CORE

Fixed point of set-valued graph contractive mappings

Ismat Beg ${ }^{1 *}$ and Asma Rashid Butt ${ }^{2}$

*Correspondence: begismat@yahoo.com
${ }^{1}$ Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore, Pakistan Full list of author information is available at the end of the article

Abstract

Let (X, d) be a metric space and let F, H be two set-valued mappings on X. We obtained sufficient conditions for the existence of a common fixed point of the mappings F, H in the metric space X endowed with a graph G such that the set of vertices of $G, V(G)=X$ and the set of edges of $G, E(G) \subseteq X \times X$. MSC: Primary 47H10; secondary 47H04; 47H07; 54C60; 54H25

Keywords: fixed point; directed graph; metric space; set-valued mapping

1 Introduction and preliminaries

Edelstein [1] generalized classical Banach's contraction mapping principle and Nadler [2] proved Banach's fixed point theorem for set-valued mappings. Recently several extensions of Nadler's theorem in different directions were obtained; see [3-15]. Beg and Azam [5] extended Edelstein's theorem by considering a pair of set-valued mappings with a general contractive condition. The aim of this paper is to study the existence of common fixed points for set-valued graph contractive mappings in metric spaces endowed with a graph G. Our results improve/generalize $[1,2,16]$ and several other known results in the literature.

Let (X, d) be a complete metric space and let $C B(X)$ be a class of all nonempty closed and bounded subsets of X. For $A, B \in C B(X)$, let

$$
D(A, B):=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\},
$$

where

$$
d(a, B):=\inf _{b \in B} d(a, b) .
$$

Mapping D is said to be a Hausdorff metric induced by d.
Definition 1.1 Let $F: X \rightarrow X$ be a set-valued mapping, i.e., $X \ni x \mapsto F x$ is a subset of X. A point $x \in X$ is said to be a fixed point of the set-valued mapping F if $x \in F x$.

Definition 1.2 A metric space (X, d) is called a ε-chainable metric space for some $\varepsilon>0$ if given $x, y \in X$, there is $n \in N$ and a sequence $\left(x_{i}\right)_{i=0}^{n}$ such that

$$
x_{0}=x, \quad x_{n}=y \quad \text { and } \quad d\left(x_{i-1}, x_{i}\right)<\varepsilon \quad \text { for } i=1, \ldots, n .
$$

Let Fix $F:=\{x \in X: x \in F x\}$ denote the set of fixed points of the mapping F.

Definition 1.3 Let (X, d) be a metric space, $\varepsilon>0,0 \leq \kappa<1$ and $x, y \in X$. A mapping f : $X \rightarrow X$ is called (ε, κ) uniformly locally contractive if $0<d(x, y)<\varepsilon \Rightarrow d(f x, f y)<\kappa d(x, y)$.

The following significant generalization of Banach's contraction principle [17, Theorem 2.1] was obtained by Edelstein [1].

Theorem 1.4 [1] Let (X, d) be a ε-chainable complete metric space. Iff $: X \rightarrow X$ is a (ε, κ) uniformly locally contractive mapping, then f has a unique fixed point.

Afterwards, in 1969, Nadler [2] proved a set-valued extension of Banach's theorem and obtained the following result.

Theorem 1.5 [2] Let (X, d) be a complete metric space and $F: X \rightarrow C B(X)$. If there exists $\kappa \in(0,1)$ such that

$$
D(F x, F y) \leq \kappa d(x, y) \quad \text { for all } x, y \in X
$$

then F has a fixed point in X.

Nadler [2] also extended Edelstein's theorem for set-valued mappings.

Theorem 1.6 [2] Let (X, d) be a ε-chainable complete metric space for some $\varepsilon>0$ and let $F: X \rightarrow C(X)$ be a set-valued mapping such that $F x$ is a nonempty compact subset of X. If F satisfies the following condition:

$$
x, y \in X \quad \text { and } \quad 0<d(x, y)<\varepsilon \quad \Rightarrow \quad D(F x, F y)<\kappa d(x, y),
$$

then F has a fixed point.

Consider a directed graph G such that the set of its vertices coincides with X (i.e., $V(G):=$ $X)$ and the set of its edges $E(G):=\{(x, y):(x, y) \in X \times X, x \neq y\}$. We assume that G has no parallel edges and weighted graph by assigning to each edge the distance between the vertices; for details about definitions in graph theory, see [18].
We can identify G as $(V(G), E(G)) . G^{-1}$ denotes the conversion of a graph G, the graph obtained from G by reversing the direction of its edges. \widetilde{G} denotes the undirected graph obtained from G by ignoring the direction of edges of G. We consider \widetilde{G} as a directed graph for which the set if its edges is symmetric, thus we have

$$
E(\widetilde{G}):=E(G) \cup E\left(G^{-1}\right)
$$

Definition 1.7 A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$ and $E(H) \subseteq$ $E(G)$ and for any edge $(x, y) \in E(H), x, y \in V(H)$.

Definition 1.8 Let x and y be vertices in a graph G. A path in G from x to y of length n $(n \in N \cup\{0\})$ is a sequence $\left(x_{i}\right)_{i=0}^{n}$ of $n+1$ vertices such that $x_{0}=x, x_{n}=y$ and $\left(x_{i-1}, x_{i}\right) \in$ $E(G)$ for $i=1,2, \ldots, n$.

Definition 1.9 The number of edges in G constituting the path is called the length of the path.

Definition 1.10 A graph G is connected if there is a path between any two vertices of G.

If a graph G is not connected, then it is called disconnected. Moreover, G is weakly connected if \widetilde{G} is connected.

Assume that G is such that $E(G)$ is symmetric, and x is a vertex in G, then the subgraph G_{x} consisting of all edges and vertices, which are contained in some path in G beginning at x, is called the component of G containing x. In this case the equivalence class $[x]_{G}$ defined on $V(G)$ by the rule $R(u R v$ if there is a path from u to $v)$ is such that $V\left(G_{x}\right)=[x]_{G}$.
Property A: For any sequence $\left(x_{n}\right)_{n \in N}$ in X, if $x_{n} \rightarrow x$ and $\left(x_{n}, x_{n+1}\right) \in E(G)$ for $n \in N$, then $\left(x_{n}, x\right) \in E(G)$.

Definition 1.11 Let (X, d) be a metric space and $F, H: X \rightarrow C B(X)$. The mappings F, H are said to be graph contractive if there exists $\kappa \in(0,1)$ such that

$$
(x \neq y), \quad(x, y) \in E(G) \quad \Rightarrow \quad D(F x, H y)<\kappa d(x, y),
$$

and if $u \in F x$ and $v \in H y$ are such that

$$
d(u, v)<d(x, y),
$$

then $(u, v) \in E(G)$.

Definition 1.12 A partial order is a binary relation \preceq over a set X which satisfies the following conditions:

1. $x \preceq x$ (reflexivity);
2. if $x \preceq y$ and $y \preceq x$, then $x=y$ (antisymmetry);
3. if $x \leq y$ and $y \preceq z$, then $x \preceq z$ (transitivity);
for all x, y and z in X.

A set with a partial order \preceq is called a partially ordered set.
Let (X, \preceq) be a partially ordered set and $x, y \in X$. Elements x and y are said to be comparable elements of X if either $x \leq y$ or $y \preceq x$.

Let \preceq be a partial order in X. Define the graph $G:=G_{1}$ by

$$
E\left(G_{1}\right):=\{(x, y) \in X \times X: x \preceq y, x \neq y\},
$$

and $G:=G_{2}$ by

$$
E\left(G_{2}\right):=\{(x, y) \in X \times X: x \leq y \vee y \leq x, x \neq y\} .
$$

The class of G_{1}-contractive mappings was considered in [19] and that of G_{2}-contractive mappings in [20].

The weak connectivity of G_{1} or G_{2} means, given $x, y \in X$, there is a sequence $\left(x_{i}\right)_{i=0}^{n}$ such that $x_{0}=x, x_{n}=y$ and for all $i=1, \ldots, n, x_{i-1}$ and x_{i} are comparable.

We shall make use of the following lemmas due to Nadler [2], Assad and Kirk [21] in the proof of our results in next section.

Lemma 1.13 If $A, B \in C B(X)$ with $D(A, B)<\epsilon$, then for each $a \in A$ there exists an element $b \in B$ such that $d(a, b)<\epsilon$.

Lemma 1.14 Let $\left\{A_{n}\right\}$ be a sequence in $C B(X)$ and $\lim _{n \rightarrow \infty} D\left(A_{n}, A\right)=0$ for $A \in C B(X)$. If $x_{n} \in A_{n}$ and $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$, then $x \in A$.

2 Common fixed point

We begin with the following theorem that gives the existence of a common fixed point (not necessarily unique) in metric spaces endowed with a graph for the set-valued mappings. Further, we assume that (X, d) is a complete metric space and G is a directed graph such that $E(G)$ is symmetric.

Theorem 2.1 Let $F, H: X \rightarrow C B(X)$ be graph contractive mappings and let the triple (X, d, G) have the property A. Set $X_{F}:=\{x \in X:(x, u) \in E(G)$ for some $u \in F x\}$. Then the following statements hold.

1. For any $x \in X_{F}, F,\left.H\right|_{[x]_{G}}$ have a common fixed point.
2. If $X_{F} \neq \emptyset$ and G is weakly connected, then F, H have a common fixed point in X.
3. If $X^{\prime}:=\bigcup\left\{[x]_{G}: x \in X_{F}\right\}$, then $F,\left.H\right|_{X^{\prime}}$ have a common fixed point.
4. If $F \subseteq E(G)$, then F, H have a common fixed point.

Proof 1 . Let $x_{0} \in X_{F}$, then there exists $x_{1} \in F x_{0}$ such that $\left(x_{0}, x_{1}\right) \in E(G)$. Since F, H are graph contractive mappings, we have

$$
D\left(F x_{0}, H x_{1}\right)<\kappa d\left(x_{0}, x_{1}\right) .
$$

Using Lemma 1.13, we have the existence of $x_{2} \in H x_{1}$ such that

$$
\begin{equation*}
d\left(x_{1}, x_{2}\right)<\kappa d\left(x_{0}, x_{1}\right) \tag{1}
\end{equation*}
$$

Again, because F, H are graph contractive $\left(x_{1}, x_{2}\right) \in E(G)$, also $\left(x_{2}, x_{1}\right) \in E(G)$, since $E(G)$ is symmetric, we have

$$
D\left(F x_{2}, H x_{1}\right)<\kappa d\left(x_{1}, x_{2}\right)<\kappa^{2} d\left(x_{0}, x_{1}\right),
$$

and Lemma 1.13 gives the existence of $x_{3} \in F x_{2}$ such that

$$
\begin{equation*}
d\left(x_{2}, x_{3}\right)<\kappa^{2} d\left(x_{0}, x_{1}\right) . \tag{2}
\end{equation*}
$$

Continuing in this way, we have $x_{2 n+1} \in F x_{2 n}$ and $x_{2 n+2} \in H x_{2 n+1}, n=0,1,2, \ldots$ Also, $\left(x_{n}, x_{n+1}\right) \in E(G)$ such that

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right)<\kappa^{n} d\left(x_{0}, x_{1}\right) . \tag{3}
\end{equation*}
$$

Next we show that $\left(x_{n}\right)$ is a Cauchy sequence in X. Let $m>n$. Then

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) & \leq d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+d\left(x_{n+2}, x_{n+3}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
& <\left[\kappa^{n}+\kappa^{n+1}+\kappa^{n+2}+\cdots+\kappa^{m-1}\right] d\left(x_{0}, x_{1}\right) \\
& =\kappa^{n}\left[1+\kappa+\kappa^{2}+\cdots+\kappa^{m-n-1}\right] d\left(x_{0}, x_{1}\right) \\
& =\kappa^{n}\left[\frac{1-\kappa^{m-n}}{1-\kappa}\right] d\left(x_{0}, x_{1}\right)
\end{aligned}
$$

because $\kappa \in(0,1), 1-\kappa^{m-n}<1$.
Therefore $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$ implies that $\left(x_{n}\right)$ is a Cauchy sequence and hence converges to some point (say) x in the complete metric space X.
Now we have to show that $x \in F x \cap H x$.
For n even: By property A, we have $\left(x_{n}, x\right) \in E(G)$. Therefore, by using graph contractivity, we have

$$
D\left(F x_{n}, H x\right)<\kappa d\left(x_{n}, x\right) .
$$

Since $x_{n+1} \in F x_{n}$ and $x_{n} \rightarrow x$, therefore by Lemma 1.14, $x \in H x$.
For n odd: As $\left(x, x_{n}\right) \in E(G)$,

$$
D\left(F x, H x_{n}\right)<\kappa d\left(x, x_{n}\right) .
$$

Now, by following the same arguments as above, $x \in F x$.
Next as $\left(x_{n}, x_{n+1}\right) \in E(G)$, also $\left(x_{n}, x\right) \in E(G)$ for $n \in N$. We infer that $\left(x_{0}, x_{1}, \ldots, x_{n}, x\right)$ is a path in G and so $x \in\left[x_{0}\right]_{G}$.
2. Since $X_{F} \neq \emptyset$, so there exists $x_{0} \in X_{F}$, and since G is weakly connected, therefore $\left[x_{0}\right]_{G}=X$, and by 1 , mappings F and H have a common fixed point in X.
3. It follows easily from 1 and 2 .
4. $F \subseteq E(G)$ implies that all $x \in X$ are such that there exists some $u \in F x$ with $(x, u) \in E(G)$ so $X_{F}=X$ and by 2 and 3. F, H have a fixed point.

Remark 2.2 Replace X_{F} by $X_{H}:=\{x \in X:(x, u) \in E(G)$ for some $u \in H x\}$ in conditions 1-3 of Theorem 2.1, then the conclusion remains true. That is, if $X_{F} \cup X_{H} \neq \emptyset$, then we have Fix $F \cap$ Fix $H \neq \emptyset$, which follows easily from 1-3. Similarly, in condition 4, we can replace $F \subseteq E(G)$ by $H \subseteq E(G)$.

Corollary 2.3 is a direct consequence of Theorem 2.1(1).

Corollary 2.3 Let (X, d) be a complete metric space and let the triple (X, d, G) have the property A. If G is weakly connected, then graph contractive mappings $F, H: X \rightarrow C B(X)$ such that $\left(x_{0}, x_{1}\right) \in E(G)$ for some $x_{1} \in F x_{0}$ have a common fixed point.

Corollary 2.4 Let (X, d) be a ε-chainable complete metric space for some $\varepsilon>0$. Let F, H : $X \rightarrow C B(X)$ be such that there exists $\kappa \in(0,1)$ with

$$
0<d(x, y)<\varepsilon \quad \Rightarrow \quad D(F x, H x)<\kappa d(x, y)
$$

Proof Consider the graph G as $V(G):=X$ and

$$
\begin{equation*}
E(G):=\{(x, y) \in X \times X: 0<d(x, y)<\varepsilon\} . \tag{4}
\end{equation*}
$$

The ε-chainability of (X, d) means G is connected. If $(x, y) \in E(G)$, then

$$
D(F x, H y)<\kappa d(x, y)<\kappa \varepsilon<\varepsilon
$$

and by using Lemma 1.13, for each $u \in F x$, we have the existence of $v \in H y$ such that $d(u, v)<\varepsilon$, which implies $(u, v) \in E(G)$. Hence F and H are graph contractive mappings. Also, (X, d, G) has property A. Indeed, if $x_{n} \rightarrow x$ and $d\left(x_{n}, x_{n+1}\right)<\varepsilon$ for $n \in N$, then $d\left(x_{n}, x\right)<\varepsilon$ for sufficiently large n , therefore $\left(x_{n}, x\right) \in E(G)$. So, by Theorem 2.1(2), F and H have a common fixed point.

Theorem 2.5 Let $F: X \rightarrow C B(X)$ be a graph contractive mapping and let the triple (X, d, G) have the property A. Set $X_{F}:=\{x \in X:(x, u) \in E(G)$ for some $u \in F x\}$. Then the following statements hold.

1. For any $x \in X_{F},\left.F\right|_{[x]_{G}}$ has a fixed point.
2. If $X_{F} \neq \emptyset$ and G is weakly connected, then F has a fixed point in X.
3. If $X^{\prime}:=\bigcup\left\{[x]_{G}: x \in X_{F}\right\}$, then $\left.F\right|_{X^{\prime}}$ has a fixed point.
4. If $F \subseteq E(G)$, then F has a fixed point.
5. If $X_{F} \neq \emptyset$, then Fix $F \neq \emptyset$.

Proof Statements 1-4 can be proved by taking $F=H$ in Theorem 2.1 and 5 obtained from Remark 2.2.

Note that the assumption that $E(G)$ is symmetric is not needed in our Theorem 2.5.

Remark 2.6

1. If we assume G is such that $E(G):=X \times X$, then clearly G is connected and our Theorem 2.5(2) improves Nadler's theorem, and further if F is single-valued, then we improve the Banach contraction theorem.
2. If F is a single-valued mapping, then Theorem $2.5(2,5)$ with the graph G_{1} improves [19, Theorem 2.2].
3. If F is a single-valued mapping, then Theorem $2.5(2,5)$ with the graph G_{2} improves [20, Theorem 2.1].
4. If $F=H$ is a single-valued mapping, then Theorem 2.1 and Theorem 2.5 partially generalize [22, Theorem 3.2].
5. If we take $F=H$ as single-valued mappings in Corollary 2.4, then we have [1, Theorem 5.2].
6. If we take $F=H$, then Corollary 2.4 becomes Theorem 1.5 due to [2].

Competing interests

The authors declare that they have no competing interests.

Author details

${ }^{1}$ Centre for Mathematics and Statistical Sciences, Lahore School of Economics, Lahore, Pakistan. ${ }^{2}$ Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan.

Received: 26 November 2012 Accepted: 30 April 2013 Published: 17 May 2013

References

1. Edelstein, M: An extension of Banach's contraction principle. Proc. Am. Math. Soc. 12, 07-10 (1961)
2. Nadler, SB: Multivalued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
3. Azam, A, Arshad, M: Fixed points of a sequence of locally contractive multivalued maps. Comput. Math. Appl. 57, 96-100 (2009)
4. Azam, A, Beg, I: Common fixed points of fuzzy maps. Math. Comput. Model. 49, 1331-1336 (2009)
5. Beg, I, Azam, A: Fixed points of multivalued locally contractive mappings. Boll. Unione Mat. Ital., A (7) 4, 227-233 (1990)
6. Beg, I, Butt, AR: Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71, 3699-3704 (2009)
7. Beg, I, Butt, AR: Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces. Carpath. J. Math. 25(1), 01-12 (2009)
8. Beg, I, Butt, AR: Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces. Math. Commun. 15(1), 65-76 (2010)
9. Beg, I, Nashine, HK: End-point results for multivalued mappings in partially ordered metric spaces. Int. J. Math. Math. Sci. 2012, Article ID 580250 (2012)
10. Daffer, PZ: Fixed points of generalized contractive multivalued mappings. J. Math. Anal. Appl. 192, 655-666 (1995)
11. Daffer, PZ, Kaneko, H, Li, W: On a conjecture of S. Reich. Proc. Am. Math. Soc. 124, 3159-3162 (1996)
12. Feng, Y, Liu, S: Fixed point theorems for multivalued contractive mappings and multivaled Caristi type mappings. J. Math. Anal. Appl. 317, 103-112 (2006)
13. Klim, D, Wardowski, D: Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. 334, 132-139 (2007)
14. Reich, S: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5(4), 26-42 (1972)
15. Qing, CY: On a fixed point problem of Reich. Proc. Am. Math. Soc. 124, 3085-3088 (1996)
16. Beg, I, Butt, AR, Radojevic, S: Contraction principle for set valued mappings on a metric space with a graph. Comput. Math. Appl. 60, 1214-1219 (2010)
17. Kirk, WA, Goebel, K: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
18. Johnsonbaugh, R: Discrete Mathematics. Prentice Hall, New York (1997)
19. Nieto, JJ, Rodríguez-López, R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005)
20. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004)
21. Assad, NA, Kirk, WA: Fixed point theorems for setvalued mappings of contractive type. Pac. J. Math. 43, 533-562 (1972)
22. Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 1(136), 1359-1373 (2008)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1029-242X-2013-252
 Cite this article as: Beg and Butt: Fixed point of set-valued graph contractive mappings. Journal of Inequalities and Applications 2013 2013:252.

