptual variables measured in residual standard deviation
units. Given a category c (11, 12, 21, 22) one would calculate for each sire (in the
context of eq. 32) :

where t’kemn,c is either (10 a), (10 b), (10 c) or (10 d) evaluated at arguments appropriate
for the kemn th subclass, and akem is a weight such that 0 :::; aktn, :5 1 and 2 2 e 1 m akem = 1.



In order to illustrate, sires were evaluated for heifer calvings equally distributed over
herd-years and sexes. Thus, from (10 a) :

where akem = 0 if e = 2 (cows) and 1/4 otherwise. The results are presented in table 6
in terms of joint and marginal probabilities in the bivariate analysis, and of marginal
(and joint, assuming independence) probabilities in the univariate approach. While
estimates of marginal probabilities of response were similar in univariate and bivariate
analyses, this was not always the case for joint probabilities. For example, the univariate
analysis gave estimates for the [22] category (dead calf, difficult calving) which were
considerably lower than those obtained from the bivariate approach. If rankings were
to be based on joint probabilities, the 2 analyses would have rankek the sires equally,
irrespective of the category. However, if sires are ranked on the basis of the marginal
probability of calf livability, the univariate procedure would give 2 > 1 = 3 > 4, and
the bivariate one would yield 1 > 4 > 2 > 3. Nevertheless, differences among sires for
this trait cannot be considered of practical importance, at least in this data set.



V. Discussion

This study is in the context of an effort to develop a unified methodology for the
analysis of categorical data in animal breeding (Gtwrto!w & FOULLEY, 1982, 1983 ;
FOULLEY et al., 1983). The general strategy consists of postulating conceptual normal
variates following a mixed linear model, and mapping these variates onto a discrete
scale via hypothetical fixed thresholds, usually unknown. The location parameters of
the underlying distribution are then estimated in a Bayesian framework as the mode
of a joint posterior density. Advantages and limitations of the methodology and its

relationship to other approaches have been described in proceeding articles (e.g., GIA-
NOLA & FOULLEY, 1983) so these matters will not be dealt with here. The study further
illustrates the generality of the principles used by extending the method to include
bivariate binary categorical responses.

While this paper focuses on bivariate &dquo; all or none &dquo; responses, the approach can
be extended, without formal difficulty, to multiple binary or polychotomous responses.
For reasons of space, this will be addressed in a future communication. Bivariate models
have been already proposed by NERLOVE & PRESS (1973) but their method used logistic
functions and was restricted to fixed effects. Application of the method to more than



2 or 3 binary responses, as in THOMPSON (1972) dealing with a related problem, probably
raises important numerical issues related either to the difficulty of evaluating with

sufficient precision multivariate normal integrals, or to the size of the system requiring
solution in the course of iteration.

It is pertinent to address the question of how much efficiency is gained by using
a multiple trait nonlinear evaluation procedure as opposed to a univariate one. The
latter evaluation requires knowing heritability in the conceptual scale and it has been

demonstrated (MEIJERING & GIANOLA, unpubl. results) that sire rankings are quite
insensitive to errors in this parameter. A multivariate evaluation requires, in addition,
knowledge of genetic correlations between traits and this can be a limiting factor in
many situations. Hence, multiple trait evaluations are not always justifiable from a

practical viewpoint, particularly when the benefits are contrasted with the high costs of
computer implementation.

The procedure described here assumes that the 2 binary responses are scored in
every individual or experimental unit. However, it would be possible to adapt the
method to the case of incomplete information along the lines of the procedures described
by FOULLEY et al. (1982) for continuous responses. Such an adaptation would make the
method more general, and perhaps more appealing, for application to populations
undergoing selection.
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Annex A

First derivatives of the log-posterior with respect to the parameters : Some usefull results

From (9), neglecting suffixes :

where 40 (.) and (D (.) are univariate normal density and distribution functions. Alterna-
tively :

From (A 1) :
.:>1

where I

Similarly :

First derivatives with respect to !A, 13B, OA and uB



From (24) and (A 3) - (A 6), one obtains after algebra :

where :

Similarly :

where :

Formulae (A 12) and (A 14) can be obtained from the general expression :

where [e = 1 (A), t’ = 2 (B)], or [e = 2 (B), E’ = 1 (A)], and rl, r2 indicate the category
of response ; for example, a response in [21] would be indicated as rl = 2. r2 = 1. Note

that when p = 0 :

and (A 12) reduces to :

which is the formula corresponding to the univariate case with binary responses (GIANOLA
& FOULLEY, 1983).



From (24), the first derivatives with respect to UA and uB include a contribution
from the prior density. Thus :

and :

Annex B

Second derivatives of the log-posterior with respect to the parameters

From (A 11)

as in (28 a). Similarly, in (28 b) and (28 c) :

The derivation of individual elements of (B 2) and (B 3) requires tedious algebra which
will not be presented here. For example, writing f1t = f1jA’ f1Y = f1jB :

with 1) (., . ; ; !) the standard bivariate normal density function.

With the above results, the remaining second derivatives needed in (28 a) - (28 j)
can be obtained in a straightforward manner. Observe that in (28 h) - (28 j), the prior
density contributes to second derivatives with respect to UA and uB.



Annex C

Evaluation of bivariate normal integrals

DuTr & Sotots (1976) described a technique for calculating multivariate normal
probabilities. Because their general expressions and notation are complex, only the
principles used and the results applicable to univariate and bivariate integrals are pre-
sented.

General principles

1) Integrals of n dimensions, each evaluated between a threshold and infinity, are
transformed into a sum of 2° integrals of dimensions 1 to n, between - 00 and 00. This

permits integration using known numerical methods.

Changes in integration limits are accomplished writing the probability density func-
tion entering the integrand as an integral (between - 00 and 00) of the characteristic
function, and then using the &dquo; inversion theorem &dquo; (KENDALL & STUART, 1945 ; MARDIA
et al., 1979). The characteristic function is then fragmented into lower dimension cha-
racteristic functions which correspond to the marginal distributions (GURLAND, 1948).

2) The elementary integrals so obtained are then calculated numerically using the
&dquo; 

quadratization 
&dquo; method of GAUSS. The simplest integrals, of the form :

are approximated by :

where the h; (i = 1, ..., k) are the k positive roots of Hermite polynomials of order 2 k,
/ x2

orthogonal to exp I / - 2 zB and the w;’s are weights calculated as a function of h, and ofX2 (- 2 _

exp I - 2 (BooTH, 1957 ; MINEUR, 1966). Multiple integrals can be brought to the form
(C 1BBB) by successive &dquo; 

quadratization &dquo;.

Application to univariate and bivariate integrals

We used the highest polynomial with already calculated roots i.e. 2 k = 20 (ABRA-
MOWITZ BL STEGUN, 1972) : 1

was approximated as



In the case of bivariate- voluates :

was approximated as -.


	Summary
	Résumé
	I. Introduction
	II. Methodology
	A. Data
	B. Underlying model

	III. Computations
	A. Principles
	B. Derivatives
	C. Estimation equations

	IV. Numerical example
	A. Data
	B. Models
	C. Prior information
	D. Iteration
	F. Results

	V. Discussion
	Acknowledgements
	References

