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Abstract
We study the solvability of a nonlinear eigenvalue problem for maximal monotone
operators under a normalization observation. The investigation is based on degree
theories for appropriate classes of operators, and a regularization method by the
duality operator is used. Let X be a real reflexive Banach space with its dual X* and �
be a bounded open set in X . Suppose that T : D(T ) ⊂ X → X* is a maximal monotone
operator and C : (0,∞)× � → X* is a bounded demicontinuous operator satisfying
condition (S+). Applying the Browder degree theory, we solve a nonlinear eigenvalue
problem of the form Tx + C(λ, x) = 0. In the case where Tx + λCx = 0, an eigenvalue
result for generalized pseudomonotone densely defined perturbations is obtained by
the Kartsatos-Skrypnik degree theory.
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1 Introduction and preliminaries
Eigenvalue theory is closely related to the problem of solving nonlinear equations which
was initiated by Krasnosel’skii [] for compact operators. Regarding maximal monotone
operators, it has been extensively investigated bymany researchers in various aspects, with
applications to evolution equations and differential equations; see, e.g., [–]. The study
was mostly based on degree theories for appropriate classes of operators and the usual
method of regularization by means of the duality operator; see [–].
Let X be a real reflexive Banach space with its dual X* and � be a bounded open set

in X. Suppose that T :D(T)⊂ X → X* is a maximal monotone operator. We consider the
nonlinear eigenvalue problem

Tx + λCx = , (E)

where C : D(C) ⊂ X → X* is an operator. When the operator C or the resolvents of the
operator T are compact, this problem was studied, for instance, by Guan-Kartsatos [],
Kartsatos [], and Li-Huang [], where the method is to use the Leray-Schauder degree
theory. More generally, an implicit eigenvalue problem of the form

Tx +C(λ,x) =  (IE)

was investigated in [, ], whereC : (,∞)×� → X* is a bounded operator to be specified
later. Kartsatos and Skrypnik [] observed the above eigenvalue problem provided that the
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following property (P) is fulfilled: For ε > , there exists a λ >  such that the equation

Tx +C(λ,x) + εJx = 

has no solution in D(T) ∩ �, where J denotes the duality operator. This property has a
close relation to the use of topological degree in eigenvalue theory by the regularization
method. It is shown in [] that two conditions about the weak closure of a certain set con-
sisting of normalized vectors and the asymptotic behavior of the operator C at infinity of
λ, called normalized conditions, are main ingredients in solving an eigenvalue problem. In
this connection, we are now interested in finding eigenvectors under normalized condi-
tions more concrete than property (P).
The purpose of this paper is to establish the existence of solutions for the above eigen-

value problems under normalized conditions, motivated by the works of Kartsatos and
Skrypnik [, ]. We first study implicit eigenvalue problem (IE), where C is assumed to be
a bounded demicontinuous operator satisfying condition (S+). For this, a key tool is the
Browder degree given in []. Next, we consider two types of the operator C for eigenvalue
problem (E). For the one, we apply the Browder degree theory for nonlinear operators of
the form T + f with T maximal monotone and f bounded with condition (S+) introduced
in []. In the other case, where C is a generalized pseudomonotone, quasibounded, and
densely defined operator, we solve this problem by using the Kartsatos-Skrypnik degree
theory for densely defined (S̃+)-perturbations of maximal monotone operators developed
in [].
This paper is organized as follows. In Section , we study the solvability of implicit eigen-

value problem (IE) with normalized conditions based on the Browder degree theory. Sec-
tion  contains an eigenvalue result for problem (E) as a special case of (IE). In Section ,
we deal with eigenvalue problem (E) for densely defined perturbations of maximal mono-
tone operators under normalized conditions.
Let X be a real Banach space with dual space X*, � be a nonempty subset of X, and

Y be another real Banach space. Let �, int�, and ∂� denote the closure, the interior,
and the boundary of � in X, respectively. The symbol → (⇀) stands for strong (weak)
convergence. An operator F : � → Y is said to be bounded if F maps bounded subsets of
� into bounded subsets of Y . F is said to be demicontinuous if for every x ∈ � and for
every sequence {xn} in � with xn → x, we have Fxn ⇀ Fx.
Let T :D(T)⊂ X → X* be an operator. Then T is said to bemonotone if

〈Tx – Ty,x – y〉 ≥  for every x, y ∈ D(T).

T is said to bemaximal monotone if it is monotone and it follows from (x,x*) ∈ X×X* and

〈
x* – Ty,x – y

〉 ≥  for every y ∈ D(T)

that x ∈D(T) and Tx = x*.
T is said to be generalized pseudomonotone if for every sequence {xn} inD(T) with xn ⇀

x, Txn ⇀ h* and

lim sup
n→∞

〈Txn,xn – x〉 ≤ ,

we have x ∈D(T), Tx = h*, and limn→∞ 〈Txn,xn〉 = 〈Tx,x〉.

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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We say that T satisfies condition (S̃+) if for every sequence {xn} in D(T) with xn ⇀ x,
Txn ⇀ h* and

lim sup
n→∞

〈Txn,xn – x〉 ≤ ,

we have xn → x, x ∈D(T), and Tx = h*.
We say that T satisfies condition (S+) if for every sequence {xn} in D(T) with xn ⇀ x

and

lim sup
n→∞

〈Txn,xn – x〉 ≤ ,

we have xn → x.
We say that T satisfies condition (S) on a setM ⊂D(T) if for every sequence {xn} inM

with xn ⇀ x and Txn ⇀ h* and

lim
n→∞〈Txn,xn〉 =

〈
h*,x

〉
,

we have xn → x.
We say that T satisfies condition (Sq) on a setM ⊂D(T) if for every sequence {xn} inM

with xn ⇀ x and Txn → h*, we have xn → x.
We say that T satisfies condition (T ()∞ ) on a set M ⊂ D(T) if for every sequence {xn} in

M with ‖Txn‖ → ∞, we have ‖Txn‖–Txn ⇀ .
It is obvious from the definitions that (S+) implies (S) and (S) implies (Sq). Note that if

T satisfies condition (S̃+) and X is reflexive, then T is generalized pseudomonotone. For
the above definitions, we refer to, e.g., [, , ], and [].
Let C : [,∞) × M → X* be an operator, where M is a subset of X. Then C(t,x) is said

to be continuous in t uniformly with respect to x ∈M if for every t ∈ [,∞) and for every
sequence {tn} in [,∞) with tn → t, we have C(tn,x)→ C(t,x) uniformly with respect to
x ∈M.
We say that C satisfies condition (S+) if for every λ ∈ (,∞) and for every sequence {xn}

inM with xn ⇀ x and

lim sup
n→∞

〈
C(λ,xn),xn – x

〉 ≤ ,

we have xn → x.
Throughout this paper, X will always be an infinite dimensional real reflexive Banach

space which has been renormed so that X and X* are locally uniformly convex.
An operator Jψ : X → X* is said to be a duality operator if

〈Jψx,x〉 = ψ
(‖x‖)‖x‖ and ‖Jψx‖ = ψ

(‖x‖) for x ∈ X,

where ψ : [,∞) → [,∞) is continuous, strictly increasing, ψ() = , and ψ(t) → ∞ as
t → ∞ called a gauge function. If ψ is the identity map I , then J := JI is called a normalized
duality operator. It is known in [] that Jψ is continuous, bounded, surjective, strictly
monotone, maximal monotone and satisfies condition (S+).
The following demiclosedness property of maximal monotone operators will be fre-

quently used; see [].
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Lemma . Let T : D(T) ⊂ X → X* be a maximal monotone operator. Then for every se-
quence {xn} in D(T), xn → x in X and Txn ⇀ x* in X* imply that x ∈D(T) and Tx = x*.

2 Implicit eigenvalue problem
In this section, we establish the existence of a solution for a nonlinear implicit eigenvalue
problem under normalized conditions by using the Browder degree theory for class (S+).
Recall that a mappingH : [, ]×� → X* is of class (S+) if the following condition holds:
For any sequence {uj} in � with uj ⇀ u and any sequence {tj} in [, ] with tj → t for

which

lim sup
j→∞

〈
H(tj,uj),uj – u

〉 ≤ ,

we have uj → u and H(tj,uj) ⇀ H(t,u); see [, ].
As mentioned in the introduction, Kartsatos and Skrypnik [] gave the following result

provided that property (P) is fulfilled. In a more concrete situation, we adopt the normal-
ization method considered in [].

Theorem . Let � be a bounded open set in X with  ∈ �. Let T : D(T) ⊂ X → X* be a
maximal monotone operator such that the closure of � is included in the interior of D(T)
with T() =  and T satisfies condition (T ()∞ ) on �. Assume that C : [,∞) × � → X* is
demicontinuous, bounded and satisfies condition (S+) such that C(,x) =  for all x ∈ �

and C(t,x) is continuous in t uniformly with respect to x ∈ �. Further assume that
(c) There exists a positive numberN such that the weak sequential closure of the set

G =
{

C(λ,x)
‖C(λ,x)‖ : λ ≥N ,x ∈ �,‖Jx + Tx‖ ≤ M(λ)

}

does not contain the origin , where

M(λ) = sup
{∥∥C(λ,x)∥∥ : x ∈ �

}
.

(c) limλ→∞ m(λ) = ∞, where m(λ) = inf{‖C(λ,x)‖ : x ∈ �}.
Then the following statements hold:
(a) For each ε > , there exists a point (λε ,xε) in (,∞)× ∂� such that

Txε +C(λε ,xε) + εJxε = .

(b) If  /∈ T(∂�) and T satisfies condition (Sq) on ∂�, then the implicit eigenvalue
problem

Tx +C(λ,x) = 

has a solution (λ,x) in (,∞)× ∂�.

Proof (a) For our aim, we use the Browder degree dB given in []. Let ε be any positive
number. We first prove that there is a number � ∈ (,∞) such that

dB
(
T +C(�, ·) + εJ ,�, 

)
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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Assume the contrary. For a sequence {�n} in (,∞) with �n → ∞, the following occurs:
For each n ∈ N, either there exists a point xn ∈ � such that Txn + C(�n,xn) + εJxn = ,

in view of dB(T + C(�n, ·) + εJ ,�, ) �= , or there exists a point xn ∈ ∂� such that Txn +
C(�n,xn) + εJxn = . Thus, we get a sequence {xn} in � such that

Txn +C(�n,xn) + εJxn = . (.)

This implies

‖Jxn + Txn‖ ≤ ∥∥( – ε)Jxn
∥∥ +

∥∥C(�n,xn)
∥∥ ≤ M(�n)

for sufficiently large n. Since the sequence {‖C(�n,xn)‖–C(�n,xn)} is bounded in the re-
flexive Banach space X*, we may suppose that ‖C(�n,xn)‖–C(�n,xn) converges weakly to
some h ∈ X*. Using (c), it is clear that h �= . It follows from (.) that

Txn
‖Txn‖ ⇀ –h. (.)

However, ‖C(�n,xn)‖ → ∞ by (c) implies ‖Txn‖ → ∞, which is a contradiction to con-
dition (T ()∞ ). Hence assertion (.) holds.
Next, we consider a mapping H : [, ]× � → X* given by

H(t,x) = Tx +C(t�,x) + εJx for (t,x) ∈ [, ]× �.

Then H is of class (S+). To prove this, let {uj} be any sequence in � with uj ⇀ u and {tj}
be any sequence in [, ] with tj → t such that

lim sup
j→∞

〈
H(tj,uj),uj – u

〉 ≤ . (.)

Since the operators T and J are monotone, it follows from

〈
H(tj,uj),uj – u

〉
= 〈Tuj,uj – u〉 +

〈
C(tj�,uj),uj – u

〉
+ ε〈Juj,uj – u〉 (.)

that

〈
H(tj,uj),uj – u

〉 ≥ 〈Tu,uj – u〉 +
〈
C(tj�,uj),uj – u

〉
+ ε〈Ju,uj – u〉. (.)

By (.) and (.), we have

lim sup
j→∞

〈
C(tj�,uj),uj – u

〉 ≤ . (.)

There are two cases to consider. If t = , then C(tj�,uj) →  and so

lim
j→∞

〈
C(tj�,uj),uj – u

〉
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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Since (.) implies

〈
H(tj,uj),uj – u

〉 ≥ 〈Tu,uj – u〉 +
〈
C(tj�,uj),uj – u

〉
+ ε〈Juj,uj – u〉,

it follows from (.) and (.) that

lim sup
j→∞

〈Juj,uj – u〉 ≤ .

Since J satisfies condition (S+), we obtain

uj → u,

which implies

Tuj ⇀ Tu, C(tj�,uj) ⇀ C(,u), and Juj → Ju

on observing that T is demicontinuous on �. This means that H(tj,uj)⇀ H(,u). If t >
, we have

lim sup
j→∞

〈
C(t�,uj),uj – u

〉

≤ lim sup
j→∞

〈
C(tj�,uj),uj – u

〉
+ lim sup

j→∞

[
–
〈
C(tj�,uj) –C(t�,uj),uj – u

〉]

and hence by (.),

lim sup
j→∞

〈
C(t�,uj),uj – u

〉 ≤ lim sup
j→∞

[∥∥C(tj�,uj) –C(t�,uj)
∥∥‖uj – u‖

]
= .

Since C satisfies condition (S+), we get uj → u from which Tuj ⇀ Tu, C(tj�,uj) ⇀

C(t�,u), and Juj → Ju. Consequently, H(tj,uj) ⇀ H(t,u). We have just shown that
the mapping H is of class (S+).
We are now ready to apply the degree theory of Browder [, ]. Then we have

dB
(
H(, ·),�, 

)
= dB(T + εJ ,�, ) = .

The last equality is based onTheorem  in [] because the operatorT +εJ is strictlymono-
tone and demicontinuous on� and satisfies condition (S+). On the other hand, it is shown
in (.) that

dB
(
H(, ·),�, 

)
= dB

(
T +C(�, ·) + εJ ,�, 

)
= .

Hence, in view of Theorem  in [], there exist t ∈ [, ] and x ∈ ∂� such that

Tx +C(t�,x) + εJx = .

It follows from the injectivity of T + εJ that t > . Consequently, if we let λε := t� and
xε := x, then we have λε ∈ (,∞) and Txε +C(λε ,xε) + εJxε = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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(b) Let {εn} be a sequence in (,∞) such that εn → . According to statement (a), there
exists a sequence {(λεn ,xεn )} in (,∞)× ∂� such that

Txεn +C(λεn ,xεn ) + εnJxεn = .

If we set xn := xεn and λn := λεn , it can be written in the form

Txn +C(λn,xn) + εnJxn = . (.)

Without loss of generality, we may suppose that

λn → λ, xn ⇀ x, and C(λn,xn) ⇀ c*, (.)

where λ ∈ [,∞], x ∈ X, and c* ∈ X*. Note that λ belongs to (,∞). In fact, if λ = ,
thenC(λn,xn) →  implies Txn → . Since T satisfies condition (Sq) on ∂�, we obtain that
xn → x ∈ ∂� and therefore Tx = , which contradicts the hypothesis that  /∈ T(∂�). If
λ = ∞, then (c) implies ‖C(λn,xn)‖ → ∞ and so ‖Txn‖ → ∞. As in (.), a similar argu-
ment proves that ‖Txn‖–Txn converges weakly to some nonzero vector, which contradicts
condition (T ()∞ ). Thus we have shown that λ ∈ (,∞).
For the next aim, we now show that

lim sup
n→∞

〈
C(λn,xn),xn – x

〉 ≤ . (.)

Assume that (.) is false. Then there exists a subsequence of {xn}, denoted again by {xn},
such that

lim
n→∞

〈
C(λn,xn),xn – x

〉
> .

Hence we obtain from (.) that

lim sup
n→∞

〈Txn,xn – x〉 < .

Noticing by (.) and (.) that Txn ⇀ –c*, we get

lim sup
n→∞

〈Txn,xn〉 < lim
n→∞〈Txn,x〉 =

〈
–c*,x

〉
. (.)

For every x ∈D(T), we have by the monotonicity of T

lim inf
n→∞ 〈Txn,xn〉 ≥ lim inf

n→∞
[〈Txn,x〉 + 〈Tx,xn – x〉]

=
〈
–c*,x

〉
+ 〈Tx,x – x〉,

which implies along with (.)

〈
–c* – Tx,x – x

〉
> . (.)

By the maximal monotonicity of T , we have x ∈ D(T) and Tx = –c*. Letting x = x in
(.), we get a contradiction. Therefore, (.) is true.

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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Since C(λn,xn) –C(λ,xn) → , it follows from (.) and

〈
C(λn,xn),xn – x

〉
=

〈
C(λn,xn) –C(λ,xn),xn – x

〉
+

〈
C(λ,xn),xn – x

〉

that

lim sup
n→∞

〈
C(λ,xn),xn – x

〉 ≤ .

Since C satisfies condition (S+) and λ ∈ (,∞), we have xn → x ∈ ∂�, which implies
C(λn,xn) ⇀ C(λ,x). Hence we obtain from (.) that Txn ⇀ –C(λ,x). By Lemma .,
we conclude that Tx +C(λ,x) = . This completes the proof. �

Remark . In the proof of Theorem ., the demicontinuity of T on� is needed to show
that H is of class (S+). This is guaranteed under an additional condition � ⊂ intD(T).
Actually, local boundedness of T on intD(T) implies the demicontinuity of T ; see, e.g., [].

3 Eigenvalue problemwith condition (S+)
In this section, we study a multiplicative eigenvalue problem as a special case of the im-
plicit eigenvalue problem in the previous section. As a key tool, we employ the Browder
degree for nonlinear operators of the formT + f withT maximalmonotone and f bounded
with condition (S+).
We give a variant of Corollary  in [] under normalized conditions.

Theorem . Let � be a bounded open set in X with  ∈ �. Let T : D(T) ⊂ X → X* be a
maximal monotone operator with  ∈ D(T) and T() =  such that T satisfies condition
(T ()∞ ) on D(T)∩ �. Assume that C :� → X* is a demicontinuous bounded operator which
satisfies condition (S+) and the two additional conditions:
(c) There is a positive numberN such that the weak sequential closure of the set

G =
{

Cx
‖Cx‖ : λ ≥N ,x ∈ �,‖Jx + Tx‖ ≤ M(λ)

}

does not contain zero vector, where

M(λ) = |λ| sup{‖Cx‖ : x ∈ �
}
.

(c) inf{‖Cx‖ : x ∈ �} is not equal to .
Then we have the following properties:
(a) For each ε > , there exists (λε ,xε) ∈ (,∞)× (D(T)∩ ∂�) such that

Txε + λεCxε + εJxε = .

(b) If  /∈ T(D(T)∩ ∂�) and T satisfies condition (Sq) on D(T)∩ ∂�, then the eigenvalue
problem

Tx + λCx = 

has a solution (λ,x) in (,∞)× (D(T)∩ ∂�).

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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Proof (a) Fix ε > . Let dB denote the Browder degree in the sense of []. We first claim
that there exists a number � in (,∞) such that

dB(T +�C + εJ ,�, ) = . (.)

Assume the contrary. As in the proof of (.), a similar argument establishes that for a
sequence {�n} in (,∞) with �n → ∞, there is a sequence {xn} in D(T)∩ � such that

Txn +�nCxn + εJxn = . (.)

This implies

‖Jxn + Txn‖ ≤ ∥∥( – ε)Jxn
∥∥ + ‖�nCxn‖ ≤ M(�n)

for sufficiently large n. By the boundedness of the sequence {‖Cxn‖–Cxn} in X*, we may
suppose that ‖Cxn‖–Cxn ⇀ h for some h ∈ X*. It follows from (c) and (.) that h �= 
and

Txn
‖Txn‖ ⇀ –h.

But (c) implies ‖Txn‖ → ∞, which contradicts condition (T ()∞ ). Hence assertion (.)
holds.
Now we consider a mapping H : [, ]× (D(T)∩ �) → X* given by

H(t,x) := Tx + εJx + t�Cx for (t,x) ∈ [, ]× (
D(T)∩ �

)
.

Using the normalization property of the Browder degree dB, e.g., Theorem  in [], we
have

dB
(
H(, ·),�, 

)
= dB(T + εJ ,�, ) = .

Moreover, (.) means that

dB
(
H(, ·),�, 

)
= dB(T + εJ +�C,�, ) = .

Note that T + εJ is maximal monotone and satisfies condition (S+). Hence, there are t ∈
[, ] and x ∈D(T)∩ ∂� such that

Tx + t�Cx + εJx = .

By the injectivity of the strictly monotone operator T + εJ , we know that t > . Conse-
quently, if we let λε := t� and xε := x, then λε ∈ (,∞) and Txε + λεCxε + εJxε = .
(b) Let {εn} be a sequence in (,∞) such that εn → . By (a), there exists a sequence

{(λn,xn)} in (,∞)× (D(T)∩ ∂�) such that

Txn + λnCxn + εnJxn = . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/72
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Wemay suppose that

λn → λ, xn ⇀ x, and Cxn ⇀ c*, (.)

where λ ∈ [,∞], x ∈ X, and c* ∈ X*. Note that λ belongs to (,∞). Indeed, if λ = ,
then it follows from Txn →  and condition (Sq) that xn → x ∈ ∂� and therefore x ∈
D(T) andTx = , which contradicts the hypothesis that  /∈ T(D(T)∩∂�). If λ = ∞, then
(c) implies ‖λnCxn‖ → ∞ and so ‖Txn‖ → ∞. But we can show as above that ‖Txn‖–Txn
converges weakly to some nonzero vector, which contradicts condition (T ()∞ ).
To prove that

lim sup
n→∞

〈λnCxn,xn – x〉 ≤ , (.)

we assume to the contrary that there exists a subsequence of {xn}, denoted again by {xn},
such that

lim
n→∞〈λnCxn,xn – x〉 > .

Hence we obtain from (.) that

lim sup
n→∞

〈Txn,xn – x〉 < .

Noticing by (.) and (.) that Txn ⇀ –λc*, we get

lim sup
n→∞

〈Txn,xn〉 < lim
n→∞〈Txn,x〉 =

〈
–λc*,x

〉
. (.)

For every x ∈D(T), we have by the monotonicity of T

lim inf
n→∞ 〈Txn,xn〉 ≥ 〈

–λc*,x
〉
+ 〈Tx,x – x〉,

which implies along with (.)

〈
–λc* – Tx,x – x

〉
> .

By the maximal monotonicity of T , we get a contradiction. Therefore, (.) holds.
It follows from (.) and

〈λnCxn,xn – x〉 = (λn – λ)〈Cxn,xn – x〉 + 〈λCxn,xn – x〉

that

λ lim sup
n→∞

〈Cxn,xn – x〉 ≤ .

Since C satisfies condition (S+) and is demicontinuous, we have xn → x ∈ ∂�, which
implies Cxn ⇀ Cx. Hence we obtain from (.) that Txn ⇀ –λCx. By Lemma ., we
conclude that x ∈D(T)∩ ∂� and Tx + λCx = , what we wanted to prove. �
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Remark . We point out that in Theorem ., the condition � ⊂ intD(T) is not neces-
sary to be assumed.

4 Densely defined perturbations
This section is devoted to the eigenvalue problem for densely defined quasibounded per-
turbations ofmaximalmonotone operators in reflexive Banach spaces. To do this, we apply
the Kartsatos-Skrypnik degree for densely defined (S̃+)-perturbations of maximal mono-
tone operators developed in [].
Recall that an operator C : D(C) ⊂ X → X* is quasibounded if for every S >  there

exists a constant K(S) >  such that for all u ∈D(C) with ‖u‖ ≤ S and 〈Cu,u〉 ≤ , we have
‖Cu‖ ≤ K(S).
As in Section , we employ a normalization method to obtain an eigenvalue result for

generalized pseudomonotone operators.

Theorem . Let � be a bounded open set in X with  ∈ � and L be a dense subspace
of X. Let T :D(T)⊂ X → X* be amaximal monotone operator with  ∈D(T) and T() = 
which satisfies condition (T ()∞ ) on D(T)∩ �. Assume that C :D(C) ⊂ X → X* is a general-
ized pseudomonotone quasibounded operator with L ⊂D(C). Furthermore, assume that
(h) There exists a positive numberN such that the weak sequential closure of the set

G =
{

Cx
‖Cx‖ : λ ≥N ,x ∈ D(C)∩ �,‖Jψx + Tx‖ ≤ M(λ)

}

does not contain zero vector, where

M(λ) = |λ| sup{‖Cx‖ : x ∈D(C)∩ �
}
.

(h) inf{‖Cx‖ : x ∈D(C)∩ �} is not equal to .
(h) For every F ∈F (L) and v ∈ L, the function c(F , v) : F →R, c(F , v)(u) = 〈Cu, v〉, is

continuous on F , where F (L) denotes the set of all finite-dimensional subspaces of L.
Then the following statements hold:
(a) For each ε > , there exists a point (λε ,xε) in (,∞)× (D(T +C)∩ ∂�) such that

Txε + λεCxε + εJψxε = .

Here D(T +C) denotes the intersection of D(T) and D(C).
(b) If  /∈ T(D(T)∩ ∂�) and T satisfies condition (S) on D(T)∩ ∂�, then the eigenvalue

problem

Tx + λCx = 

has a solution (λ,x) in (,∞)× (D(T +C)∩ ∂�).

Proof (a)Wewill apply the Kartsatos-Skrypnik degree dS given in []. Let ε be an arbitrary
positive number. Since T satisfies condition (T ()∞ ) on D(T)∩� and Jψ is bounded, we can
prove as in Theorem . that under hypotheses (h) and (h), there is a positive number
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� such that

dS(T +�C + εJψ ,�, ) = . (.)

For t ∈ [, ], we set Tt := T and Ct := t�C + εJψ , where D(Tt) and D(Ct) denote the do-
main of Tt and Ct , respectively. In this case, D(Tt) = D(T) for t ∈ [, ], D(C) = X for
t =  andD(Ct) =D(C) for t ∈ (, ]. Notice that the operators C = εJψ and C = �C + εJψ
satisfy condition (S̃+), based on the facts that C is generalized pseudomonotone and Jψ is
bounded and satisfies condition (S+).
In the sense of Definition . in [], we check the following conditions on two families

{Tt} and {Ct}. In fact, conditions on {Tt} are obviously satisfied, with Tt independent of
t, due to maximal monotonicity of T ,  ∈D(T), and T() = .
(ct) Since Jψ is monotone and bounded, it follows from the quasiboundedness of C that

{Ct} is uniformly quasibounded.
(ct) Let {tn} be any sequence in [, ] and {un} be any sequence in L such that tn → t,

un ⇀ u, Ctnun ⇀ h* and

lim sup
n→∞

〈
Ctnun,un – u

〉 ≤ ,
〈
Ctnun,un

〉 ≤ , (.)

where t ∈ [, ], u ∈ X, and h* ∈ X*. If t = , then the second inequality in(.) implies

εψ
(‖un‖)‖un‖ = ε〈Jψun,un〉 ≤ –tn�〈Cun,un〉 → 

and hence un → , u =  ∈ D(C), and Cu = h*. Now let t > . From the first inequality
in (.) and the following inequality

〈
Ctnun,un – u

〉 ≥ tn�〈Cun,un – u〉 + ε〈Jψu,un – u〉,

we obtain that

lim sup
n→∞

〈Cun,un – u〉 ≤ . (.)

In view of Ctnun ⇀ h*, there exists a subsequence of {un}, denoted again by {un}, such that
Cun ⇀ h* and Jψun ⇀ h* for some h*,h* ∈ X*. Since C is generalized pseudomonotone,
we obtain from (.) that u ∈D(C), Cu = h*, and 〈Cun,un〉 → 〈Cu,u〉. Thus,

lim
n→∞〈Cun,un – u〉 = 〈Cu,u〉 –

〈
h*,u

〉
= .

Hence it follows from the first inequality in (.) that

ε lim sup
n→∞

〈Jψun,un – u〉 = lim sup
n→∞

〈tn�Cun + εJψun,un – u〉 ≤ .

Since Jψ satisfies condition (S+), we have un → u and so Jψun → Jψu. Consequently,
u ∈D(Ct ) and Ctu = t�h* + εh* = h*. Therefore, condition (ct) is satisfied.
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(ct) For every F ∈ F (L) and v ∈ L, the function c̃(F , v) : [, ] × F → R, c̃(F , v)(t,u) =
〈Ctu, v〉, is continuous on [, ]×F because c(F , v) is continuous on F and Jψ is continuous
on X.
We can now consider a mapping H : [, ]× (D(T +C)∩ �)→ X* given by

H(t,x) := Tx + t�Cx + εJψx.

By Theorem . in [] and (.), we have

dS
(
H(, ·),�, 

)
= dS(T + εJψ ,�, ) = 

and

dS
(
H(, ·),�, 

)
= dS(T +�C + εJψ ,�, ) = .

According to Theorem . in [], there exist t ∈ [, ] and x ∈D(T +C)∩ ∂� such that

Tx + t�Cx + εJψx = .

The injectivity of T + εJψ implies that t > . If we let λε := t� and xε := x, then the
conclusion follows.
(b) Let {εn} be a sequence in (,∞) such that εn → . According to (a), there are se-

quences {λn} in (,∞) and {xn} in D(T +C)∩ ∂� such that

Txn + λnCxn + εnJψxn = . (.)

Then it follows from the monotonicity of T with T() =  that

〈Cxn,xn〉 ≤ –
εn

λn
ψ

(‖xn‖)‖xn‖ ≤ .

Hence the quasiboundedness of C implies that {Cxn} is bounded. Without loss of gener-
ality, we may suppose that

λn → λ, xn ⇀ x, and Cxn ⇀ c*, (.)

where λ ∈ [,∞], x ∈ X, and c* ∈ X*. Since T satisfies conditions (Sq) and (T ()∞ ) and since
 /∈ T(D(T)∩ ∂�), it is easily verified that λ belongs to (,∞).
As in the proof of Theorem ., we can show that

lim sup
n→∞

〈λnCxn,xn – x〉 ≤ . (.)

Then it follows from (.) and λn → λ that

lim sup
n→∞

〈Cxn,xn – x〉 ≤ .
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Since C is generalized pseudomonotone, we have by (.)

x ∈ D(C), Cx = c*, and lim
n→∞〈Cxn,xn〉 = 〈Cx,x〉.

Hence we obtain from (.) that Txn ⇀ –λCx and

lim
n→∞〈Txn,xn〉 = lim

n→∞–λn〈Cxn,xn〉 = 〈–λCx,x〉.

Since T satisfies condition (S) on D(T) ∩ ∂�, we have xn → x. By the maximal mono-
tonicity of T , we conclude that x ∈ D(T + C) ∩ ∂� and Tx + λCx = . This completes
the proof. �

As a consequence of Theorem ., we get another eigenvalue result for densely defined
operators satisfying condition (S̃+) in comparison with Theorem  in [].

Corollary . Let T , �, and L be as in Theorem .. Assume that C : D(C) ⊂ X → X* is
a quasibounded operator with L ⊂D(C) and satisfies condition (S̃+). Furthermore, assume
that conditions (h), (h), and (h) in Theorem . are satisfied. Then:
(a) For each ε > , there exists (λε ,xε) ∈ (,∞)× (D(T +C)∩ ∂�) such that

Txε + λεCxε + εJψxε = .
(b) If  /∈ T(D(T)∩ ∂�) and T satisfies condition (Sq) on D(T)∩ ∂�, then there exists

(λ,x) ∈ (,∞)× (D(T +C)∩ ∂�) such that Tx + λCx = .

Proof Statement (a) follows from part (a) of Theorem . by noting that if C satisfies con-
dition (S̃+), then C is generalized pseudomonotone.
(b) Let {εn} be a sequence in (,∞) such that εn → . In view of (a), we can choose a

sequence {(λn,xn)} in (,∞)× (D(T +C)∩ ∂�) such that

Txn + λnCxn + εnJψxn = .

We may suppose that

λn → λ, xn ⇀ x, and Cxn ⇀ c*,

where λ ∈ [,∞], x ∈ X, and c* ∈ X*. Obviously, λ ∈ (,∞). As before, the same argu-
ment shows that

lim sup
n→∞

〈Cxn,xn – x〉 ≤ .

Since C satisfies condition (S̃+), we have

xn → x, x ∈D(C), and Cx = c*.

Combining this with Txn ⇀ –λCx, we obtain that x ∈D(T +C)∩∂� and Tx +λCx =
 as required. �

Remark . When C satisfies condition (S̃+), condition (S) on T appearing in Theo-
rem . may be replaced by weaker condition (Sq); see the proof of Theorem ..
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