
Nettling et al. BMC Bioinformatics 2014, 15:38
http://www.biomedcentral.com/1471-2105/15/38

SOFTWARE Open Access

DRUMS: Disk Repository with Update
Management and Select option for high
throughput sequencing data
Martin Nettling1,2 , Nils Thieme2, Andreas Both2* and Ivo Grosse1,3

Abstract

Background: New technologies for analyzing biological samples, like next generation sequencing, are producing a
growing amount of data together with quality scores. Moreover, software tools (e.g., for mapping sequence reads),
calculating transcription factor binding probabilities, estimating epigenetic modification enriched regions or
determining single nucleotide polymorphism increase this amount of position-specific DNA-related data even further.
Hence, requesting data becomes challenging and expensive and is often implemented using specialised hardware. In
addition, picking specific data as fast as possible becomes increasingly important in many fields of science. The
general problem of handling big data sets was addressed by developing specialized databases like HBase, HyperTable
or Cassandra. However, these database solutions require also specialized or distributed hardware leading to expensive
investments. To the best of our knowledge, there is no database capable of (i) storing billions of position-specific
DNA-related records, (ii) performing fast and resource saving requests, and (iii) running on a single standard computer
hardware.

Results: Here, we present DRUMS (Disk Repository with Update Management and Select option), satisfying demands
(i)-(iii). It tackles the weaknesses of traditional databases while handling position-specific DNA-related data in an
efficient manner. DRUMS is capable of storing up to billions of records. Moreover, it focuses on optimizing relating
single lookups as range request, which are needed permanently for computations in bioinformatics. To validate the
power of DRUMS, we compare it to the widely used MySQL database. The test setting considers two biological data
sets. We use standard desktop hardware as test environment.

Conclusions: DRUMS outperforms MySQL in writing and reading records by a factor of two up to a factor of 10000.
Furthermore, it can work with significantly larger data sets. Our work focuses on mid-sized data sets up to several
billion records without requiring cluster technology. Storing position-specific data is a general problem and the
concept we present here is a generalized approach. Hence, it can be easily applied to other fields of bioinformatics.

Keywords: Database, HERV, SNP, DNA related data, High throughput data

Background
With the beginning of the information age in the 90s of
the last century, a large set of processes are established
to manipulate and analyze data. In particular in the field
of bioinformatics, many different workflows produce a
growing amount of data. One example are sequencing
technologies, which are capable of sequencing an entire

*Correspondence: andreas.both@unister.de
2R&D, Unister GmbH, Leipzig, Germany
Full list of author information is available at the end of the article

human genome in less than a day. Moreover, extensive
software suites for analyzing biological data sets exist, e.g.
http://galaxy.psu.edu/ [1-3]. In addition, it is possible that
an analyzing process producesmore output data than pro-
vided input. For example, the input size of the HERV data
set used in this work is about 4 GB. The output of the
mapping with BLAST is about 50 GB large. Hence, rapid
processes for storing and querying data are needed as it
has impact on the general performance of the analytic
processes.

© 2014 Nettling et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192477342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:andreas.both@unister.de
http://galaxy.psu.edu/
http://creativecommons.org/licenses/by/2.0

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 2 of 9
http://www.biomedcentral.com/1471-2105/15/38

Position-specific DNA related data (psDrd)
In the field of bioinformatics, data related to DNA
sequences are of particular importance. Examples are
single nucleotide polymorphisms (SNPs) [4], transcrip-
tion factor binding affinities and probabilities [5,6], and
RNAseq data [7,8]. We generalize these types of data by
the term position-specific DNA-related data (psDrd). A
psDrd record is an information related to a specific DNA
position. psDrd records have three characteristics. First,
a psDrd record R can be represented by a key-value pair
R = (K ,V). The key K is composed of the sequence iden-
tifier and the position of the associated value V. Hence,
the key is unique, and records can be easily sorted. Sec-
ond, psDrd records are usually requested by region (e.g.,
querying for all mutations in a specific gene or looking for
transcription factors that are binding near a given posi-
tion). We call this kind of access range select. Third, all
psDrd of the same kind need the same space to be stored
on device, i.e., two different records are represented by
the same number of bytes. In contrast, textual annota-
tions are generally of variable length. These three specific
properties can be utilized for optimizing data handling of
psDrd.

Time- and resource-intensive computations on psDrd
Many biological processes and bioinformatics algorithm
have psDrd as input or output. This type of data is
essential for understanding biological and biochemical
processes. Furthermore, diagnostics in medicine for can-
cer prediction and genetic diseases are using psDrd
[9-11].
Many activities in bioinformatics focus on analyzing

psDrd. However, often file and folder strategy or a stan-
dard databases like MySQL [12] are used for data man-
agement. These approaches are straightforward but not
optimized for the intended processing of psDrd. In addi-
tion, data types used in these tools are expensive and
might lead to an exhaustive usage of valuable resources
[13]. Both problems lead to resource-intensive requests of
psDrd. For example, when performing range selects using
MySQL, nearly each record in the range must be fetched
by a costly random access to the storage. Because of the
limits of standard desktop hardware, this might cause a
bottleneck during data processing.

Requirements
The following requirements result from the above men-
tioned problems: The data management must be usable
with standard desktop technology. It must be possible
to store billions of data records. Platform independency
was defined as an additional requirement (derived from
the well-known segmentation of operation systems). Han-
dling massive read requests during analytic processes has
to be possible. While optimizing data handling of psDrd,

the three specific properties from section “Position-spe-
cific DNA related data (psDrd)” have to be obeyed.

Implementation
In this section, we first describe a concept called DRUM,
on which DRUMS is based. Subsequently, we describe
the architecture of DRUMS. Finally, we briefly sketch the
implementation of DRUMS in Java considering the three
main requirements of handling psDrd data sets efficiently.

DRUM concept
The DRUM (Disk Repository with Update Management)
concept [14] allows to store large collections of key-value
pairs (KVs). DRUM allows fast bulk inserts without gener-
ating duplicate entries. To enable fast processing, incom-
ing psDrd records (K ,V) are allocated based on their key
K to separate buffers B in the main memory:M(K) → Bi.
Those buffers are continuously written to their counter-
parts on disk (D), where they are called buckets. If a bucket
on disk reaches a predefined size, a synchronisation pro-
cess with the persistently saved data (on the hard disk)
starts. The process is executed in the following way: A disk
bucket is entirely read to a disk cache. There it is sorted.
Thereafter, a synchronisation is performed by combin-
ing each bucket after the other with the corresponding
cache. As the records of the disk cache are also sorted,
using mergesort is efficient. The synchronisation process
is blocking all other processes within DRUM.
The DRUM concept is very suitable for storing psDrd.

However, requesting data efficiently was never a goal of
this approach. Hence, neither single lookups nor range
selects have been optimized. Furthermore, when synchro-
nisation is performed, DRUM is not able to receive and
cache new psDrd records. In the following, we propose an
extension of DRUM that addresses these shortcomings.

Extensions by the DRUMS concept
We extend the DRUMconcept by allowing the selection of
records by key (single lookup) or by range (range selects).
Within this concept we decoupled I/O-processes from
memory processes to avoid blocking single components.
Following the three psDrd data properties, the following

architecture decisions were made for DRUMS in addition
to the DRUM concept: 1) All records are equally sized, so
that jumping to the start position of an arbitrary record in
the file is possible. Therefore, a sparse index [15] can be
applied efficiently, making rapid single selects possible by
the following two steps: The sparse index points to a block
of records, where the psDrd of interest might be found. To
finally find the requested record, a binary search is per-
formed. The binary searchmassively benefits from equally
sized records. 2) Records, which are close to each other on
DNA are stored close on disk according to their keys. This
enables efficient range selects. 3) Records are organized in

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 3 of 9
http://www.biomedcentral.com/1471-2105/15/38

buckets and chunks, which permits efficient prefiltering
of regions of interest within a bucket.

Architecture of DRUMS
DRUMS is composed of the interacting components
described in this section. Before each component is
described in detail, we give a high-level overview of the
insert and select process of DRUMS.

Processes
Insert process The high-level overview of the insert pro-
cess of DRUMS is shown in Figure 1. KV pairs are sent to
DRUMS. As in DRUM, the incoming records are already
distributed in memory between n buffers B (called mem-
ory buckets). Each bucket Bi in memory has a corre-
sponding bucket Di on disk. The sizes of the buckets are
dynamic. If a bucket Bi exceeds a predefined size or mem-
ory limitations are reached, a synchronisation process,
consisting of four phases, is started:
1) The bucket Bi is taken and replaced by an empty

one. Hence, incoming data can still be buffered. 2) The
KV pairs of Bi are sorted by their keys. 3) Bi and
Di are synchronised using mergesort. Already existing
records can be updated using state-dependent operations.
4) Themerged data is continuously written back to bucket
Di. Hence, input data is now saved persistently on the
disk.
Note: Step 3 and 4 of the synchronization process are

performed chunk-wise, so that optimal read and write
performance can be achieved. The optimal chunk-size
depends on the used hardware, the size of a single
record, the expected data volume, and several param-
eters in DRUMS. Therefore, it has to be determined
empirically.

incoming data
<key, value> tuples

RAM disk

<key, value> buffer 1

<key, value> buffer 2

<key, value> buffer k

...

bucket 1

bucket 2

bucket k

...

S
yn

ch
ro

ni
zi

ng
 P

ro
ce

ss

Figure 1 High level overview of insert process. Key-value pairs are
sent to DRUMS. The incoming records are distributed between k
buffers (memory buckets), based on their key. If a bucket Bi exceeds a
predefined size or memory limitations are reached, a synchronisation
process is instantiated.

Range select process Figure 2 shows the high-level
overview of the select process. When a request is sent to
DRUMS, four steps are performed to read the requested
records given by the keys KS and KE (start and end of
the range). 1) The requested bucket Di is identified by
M(K) → Di. 2) The index of Di is used for determin-
ing the correct chunk Ck of the first requested record
RS = (KS,VS). 3) Within Ck a binary search is performed
for finding RS. The binary search massively benefits from
equally sized records. 4) A sequential read is performed
untilKE was found and consequently RE returned. It might
be needed to perform the sequential read over chunk and
bucket boundaries.

Single select process A request of a single row (single
select) is considered as special case of the range select pro-
cess where KS = KE . Therefore, it is covered by step 1
to 3.

Components of DRUMS
BucketContainer and its buckets
The BucketContainer is a buffer that is organized in buck-
ets B (memory buckets). It manages the distribution of
incoming records to the buckets in RAM. As in DRUM,
the distribution of the incoming records R = (K ,V) to
the Buckets B is based on a predefined mapping function
M(K) → Bi.
The BucketContainer is decoupled from any I/O-

operation, so that preparing the data for writing can be
done in parallel to the I/O-processes. The larger the size
of the BucketContainer, the larger are the parts of the data

requesting records
between key1 and key2

RAM disk

bucket 1

bucket 2

bucket k

Mapping and Indices

determine bucket with key1
and its position in this bucket

Read Buffer
sequentially read from determined
position until key2 is reached and
filter affected records into buffer

...

Figure 2 High level overview of select process.When a request is
sent to DRUMS, four steps are done to read the requested records.
1) The bucket of interest is determined. 2) The correct chunk of the
first requested record is identified, using a sparse index. 3) The
position of the requested key-value pair is determined. 4) A sequential
read is performed until the requested range is completely processed.

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 4 of 9
http://www.biomedcentral.com/1471-2105/15/38

that can be processed sequentially. This increases the per-
formance significantly as sequential I/O-operations are
the most efficient on HDDs and SSDs.

SyncManager, SyncProcess, and Synchronizer
The SyncManager manages all SyncProcesses. It observes
the BucketContainer and verifies the preconditions for the
synchronisation of buckets B with their counterparts on
disk D. If these preconditions are fulfilled, the SyncMan-
ager instantiates new SyncProcesses. Several SyncPro-
cesses can be run in parallel. In our implementation, a
bucket in memory must reach a predefined fill level or age
to be synchronized.
A new SyncProcess is always instantiated with the

largest bucket in the BucketContainer fulfilling the above
mentioned condition. When a new SyncProcess is started,
the affected bucket in the BucketContainer is replaced
by an empty one. In this way the synchronization pro-
cess is not blocking further insert operations for this
bucket.
The SyncProcess instantiates new Synchronizers. A

Synchronizer is in charge of writing data from the bucket
Bi in memory to the bucket Di on disk. All records are
sorted in Bi and in Di. Hence, the Synchronizer is capa-
ble of using mergesort for synchronizing the records in
memory with those on disk.

Representationand structure of the data
Each persistent bucket is represented by a file on a hard
disk. The file is structured into two parts (see Figure 3):
(i) the header with meta information and the index struc-
ture referencing chunks of a predefined size and (ii) the
rest of the file used for the records to store, which are
organized in chunks. A sparse index [15] is applied as it
is memory efficient and takes advantage of the order of
psDrds.
Whenever a bucket D is opened for reading or writ-

ing, the header and the index are read into memory.
In this way, a rapid access to the required chunks is
possible.
The internal representation of a record in a chunk is a

sequence of bytes. This sequence is composed of a key-
part and a value-part. Each part may consist of several
subparts, each of its own data-type (e.g., integer, long, char
or even high level data structures like objects). Because of
the fact that each record is of equal size, data structures
and memory can be easily reused by application of the
adaptor and the prototype pattern [16].

Implementation of DRUMS
DRUMS is build upon Oracle Java 1.6. Therefore, it is plat-
form independent. We developed DRUMS in an atomic
thread-based way. All components work asynchronously

File on storage device

Header

Index

C
ontent

Chunk 1 Chunk 2 Chunk 3

Chunk 4

Chunk n-2 Chunk n-1 Chunk n

Chunk n-3.....

R
ecord

R
ecord

R
ecord

...

Chunk i

Figure 3 Structure of a file on storage device. The file is structured
into (i.) a header, (ii.) an index structure and (iii.) the content,
containing the records.

and are exchangeable. This allows fast adaptations on
single subprocesses or exchanging whole components like
the Synchronizer.

Results and discussion
In this section we first give a short introduction into
two different psDrd sets used for evaluation. Second, we
present the results and the evaulation approach consider-
ing (i) inserts, (ii) random lookups, and (iii) random range
selects.
To prove the superiority of DRUMS in comparison

with standard solutions within a desktop environment,
we compare it to MySQL which is used widely in the
bioinformatics community.
Two different psDrd sets are evaluated. The data sets are

described below. DRUMS as well as MySQL were tested
comparatively using the three measures: (i) - (iii). For
all tests a standard desktop computer was used. MySQL
as well as DRUMS are limited to use only 2 GB of the
available memory. Details can be obtained from Table 1.

Data sets
SNP-Data from the 1001 genomes project
The 1001 Genomes Project [17,18] has the goal to
understand the resulting of small mutations in different
accessions of the reference plant Arabidopsis thaliana.

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 5 of 9
http://www.biomedcentral.com/1471-2105/15/38

Table 1 Test system

Processor Intel Xeon E31225
(4 native cores, no hyperthreading)

Memory 8 GB

Operation system Debian 6.0 (Squeeze)

Hard drive Western digital WD10EALX-759, 32 MB cache

The desktop system which was used for the tests. MySQL as well as DRUMS are
limited to use only 2 GB of the available memory.

Each accession mainly consists of five attributes: acces-
sion identifier, sequence identifier, position on sequence,
source base, and target base. We downloaded filtered
quality data of the strains sequenced by the Gregor
Mendel Institute and the Salk institute on 2012-01-15,
containing 251 data sets, with 137, 369, 902SNPs. From all
files, we extracted the data of the following five columns:
accession name, chromosome, position on chromosome
reference nucleotide, and mutated nucleotide. For the def-
initions of the used data types and their configuration
(e.g., index properties) used in MySQL and DRUMS see
Table 2.
All data are public available at http://1001genomes.org/

datacenter/.

HERV data
Human endogenous retroviruses (HERVs) have integrated
themselves in the human genome millions of years ago.
Because of the high number of existing HERV fragments,
they are thought to have a regulatory role. To investigate a
possible influence of HERVs, it is needed to locate HERV
fragments. Therefore, over 7000 known HERV fragments
were blasted against the human genome to find new
putative HERV-like regions. In the work of Konstantin
Kruse [19] all regions with an E-value less than 1e − 20
were accepted as putative HERV-like region. This lead to
802, 710, 938 single records, stored in 20 files with tab-
separated data field, with a total size of 50 GB. From these
files we used the following seven columns: query id, sub-
ject id, query start, query end, subject start, subject end,
and E-value. For the definitions of the used data types and
their configuration (e.g., index properties) used inMySQL
and DRUMS see Table 3.

Table 2 Data types used for SNP data

Column MySQL properties DRUMS properties

Accession name TINY INT, primary key 1 byte, key part 1

Chromosome SMALL INT, primary key 2 byte, key part 2

Position on chromosome INT, primary key 4 byte, key part 3

Reference nucleotide VARCHAR 1 byte, value part 1

Mutated nucleotide VARCHAR 1 byte, value part 2

Used data types in MySQL and DRUMS for SNP data. All columns being part of
the primary key are indexed.

Insert performance
DRUMS must be able to store hundreds of millions of
records. Because of this, it is needed to evaluate the insert
performance.
To estimate the insert performance, we measure the

time for inserting 106 records. We obtain 140 time mea-
surements points in case of SNP-Data and 800 for HERV
data. Figures 4a and 4b show the insert performance of
DRUMS (blue) and MySQL (green). Despite using bulk-
requests for inserting the data, it was impossible to insert
all 800 million HERV records into the MySQL instance.
MySQL inserts about 200 million records in the first
week, but Figure 4b shows that the insert performance has
dropped to 300 records per second after one week. The
insert performance of DRUMS also decreases, but it was
able to insert the whole data set within 4.53 hours. At the
end of the test, DRUMS was still able to perform more
than 20000 inserts per second.
Figure 4a and 4b show that DRUMS has a better insert

performance than MySQL on both test datasets. The
insert performance of MySQL and of DRUMS decreases
with the number of records already inserted. Regard-
ing MySQL one possible explanation is the continuous
reorganistation and rewriting of the index.
The insert performance of DRUMS decreases slowly

in comparison to MySQL. The reason for this is the
decreasing ratio of read- to write-accesses with each
round of synchronisation. With other words, DRUMS
must read more and more records per new record to
write with the growing amount of data already stored
on disk. However, DRUMS still inserts more than 20000
records per second at the end of the insert test for
HERV data, corresponding to approximately 400 kB per
second.

Performance on random lookups
From the view of bioinformatics, single lookups make
no sense in both experiments. However, the performance
of single-lookups is a significant indicator for the over-
all performance and the suitability of the implementa-
tion of a tool for handling data sets. Moreover, the test
may show how close the measured performance to the
theoretical hardware limits of the used standard desk-
top hardware is. Considering the test environment, it
is assumed that a random access would take approxi-
mately 20 ms. Hence, if no other disk accesses are done,
it would be theoretically possible to read 50 records per
second.
Figures 5a and 5b show the performance of MySQL

and DRUMS, when performing random lookups. Again,
DRUMS performs better than MySQL in case of han-
dling our two data sets. Figure 5a implies that DRUMS is
able to do 160 times more random lookups than theoret-
ically possible, when accessing SNP data. In comparison,

http://1001genomes.org/datacenter/
http://1001genomes.org/datacenter/

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 6 of 9
http://www.biomedcentral.com/1471-2105/15/38

Table 3 Data types used for HERV data

Column MySQL properties DRUMS properties

Chromosome TINY INT, primary key 1 byte, key part 1

Start-position on chromosome INT, primary key 4 byte, key part 2

End-position on chromosome INT, primary key 4 byte, key part 3

Start-position on HERV SMALL INT, primary key 2 byte, key part 4

End-position on HERV SMALL INT, primary key 2 byte, key part 5

Id of referenced HERV SMALL INT, primary key 2 byte, key part 6

Strand on chromosome TINY INT, primary key 1 byte, key part 7

E-value DOUBLE 4 byte, value part 1

Used data types in MySQL and DRUMS for HERV data. All columns being part of the primary key are indexed.

only 20 random lookups per second are performed when
accessing HERV data. The reason for this difference are
cache structures provided by the operating system and the
underlying hardware.
In case of accessing SNP data, the complete data set

might be cached by the operating system after approxi-
mately 650, 000 lookups. Hence, organizing the SNP data
as DRUMS structure results in a file size small enough
that it could be loaded into memory. Therefore, nearly
each request could be answered from the operating sys-
tems cache after a warm up. In contrast, the HERV data
set is too large to fit into memory, so only a few random
lookups could be answered from cache. The increasing

performance of MySQL and DRUMS in Figure 5b is also
an indication for the use of caches. Figure 5b shows that
DRUMS can perform 20 random lookups of theoretically
possible 50.
While considering the experimental results of MySQL,

the impression is conveyed that the defined index was
not used correctly. However, a closer look validates the
results as the explicit MySQL index for the SNP table has
the size of 2380 MB, which will not fit into the allowed
2 GB of main memory. Hence, even index-based searches
in MySQL need several accesses to the hard disk result-
ing in worse performance. In contrast, the sparse index of
each bucket of DRUMS requires just 0.5 MB, which sums

insert performance (SNP)

(inserting 137.369.902 SNP−Records)
inserted records

in
se

rt
s

pe
r

se
co

nd

0 mio 20 mio 40 mio 60 mio 80 mio 100 mio 120 mio 140 mio

50
00

50
00

0
5e

+
05

MySQL
DRUMS

(a) insert performance (HERV)

(inserting 802.710.938 HERV−Records)
inserted records

in
se

rt
s

pe
r

se
co

nd

0 mio 200 mio 400 mio 600 mio 800 mio

5
50

50
0

50
00

50
00

0
5e

+
05

MySQL
DRUMS

(b)

Figure 4 Insert performance. The blue line represents DRUMS, the green line represents MySQL. (a) Insert performance on SNP-data (b) Insert
performance on HERV data. Concerning MySQL, it was impossible to insert all 800 million HERV records. DRUMS inserted the complete data set
within 4.53 hours.

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 7 of 9
http://www.biomedcentral.com/1471-2105/15/38

single−select performance (SNP)

(selecting 1.000.000 single SNPs)
selects

si
ng

le
−

se
le

ct
s

pe
r

se
co

nd

0 200k 400k 600k 800k 1000k

20
 k

40
 k

60
 k

80
 k

MySQL
DRUMS

(a) single−select performance (HERV)

(selecting 1.000.000 single HERV−records)
selects

si
ng

le
−

se
le

ct
s

pe
r

se
co

nd
0 200k 400k 600k 800k 1000k

4
8

12
16

20

MySQL
DRUMS

(b)

Figure 5 Random lookups performance. The blue line represents DRUMS, the green line represents MySQL. (a) Random lookup performance on
SNP-data. (b) Random lookup performance on HERV data.

up to only 123 MB for all buckets. To find a single record
in a chunk, DRUMS performs a binary search. The binary
search can be done very efficiently for the reason that all
records are of equal size. Because of the reduced demands
on the hardware, DRUMS provides a good performance
even on very large data sets like HERV.

Performance on random range selects
As described in the section Background, psDrd-records
are mostly requested by range. Therefore, the need to
benchmark the performance of range requests is obvious.
The request for the SNP-data is as follows: Select all

SNPs on chromosome c between position x and y for

range−select performance (SNP)

(selecting 1.000.000 SNP−Ranges)
selected ranges

ra
ng

e−
se

le
ct

s
pe

r
se

co
nd

1000 10000 1e+05 1e+06

1
10

10
0

10
00

MySQL
DRUMS

(a) range−select performance (HERV)

(selecting 1.000.000 HERV−Ranges)
selected ranges

ra
ng

e−
se

le
ct

s
pe

r
se

co
nd

10 100 1000 10000 1e+05 1e+06

0.
00

1
0.

01
0.

1
1

10
30

10
0

10
00

MySQL
DRUMS

(b)

Figure 6 Range select performance. The blue line represents DRUMS, the green line represents MySQL. (a) Range select performance on SNP-data.
(b) Range select performance on HERV data. Concerning MySQL, we stopped the test after 26.35 hours. DRUMS read 64 billion records in 9.61 hours.

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 8 of 9
http://www.biomedcentral.com/1471-2105/15/38

all ecotypes in the database. To perform the read test
for SNP-data, we first randomly generated 106 ranges of
length 103 to 104. Second, we request records within those
ranges randomly distributed over the whole genome of
Arabidopsis thaliana.
Analogously, we generate 106 test requests for theHERV

data set with lengths from 105 to 106. Again, we ran-
domly distributed range-requests over the whole human
genome. It might be a common task to filter the requested
data by value. MySQL provides this functionality by
defining the filter condition in the WHERE-clause. To
accomplish this in DRUMS, the returned records must
be checked iteratively. In this test, we filter the requested
HERV records by an E-value less than 10−20, 10−25, 10−30,
10−35, 10−40, 10−45 or 10−50, randomly chosen.
Figures 6a and 6b show the results of the range select

test. Once more, both databases perform much better
on the smaller SNP-data set. Besides caching, this time
another explanation for this observation is that a range
request on the SNP-data contains in average 3 times fewer
records than a range request on the HERV data. The per-
formance increases with the number of read records. The
performance of DRUMS increases by a factor of 10 and of
MySQL by a factor of 26. However, DRUMS performs in
average on the SNP-data 24 times faster than MySQL.
Regarding the larger HERV data set, DRUMS is able to

perform 30 range-selects per second in average. This is
over 15000 times faster than MySQL.
Within the whole test, 64 billion records were read

in 9.61 hours. That corresponds to an overall read per-
formance of 35.7 MB per second, filtering included. In
contrast, MySQL read 6.6 million records in 26.35 hours,
which corresponds to only 1.3 kB per second.

Conclusions
We defined psDrd (position-specific DNA related data)
and showed three important properties of this kind of
data. The flaws of DRUM were shown, which is already
suitable for storing psDrd, but not for requesting it
efficiently. The article introduces DRUMS, a data man-
agement concept optimized to tackle the challenges of
dealing with mid-size data sets in form of psDrd using
standard desktop technology instead of expensive cluster
hardware.
An implementation of the DRUMS concept was com-

pared to the widely spread standard database manage-
ment solution MySQL considering two data sets of the
bioinformatics context. On the larger HERV data set,
the evaluated DRUMS implementation was 23 times
faster inserting all records, two times faster perform-
ing random lookups, and 15456 faster performing range
requests. Hence, the experiments show that dealing with
psDrd benefits significantly from the characteristics of
the DRUMS concept. Therefore, our main contribution

is suggesting this data management concept for increas-
ing the performance during data intensive processes while
keeping the hardware investments low.

Availability and requirements
Project name: DRUMS
Project home page: http://mgledi.github.io/DRUMS
Project home page of examples: http://github.com/
mgledi/BioDRUMS
Operating system: Platform independent
Programming language: Java
Other requirements: none
License: GNU GPL v2
Any restrictions to use by non-academics: No specific
restrictions.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MN and NT developed and tested the Java code. All of the authors
contributed to the design of the software architecture. All of the authors read
and approved the final version of the manuscript.

Acknowledgements
We are grateful to Dr. Christiane Lemke and Anika Gross for revising the
manuscript. We thank Michael Roeder for testing the installation and usage
instructions. Furthermore, we thank Unister GmbH for the opportunity to
develop and publish the software as open source project.

Author details
1Institute of Computer Science, Martin Luther University, Halle (Saale),
Germany. 2R&D, Unister GmbH, Leipzig, Germany. 3German Centre for
Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.

Received: 31 July 2013 Accepted: 17 January 2014
Published: 4 February 2014

References
1. Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach

for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010,
11(8):R86+.

2. Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M,
Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for
experimentalists. Current protocols in molecular biology/edited by
Frederick M. Ausubel ... [et al.] 2010:Chapter 19.

3. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy:
a platform for interactive large-scale genome analysis. Genome Res
2005, 15(10):1451–1455.

4. Single nucleotide polymorphism. 2012. [http://en.wikipedia.org/wiki/
Single_Nucleotide_Polymorphism]

5. Bulyk M: Computational prediction of transcription-factor binding
site locations. Genome Biol 2003, 5:201+.

6. Nguyen T, Androulakis I: Recent advances in the computational
discovery of transcription factor binding sites. Algorithms 2009,
2:582–605.

7. Malone J, Oliver B:Microarrays, deep sequencing and the true
measure of the transcriptome. BMC Biol 2011, 9:34+.

8. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57–63.

9. de Leeuw N, Hehir-Kwa JY, Simons A, Geurts van Kessel A, Smeets DF,
Faas BH, Pfundt R: SNP array analysis in constitutional and cancer
genome diagnostics–copy number variants, genotyping and quality
control. Cytogenet Genome Res 2011, 135:212–221.

http://mgledi.github.io/DRUMS
http://github.com/mgledi/BioDRUMS
http://github.com/mgledi/BioDRUMS
http://en.wikipedia.org/wiki/Single_Nucleotide_Polymorphism
http://en.wikipedia.org/wiki/Single_Nucleotide_Polymorphism

Nettling et al. BMC Bioinformatics 2014, 15:38 Page 9 of 9
http://www.biomedcentral.com/1471-2105/15/38

10. Kihara D, Yang YDD, Hawkins T: Bioinformatics resources for cancer
research with an emphasis on gene function and structure
prediction tools. Cancer Inform 2006, 2:25–35.

11. Roukos DH: Next-Generation Sequencing &Molecular Diagnostics. London:
Future Medicine Ltd; 2013.

12. MySQL classic edition. 2012. [http://www.mysql.com/products/classic/]
13. Common wrong data types. 2012. [http://code.openark.org/blog/

mysql/common-data-types-errors-compilation]
14. Lee HT, Leonard D, Wang X, Loguinov D: IRLbot: scaling to 6 billion

pages and beyond. In Proceedings of the 17th international conference on
World Wide Web, WWW ’08.New York, NY, USA: ACM; 2008:427–436.

15. Database index - sparse index. 2012. [http://en.wikipedia.org/wiki/
Database_index#Sparse_index]

16. Gamma E, Helm R, Johnson R, Vlissides J: Design patterns: elements of
reusable object-oriented software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.; 1995.

17. Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, Lanz C, Smith LM,
Cao J, Fitz J, Warthmann N, Henz SR, Huson DH, Weigel D:
Reference-guided assembly of four diverse Arabidopsis thaliana
genomes. Proc Nat Acad Sci USA 2011, 108(25):10249–10254.

18. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D,
Lanz C, Stegle O, Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C,
Borgwardt K, Schmid KJ, Weigel D:Whole-genome sequencing of
multiple Arabidopsis thaliana populations. Nat Genet 2011,
43(10):956–963.

19. Kruse K: Analysis of gene expression in correlation to endogenous
retroviruses.Martin Luther University, Halle (Saale) Germany 2011.
[Bachelor Thesis]

doi:10.1186/1471-2105-15-38
Cite this article as: Nettling et al.: DRUMS: Disk Repository with Update
Management and Select option for high throughput sequencing data. BMC
Bioinformatics 2014 15:38.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.mysql.com/products/classic/
http://code.openark.org/blog/mysql/common-data-types-errors- compilation
http://code.openark.org/blog/mysql/common-data-types-errors- compilation
http://en.wikipedia.org/wiki/Database_index#Sparse_index
http://en.wikipedia.org/wiki/Database_index#Sparse_index

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Position-specific DNA related data (psDrd)
	Time- and resource-intensive computations on psDrd
	Requirements

	Implementation
	DRUM concept
	Extensions by the DRUMS concept
	Architecture of DRUMS
	Processes
	Insert process
	Range select process
	Single select process

	Components of DRUMS
	BucketContainer and its buckets
	SyncManager, SyncProcess, and Synchronizer
	Representation and structure of the data

	Implementation of DRUMS

	Results and discussion
	Data sets
	SNP-Data from the 1001 genomes project
	HERV data

	Insert performance
	Performance on random lookups
	Performance on random range selects

	Conclusions
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

