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Abstract
In this paper, we show that the parametric general nonconvex variational inequalities
are equivalent to the parametric Wiener-Hopf equations. We use this alternative
equivalent formulation to study the sensitivity analysis for the nonconvex variational
inequalities without assuming the differentiability of the given data. Our results can
be considered as a significant extension of previously known results for the variational
inequalities.
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1 Introduction
Variational inequalities theory, whichwas introduced by Stampacchia [], provides uswith
a simple, natural, general and unified framework to study a wide class of problems arising
in pure and applied sciences; see [–]. It is well known that the behavior of such problem
solutions as a result of changes in the problem data is always of concern. In recent years,
much attention has been given to study the sensitivity analysis of variational inequalities.
We remark that sensitivity analysis is important for several reasons. First, since estimating
problem data often introduces measurement errors, sensitivity analysis helps in identify-
ing sensitive parameters that should be obtained with relatively high accuracy. Second,
sensitivity analysis may help to predict the future changes of the equilibrium as a result of
changes in the governing systems. Third, sensitivity analysis provides useful information
for designing or planning various equilibrium systems. Furthermore, from mathematical
and engineering points of view, sensitivity analysis can provide new insights regarding
problems being studied and can stimulate new ideas for problem solving. Over the last
decade, there has been increasing interest in studying the sensitivity analysis of variational
inequalities and variational inclusions. Sensitivity analysis for variational inclusions and
inequalities has been studied extensively; see [, , –, , , , –, , –].
The techniques suggested so far vary with the problem being studied. Dafermos [] used
the fixed-point formulation to consider the sensitivity analysis of the classical variational
inequalities. This technique has been modified and extended by many authors for study-
ing the sensitivity analysis of other classes of variational inequalities and variational inclu-
sions. It is known [] that the variational inequalities are equivalent to the Wiener-Hopf
equations. This alternative equivalent formulation has been used by Noor [] and Noor
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et al. [, ] to develop the sensitivity analysis framework for various classes of (quasi)
variational inequalities.
Noor [] introduced and considered a new class of variational inequalities on the uni-

formly prox-regular sets, which are called the general nonconvex variational inequalities.
We remark that the uniformly prox-regular sets are nonconvex and include the convex
sets as a special case; see [, ]. In this paper, we develop the general framework of sensi-
tivity analysis for the general nonconvex variational inequalities. For this purpose, we first
establish the equivalence between parametric general nonconvex variational inequalities
and the parametricWiener-Hopf equations by using the projection technique. This fixed-
point formulation is obtained by a suitable and appropriate rearrangement of theWiener-
Hopf equations. We would like to point out that the Wiener-Hopf equations technique is
quite general, unified, flexible and provides us with a new approach to study the sensitivity
analysis of nonconvex variational inequalities and related optimization problems. We use
this equivalence to develop sensitivity analysis for the nonconvex variational inequalities
without assuming the differentiability of the given data. Our results can be considered
as significant extensions of the results of Dafermos [], Moudafi and Noor [], Noor and
Noor [, ] and others in this area. The ideas and techniques of this papermay stimulate
further research in this field.

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖
respectively. Let K be a nonempty and convex set in H .
We, first of all, recall the following well-known concepts from nonlinear convex analysis

and nonsmooth analysis [, ].

Definition . The proximal normal cone of K at u ∈H is given by

NP
K (u) :=

{
ξ ∈H : u ∈ PK [u + αξ ]

}
,

where α >  is a constant and

PK [u] =
{
u∗ ∈ K : dK (u) =

∥∥u – u∗∥∥}
.

Here dK (·) is the usual distance function to the subset K , that is,

dK (u) = inf
v∈K ‖v – u‖.

The proximal normal cone NP
K (u) has the following characterization.

Lemma . Let K be a nonempty, closed and convex subset in H . Then ζ ∈ NP
K (u) if and

only if there exists a constant α >  such that

〈ζ , v – u〉 ≤ α‖v – u‖, ∀v ∈ K .

Definition . The Clarke normal cone, denoted by NC
K (u), is defined as

NC
K (u) = co

[
NP

K (u)
]
,
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where comeans the closure of the convex hull. ClearlyNP
K (u) ⊂NC

K (u), but the converse is
not true. Note that NP

K (u) is always closed and convex, whereas NC
K (u) is convex, but may

not be closed [, ].

Poliquin et al. [] and Clarke et al. [] introduced and studied a new class of nonconvex
sets, which are called uniformly prox-regular sets. This class of uniformly prox-regular
sets has played an important part in many nonconvex applications such as optimization,
dynamic systems and differential inclusions.

Definition . For a given r ∈ (,∞], a subset Kr is said to be normalized uniformly
r-prox-regular if and only if every nonzero proximal normal to Kr can be realized by an
r-ball, that is, ∀u ∈ Kr and  �= ξ ∈NP

Kr (u), ‖ξ‖ = , one has

〈ξ , v – u〉 ≤ (/r)‖v – u‖, ∀v ∈ K .

It is clear that the class of normalized uniformly prox-regular sets is sufficiently large to
include the class of convex sets, p-convex sets,C, submanifolds (possibly with boundary)
of H , the images under a C, diffeomorphism of convex sets and many other nonconvex
sets; see [, ]. It is clear that if r = ∞, then uniformly prox-regularity ofKr is equivalent to
the convexity of K . It is known that if Kr is a uniformly prox-regular set, then the proximal
normal cone NP

Kr (u) is closed as a set-valued mapping. For the sake of simplicity, we take
γ = 

r . It is clear that if r = ∞, then γ = .

For given nonlinear operators T , h, we consider the problem of finding u ∈ H : h(u) ∈ Kr

such that

〈
ρTu + h(u) – u, v – h(u)

〉
+ γ

∥∥v – h(u)
∥∥ ≥ , ∀v ∈ Kr , ()

where ρ >  and γ >  are constants. The inequality of type () is called the general non-
convex variational inequality; see Noor [].
We now discuss some special cases of ().
(I) If h ≡ I , the identity operator, then problem () is equivalent to finding u ∈ Kr such

that

〈ρTu, v – u〉 + γ ‖v – u‖ ≥ , ∀v ∈ Kr , ()

which is known as the nonconvex variational inequality, studied and introduced by Noor
[].
(II)We note that if Kr ≡ K , the convex set inH , then problem () is equivalent to finding

u ∈ H : h(u) ∈ K such that

〈
ρTu + h(u) – u, v – h(u)

〉 ≥ , ∀v ∈ K . ()

The inequality of type () is called the general variational inequality, which was intro-
duced and studied by Noor [].
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(III) If h(u) = u, then problem () is equivalent to finding u ∈H : h(u) ∈ Kr such that

〈
T

(
h(u)

)
, v – h(u) + γ

∥∥v – h(u)
∥∥〉 ≥ , ∀v ∈ Kr , ()

which is also called the general nonconvex variational inequality.
(IV) If Kr ≡ K , the convex set in H , then problem () is equivalent to finding u ∈ H :

h(u) ∈ K such that

〈
T

(
h(u)

)
, v – h(u)

〉 ≥ , ∀v ∈ K , ()

which was introduced and studied by Noor [] in . It was shown [] that the min-
imum of a differentiable nonconvex function can be characterized by general variational
inequality (). See also [] for its applications in applied sciences.
(V) If h ≡ I , the identity operator, then problem () is equivalent to finding u ∈ K such

that

〈Tu, v – u〉 ≥ , v ∈ K , ()

which is known as the classical variational inequality introduced and studied by Stampac-
chia [] in . It turned out that a number of unrelated obstacle, free, moving, unilateral
and equilibrium problems arising in various branches of pure and applied sciences can be
studied via variational inequalities; see [–] and the references therein.
We now recall the well-known proposition which summarizes some important proper-

ties of the uniform prox-regular sets.

Lemma . Let K be a nonempty closed subset of H , r ∈ (,∞] and set Kr = {u ∈ H :
d(u,K) < r}. If Kr is uniformly prox-regular, then

(i) ∀u ∈ Kr , PKr (u) �= ∅.
(ii) ∀r′ ∈ (, r), PKr is Lipschitz continuous with constant δ = r

r–r′ on Kr′ .
(iii) The proximal normal cone is closed as a set-valued mapping.

We now consider the problem of solving the nonlinear Wiener-Hopf equations. To be
more precise, let QKr = I – h–PKr , where PKr is the projection operator, h– is the inverse
of the nonlinear operator h and I is the identity operator. For given nonlinear operators
T , h, consider the problem of finding z ∈H such that

TPKr z + ρ–QKrz = . ()

The equations of type () are called general nonconvexWiener-Hopf equations. Note that
if r = ∞ and h = I , the identity operator, then the nonlinearWiener-Hopf equations are ex-
actly the same Wiener-Hopf equations associated with variational inequalities (), which
were introduced and studied by Shi []. This shows that the original Wiener-Hopf equa-
tions are the special case of nonlinearWiener-Hopf equations (). TheWiener-Hopf equa-
tions technique has been used to study and develop several iterative methods for solving
variational inequalities and related optimization problems; see [–, ].
Noor [] has established the equivalence between general nonconvex variational in-

equality () and the fixed point problem using the projection operator technique. This
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alternative formulation is used to discuss the existence of a solution of problem () and
to suggest and analyze an iterative method for solving general nonconvex variational in-
equality (). For the sake of completeness, we state this result.

Lemma. [] u ∈H : h(u) ∈ Kr is a solution of () if and only if u ∈H : h(u) ∈ Kr satisfies
the relation

h(u) = PKr [u – ρTu], ()

where PKr is the projection of H onto the uniformly prox-regular set Kr .

Lemma . implies that general nonconvex variational inequality () is equivalent to
fixed point problem (). This alternative equivalent formulation is very useful from the
numerical and theoretical point of view.
Wenow consider the parametric versions of problems () and (). To formulate the prob-

lem, letM be an open subset of H in which the parameter λ takes values. Let T(u,λ) be a
given operator defined on H ×H ×M and take value in H ×H .
From now onward, we denote Tλ(·)≡ T(·,λ) unless otherwise specified.
The parametric general nonconvex variational inequality problem is to find (u,λ) ∈ H ×

M such that

〈
ρTλu + h(u) – u, v – h(u)

〉 ≥ , ∀v ∈ Kr . ()

We also assume that for some λ ∈M problem () has a unique solution u.
Related to parametric nonconvex variational inequality (), we consider the parametric

Wiener-Hopf equations. We consider the problem of finding (z,λ) ∈H ×M such that

TλPKrz + ρ–QKrz = , ()

where ρ >  is a constant and QKrz is defined on the set of (z,λ) with λ ∈ M and takes
values in H . The equations of type () are called the parametric Wiener-Hopf equations.
One can establish the equivalence between problems () and () by using the projection

operator technique; see Noor [, , ].

Lemma. Parametric nonconvex variational inequality ()has a solution (u,λ) ∈H×M
if and only if parametric Wiener-Hopf equations () have a solution (z,λ) ∈H ×M,where

h(u) = PKrz, ()

z = u – ρTλ(u). ()

From Lemma ., we see that parametric general nonconvex variational inequalities ()
and parametric Wiener-Hopf equations () are equivalent. We use this equivalence to
study the sensitivity analysis of the general nonconvex variational inequalities.We assume
that for some λ ∈ M problem () has a solution z and X is a closure of a ball inH centered
at z. We want to investigate those conditions under which, for each λ in a neighborhood
of λ, problem () has a unique solution z(λ) near z and the function z(λ) is (Lipschitz)
continuous and differentiable.
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Definition . Let Tλ(·) be an operator on X ×M. Then the operator Tλ(·) is said to be:
(a) Locally strongly monotone if there exists a constant α >  such that

〈
Tλ(u) – Tλ(v),u – v

〉 ≥ α‖u – v‖, ∀λ ∈M,u, v ∈ X.

(b) Locally Lipschitz continuous if there exists a constant β >  such that

∥∥Tλ(u) – Tλ(v)
∥∥ ≤ β‖u – v‖, ∀λ ∈M,u, v ∈ X.

3 Main results
In this section, we derive the main results of this paper.
We consider the case when the solutions of parametric Wiener-Hopf equations () lie

in the interior of X. Following the ideas of Noor [, , ], we consider the map

Fλ(z) = PKrz – ρTλ(u), ∀(z,λ) ∈ X ×M

= u – ρTλ(u), ()

where

h(u) = PKrz. ()

We have to show that the map Fλ(z) has a fixed point, which is a solution of parametric
Wiener-Hopf equations (). First of all, we prove that the map Fλ(z), defined by (), is a
contraction map with respect to z uniformly in λ ∈ M, using essentially the technique of
Noor [, , ].

Lemma . Let PKr be a Lipschitz continuous operator with constant δ = r
r–r′ . Let Tλ(·)

be locally strongly monotone with constant α >  and locally Lipschitz continuous with
constant β > . If the operator g is strongly monotone with constant σ >  and Lipschitz
continuous with constant δ >  respectively then, for all z, z ∈ X and λ ∈M, we have

∥∥Fλ(z) – Fλ(z)
∥∥ ≤ θ‖z – z‖,

where

θ = δ
√
 – αρ + βρ + k, ()

k =
√
 – σ + δ ()

for

∣∣∣∣ρ –
α

β

∣∣∣∣ <
√

δα – β(δ – (i – k)))
δβ , δα > β

√
δ – ( – k),

k =
√
 – σ + δ < .

()
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Proof For all z, z ∈ X, λ ∈M, we have from ()

∥∥Fλ(z) – Fλ(z)
∥∥ =

∥∥u – u – ρ
(
Tλ(u) – Tλ(u)

)∥∥. ()

Using the strong monotonicity and Lipschitz continuity of the operator Tλ, we have

∥∥u – u – ρ
(
Tλ(u) – Tλ(u)

)∥∥

≤ ‖u – u‖ – ρ
〈
Tλ(u) – Tλ(u),u – u

〉
+ ρ∥∥Tλ(u) – Tλ(u)

∥∥

≤ (
 – ρα + ρβ)‖u – u‖, ()

where α >  is the strong monotonicity constant and β >  is the Lipschitz continuity
constant of the operator Tλ respectively.
From () and () we have

∥∥Fλ(z) – Fλ(z)
∥∥ ≤ √

 – αρ + βρ‖u – u‖. ()

Also from () and the Lipschitz continuity of the projection operator PKr with constant
δ we have

‖un – u‖ =
∥∥un – u –

(
h(un) – h(u)

)∥∥ + ‖PKrzn – PKrz‖
= k‖un – u‖ + δ‖zn – z‖,

from which we have

‖un – u‖ ≤ δ

 – k
‖zn – z‖. ()

Combining (), () and using (), we have

∥∥Fλ(z) – Fλ(z)
∥∥ ≤ ( – αn)‖zn – z‖ + αnδ

√
 – ρα + βρ

 – k
‖zn – z‖

= ( – αn)‖zn – z‖ + αnθ‖zn – z‖.

From () it follows that θ <  and consequently the map Fλ(z) defined by () is a contrac-
tion map and has a fixed point z(λ), which is the solution of Wiener-Hopf equation ().

�

Remark . From Lemma . we see that the map Fλ(z) defined by () has a unique fixed
point z(λ), that is, z(λ) = Fλ(z). Also, by assumption, the function z for λ = λ is a solution of
parametric Wiener-Hopf equations (). Again, using Lemma ., we see that z for λ = λ

is a fixed point of Fλ(z) and it is also a fixed point of Fλ(z). Consequently, we conclude that

z(λ) = z = Fλ

(
z(λ)

)
.

Using Lemma ., we can prove the continuity of the solution z(λ) of parametricWiener-
Hopf equations () using the technique of Noor [, , , ]. However, for the sake of
completeness and to convey an idea of the techniques involved, we give its proof.
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Lemma . Assume that the operator Tλ(·) is locally Lipschitz continuous with respect
to the parameter λ. If the operator Tλ(·) is Locally Lipschitz continuous and the map
λ → PKrλz is continuous (or Lipschitz continuous), then the function z(λ) satisfying () is
(Lipschitz) continuous at λ = λ.

Proof For all λ ∈M, invoking Lemma . and the triangle inequality, we have

∥∥z(λ) – z(λ̄)
∥∥ ≤ ∥∥Fλ

(
z(λ)

)
– Fλ̄

(
z(λ̄)

)∥∥ +
∥∥Fλ

(
z(λ̄)

)
– Fλ̄

(
z(λ̄)

)∥∥

≤ θ
∥∥z(λ) – z(λ̄)

∥∥ +
∥∥Fλ

(
z(λ̄)

)
– Fλ̄

(
z(λ̄)

)∥∥. ()

From () and the fact that the operator Tλ is Lipschitz continuous with respect to the
parameter λ, we have

∥∥Fλ

(
z(λ̄)

)
– Fλ̄

(
z(λ̄)

)∥∥ =
∥∥u(λ̄) – u(λ̄) + ρ

(
Tλ

(
u(λ̄),u(λ̄)

)
– Tλ̄

(
u(λ̄),u(λ̄)

))∥∥

≤ ρμ‖λ – λ̄‖. ()

Combining () and (), we obtain

∥∥z(λ) – z(λ̄)
∥∥ ≤ ρμ

 – θ
‖λ – λ̄‖ for all λ, λ̄ ∈M,

from which the required result follows. �

We now state and prove the main result of this paper, which is the motivation our next
result.

Theorem . Let u be a solution of parametric general variational inequality () and z
be a solution of parametric Wiener-Hopf equations () for λ = λ. Let Tλ(u) be the locally
strongly monotone Lipschitz continuous operator for all u, v ∈ X. If the map λ → PKr is
(Lipschitz) continuous at λ = λ, then there exists a neighborhood N ⊂ M of λ such that for
λ ∈ N parametric Wiener-Hopf equations () have a unique solution z(λ) in the interior
of X, z(λ) = z and z(λ) is (Lipschitz) continuous at λ = λ.

Proof Its proof follows from Lemmas ., . and Remark .. �

Conclusion
In this paper, we have shown that the parametric general nonconvex variational inequali-
ties are equivalent to the parametric nonconvexWiener-Hopf equations. These equivalent
formulations have been used to develop the general framework of the sensitivity analysis
of the general nonconvex variational inequalities without assuming the differentiability of
the given data. We expect that the ideas and techniques of this paper will motivate and in-
spire the interested readers to explore their novel and other applications in various fields.
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