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Abstract
Let (X ,d) be a metric space and let F, H be two set-valued mappings on X . We
obtained sufficient conditions for the existence of a common fixed point of the
mappings F, H in the metric space X endowed with a graph G such that the set of
vertices of G, V(G) = X and the set of edges of G, E(G) ⊆ X × X .
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1 Introduction and preliminaries
Edelstein [] generalized classical Banach’s contraction mapping principle and Nadler []
proved Banach’s fixed point theorem for set-valuedmappings. Recently several extensions
of Nadler’s theorem in different directions were obtained; see [–]. Beg and Azam []
extended Edelstein’s theorem by considering a pair of set-valued mappings with a gen-
eral contractive condition. The aim of this paper is to study the existence of common
fixed points for set-valued graph contractive mappings in metric spaces endowed with a
graph G. Our results improve/generalize [, , ] and several other known results in the
literature.
Let (X,d) be a complete metric space and let CB(X) be a class of all nonempty closed

and bounded subsets of X. For A,B ∈ CB(X), let

D(A,B) :=max
{
sup
b∈B

d(b,A), sup
a∈A

d(a,B)
}
,

where

d(a,B) := inf
b∈B

d(a,b).

Mapping D is said to be a Hausdorff metric induced by d.

Definition . Let F : X → X be a set-valued mapping, i.e., X � x �→ Fx is a subset of X.
A point x ∈ X is said to be a fixed point of the set-valued mapping F if x ∈ Fx.

Definition . Ametric space (X,d) is called a ε-chainable metric space for some ε >  if
given x, y ∈ X, there is n ∈N and a sequence (xi)ni= such that

x = x, xn = y and d(xi–,xi) < ε for i = , . . . ,n.

Let FixF := {x ∈ X : x ∈ Fx} denote the set of fixed points of the mapping F .
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Definition . Let (X,d) be a metric space, ε > ,  ≤ κ <  and x, y ∈ X. A mapping f :
X → X is called (ε,κ) uniformly locally contractive if  < d(x, y) < ε ⇒ d(fx, fy) < κd(x, y).

The following significant generalization of Banach’s contraction principle [, Theo-
rem . ] was obtained by Edelstein [].

Theorem . [] Let (X,d) be a ε-chainable complete metric space. If f : X → X is a (ε,κ)
uniformly locally contractive mapping, then f has a unique fixed point.

Afterwards, in , Nadler [] proved a set-valued extension of Banach’s theorem and
obtained the following result.

Theorem . [] Let (X,d) be a complete metric space and F : X → CB(X). If there exists
κ ∈ (, ) such that

D(Fx,Fy)≤ κd(x, y) for all x, y ∈ X,

then F has a fixed point in X.

Nadler [] also extended Edelstein’s theorem for set-valued mappings.

Theorem . [] Let (X,d) be a ε-chainable complete metric space for some ε >  and let
F : X → C(X) be a set-valued mapping such that Fx is a nonempty compact subset of X. If
F satisfies the following condition:

x, y ∈ X and  < d(x, y) < ε ⇒ D(Fx,Fy) < κd(x, y),

then F has a fixed point.

Consider a directed graphG such that the set of its vertices coincideswithX (i.e.,V (G) :=
X) and the set of its edges E(G) := {(x, y) : (x, y) ∈ X × X,x 	= y}. We assume that G has no
parallel edges and weighted graph by assigning to each edge the distance between the
vertices; for details about definitions in graph theory, see [].
We can identify G as (V (G),E(G)). G– denotes the conversion of a graph G, the graph

obtained from G by reversing the direction of its edges. G̃ denotes the undirected graph
obtained from G by ignoring the direction of edges of G. We consider G̃ as a directed
graph for which the set if its edges is symmetric, thus we have

E(G̃) := E(G)∪ E
(
G–).

Definition . A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H)⊆
E(G) and for any edge (x, y) ∈ E(H), x, y ∈ V (H).

Definition . Let x and y be vertices in a graph G. A path in G from x to y of length n
(n ∈ N ∪ {}) is a sequence (xi)ni= of n +  vertices such that x = x, xn = y and (xi–,xi) ∈
E(G) for i = , , . . . ,n.
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Definition . The number of edges in G constituting the path is called the length of the
path.

Definition . A graph G is connected if there is a path between any two vertices of G.

If a graph G is not connected, then it is called disconnected. Moreover, G is weakly con-
nected if G̃ is connected.
Assume that G is such that E(G) is symmetric, and x is a vertex in G, then the subgraph

Gx consisting of all edges and vertices, which are contained in some path inG beginning at
x, is called the component ofG containing x. In this case the equivalence class [x]G defined
on V (G) by the rule R (uRv if there is a path from u to v) is such that V (Gx) = [x]G.
PropertyA: For any sequence (xn)n∈N inX, if xn → x and (xn,xn+) ∈ E(G) for n ∈N , then

(xn,x) ∈ E(G).

Definition . Let (X,d) be a metric space and F ,H : X → CB(X). The mappings F , H
are said to be graph contractive if there exists κ ∈ (, ) such that

(x 	= y), (x, y) ∈ E(G) ⇒ D(Fx,Hy) < κd(x, y),

and if u ∈ Fx and v ∈Hy are such that

d(u, v) < d(x, y),

then (u, v) ∈ E(G).

Definition . A partial order is a binary relation � over a set X which satisfies the
following conditions:
. x� x (reflexivity);
. if x � y and y� x, then x = y (antisymmetry);
. if x � y and y� z, then x� z (transitivity);

for all x, y and z in X.

A set with a partial order � is called a partially ordered set.
Let (X,�) be a partially ordered set and x, y ∈ X. Elements x and y are said to be compa-

rable elements of X if either x� y or y � x.
Let � be a partial order in X. Define the graph G :=G by

E(G) :=
{
(x, y) ∈ X ×X : x� y,x 	= y

}
,

and G :=G by

E(G) :=
{
(x, y) ∈ X ×X : x � y∨ y� x,x 	= y

}
.

The class of G-contractive mappings was considered in [] and that of G-contractive
mappings in [].
The weak connectivity ofG orG means, given x, y ∈ X, there is a sequence (xi)ni= such

that x = x, xn = y and for all i = , . . . ,n, xi– and xi are comparable.
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We shall make use of the following lemmas due to Nadler [], Assad and Kirk [] in the
proof of our results in next section.

Lemma . If A,B ∈ CB(X) with D(A,B) < ε, then for each a ∈ A there exists an element
b ∈ B such that d(a,b) < ε.

Lemma . Let {An} be a sequence in CB(X) and limn→∞ D(An,A) =  for A ∈ CB(X). If
xn ∈ An and limn→∞ d(xn,x) = , then x ∈ A.

2 Common fixed point
Webeginwith the following theorem that gives the existence of a commonfixed point (not
necessarily unique) in metric spaces endowed with a graph for the set-valued mappings.
Further, we assume that (X,d) is a complete metric space and G is a directed graph such
that E(G) is symmetric.

Theorem . Let F ,H : X → CB(X) be graph contractive mappings and let the triple
(X,d,G) have the property A. Set XF := {x ∈ X : (x,u) ∈ E(G) for some u ∈ Fx}. Then the
following statements hold.
. For any x ∈ XF , F , H|[x]G have a common fixed point.
. If XF 	= ∅ and G is weakly connected, then F , H have a common fixed point in X .
. If X ′ :=

⋃{[x]G : x ∈ XF}, then F , H|X′ have a common fixed point.
. If F ⊆ E(G), then F , H have a common fixed point.

Proof . Let x ∈ XF , then there exists x ∈ Fx such that (x,x) ∈ E(G). Since F , H are
graph contractive mappings, we have

D(Fx,Hx) < κd(x,x).

Using Lemma ., we have the existence of x ∈Hx such that

d(x,x) < κd(x,x). ()

Again, because F , H are graph contractive (x,x) ∈ E(G), also (x,x) ∈ E(G), since E(G)
is symmetric, we have

D(Fx,Hx) < κd(x,x) < κd(x,x),

and Lemma . gives the existence of x ∈ Fx such that

d(x,x) < κd(x,x). ()

Continuing in this way, we have xn+ ∈ Fxn and xn+ ∈ Hxn+, n = , , , . . . . Also,
(xn,xn+) ∈ E(G) such that

d(xn,xn+) < κnd(x,x). ()
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Next we show that (xn) is a Cauchy sequence in X. Let m > n. Then

d(xn,xm) ≤ d(xn,xn+) + d(xn+,xn+) + d(xn+,xn+) + · · · + d(xm–,xm)

<
[
κn + κn+ + κn+ + · · · + κm–]d(x,x)

= κn[ + κ + κ + · · · + κm–n–]d(x,x)
= κn

[
 – κm–n

 – κ

]
d(x,x)

because κ ∈ (, ),  – κm–n < .
Therefore d(xn,xm) →  as n → ∞ implies that (xn) is a Cauchy sequence and hence

converges to some point (say) x in the complete metric space X.
Now we have to show that x ∈ Fx∩Hx.
For n even: By propertyA,we have (xn,x) ∈ E(G). Therefore, by using graph contractivity,

we have

D(Fxn,Hx) < κd(xn,x).

Since xn+ ∈ Fxn and xn → x, therefore by Lemma ., x ∈Hx.
For n odd: As (x,xn) ∈ E(G),

D(Fx,Hxn) < κd(x,xn).

Now, by following the same arguments as above, x ∈ Fx.
Next as (xn,xn+) ∈ E(G), also (xn,x) ∈ E(G) for n ∈N . We infer that (x,x, . . . ,xn,x) is a

path in G and so x ∈ [x]G.
. Since XF 	= ∅, so there exists x ∈ XF , and since G is weakly connected, therefore

[x]G = X, and by , mappings F and H have a common fixed point in X.
. It follows easily from  and .
. F ⊆ E(G) implies that all x ∈ X are such that there exists some u ∈ Fxwith (x,u) ∈ E(G)

so XF = X and by  and . F , H have a fixed point. �

Remark . Replace XF by XH := {x ∈ X : (x,u) ∈ E(G) for some u ∈Hx} in conditions -
of Theorem ., then the conclusion remains true. That is, if XF ∪ XH 	= ∅, then we have
FixF ∩ FixH 	= ∅, which follows easily from -. Similarly, in condition , we can replace
F ⊆ E(G) by H ⊆ E(G).

Corollary . is a direct consequence of Theorem .().

Corollary . Let (X,d) be a complete metric space and let the triple (X,d,G) have the
property A. If G is weakly connected, then graph contractive mappings F ,H : X → CB(X)
such that (x,x) ∈ E(G) for some x ∈ Fx have a common fixed point.

Corollary . Let (X,d) be a ε-chainable complete metric space for some ε > . Let F ,H :
X → CB(X) be such that there exists κ ∈ (, ) with

 < d(x, y) < ε ⇒ D(Fx,Hx) < κd(x, y).

Then F and H have a common fixed point.
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Proof Consider the graph G as V (G) := X and

E(G) :=
{
(x, y) ∈ X ×X :  < d(x, y) < ε

}
. ()

The ε-chainability of (X,d) means G is connected. If (x, y) ∈ E(G), then

D(Fx,Hy) < κd(x, y) < κε < ε

and by using Lemma ., for each u ∈ Fx, we have the existence of v ∈ Hy such that
d(u, v) < ε, which implies (u, v) ∈ E(G). Hence F and H are graph contractive mappings.
Also, (X,d,G) has property A. Indeed, if xn → x and d(xn,xn+) < ε for n ∈ N , then
d(xn,x) < ε for sufficiently large n, therefore (xn,x) ∈ E(G). So, by Theorem .(), F and
H have a common fixed point. �

Theorem . Let F : X → CB(X) be a graph contractive mapping and let the triple
(X,d,G) have the property A. Set XF := {x ∈ X : (x,u) ∈ E(G) for some u ∈ Fx}. Then the
following statements hold.
. For any x ∈ XF , F|[x]G has a fixed point.
. If XF 	= ∅ and G is weakly connected, then F has a fixed point in X .
. If X ′ :=

⋃{[x]G : x ∈ XF}, then F|X′ has a fixed point.
. If F ⊆ E(G), then F has a fixed point.
. If XF 	= ∅, then FixF 	= ∅.

Proof Statements - can be proved by taking F =H in Theorem . and  obtained from
Remark ..
Note that the assumption that E(G) is symmetric is not needed in our Theorem .. �

Remark .
. If we assume G is such that E(G) := X ×X , then clearly G is connected and our

Theorem .() improves Nadler’s theorem, and further if F is single-valued, then
we improve the Banach contraction theorem.

. If F is a single-valued mapping, then Theorem .(, ) with the graph G improves
[, Theorem .].

. If F is a single-valued mapping, then Theorem .(, ) with the graph G improves
[, Theorem .].

. If F =H is a single-valued mapping, then Theorem . and Theorem . partially
generalize [, Theorem .].

. If we take F =H as single-valued mappings in Corollary ., then we have [,
Theorem .].

. If we take F =H , then Corollary . becomes Theorem . due to [].
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