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Abstract
In this paper, we introduce a new twice power type contractive condition for six
self-mappings in generalized metric spaces. Using the weakly commuting and weakly
compatible conditions of self-mapping pairs, the existence and uniqueness of
common fixed point in complete generalized metric spaces is discussed, and a new
common fixed point theorem is obtained. We also provide illustrative examples in
support of our new results. Our results generalize some well-known comparable
results in the literature due to Ye and Gu.
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1 Introduction and preliminaries
In , Jungck [] proved a common fixed point theorem for commutingmaps, generaliz-
ing theBanach contraction principle. This theoremhasmany applications inmathematics.
The notion of weakly commuting maps is introduced by Sessa []. Jungck [] generalized
the concept of weak commutativity and showed that weakly commuting maps are com-
patible but the converse is not true. The concept of weakly compatible maps is defined by
Jungck [].
In , Mustafa and Sims [] introduced a new notion of generalized metric space

called G-metric space. Based on the notion of generalized metric spaces, Mustafa et al.
[, ] obtained some fixed point results for mappings satisfying different contractive con-
ditions. Aydi [] obtained a fixed point result for a self-mapping satisfying (ψ ,ϕ)-weakly
contractive conditions. Shatanawi [] proved some fixed point results for self-maps in a
complete G-metric space under some contractive conditions related to a nondecreasing
map φ : R+ → R+ with limn→∞ φn(t) =  for all t ≥ . Chugh et al. [] obtained some fixed
point results for maps satisfying property P.
In , Abbas and Rhoades [] initiated the study of a common fixed point theory

in generalized metric spaces. Kaewcharoen [] obtained some common fixed point re-
sults for contractivemappings satisfying�-maps. Abbas et al. [] obtained some periodic
point results. Aydi et al. [] obtained some common fixed point results for generalized
weakly G-contraction mapping. Ye and Gu [] obtained some common fixed point theo-
rems of three maps for a class of twice power type contraction condition. In [], Gu and
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Ye introduce the concept of ϕ-weakly commuting self-mapping pairs in G-metric space,
and used this concept, they establish a new common fixed point theorem of Altman in-
tegral type mappings. Aydi [] obtained a common fixed point theorem of integral type
contraction in generalized metric spaces. Tahat et al. [] obtained some common fixed
point theorems for single-valued and multi-valued maps satisfying a generalized contrac-
tion in G-metric spaces. Manro et al. [] obtained some common fixed point theorems
for expansion mappings in G-metric spaces. Abbas et al. [] and Manro et al. [] gives
some common fixed point theorems for R-weakly commuting maps in G-metric spaces.
In [, ], the authors proved some common fixed point theorems of weakly compatible
mappings in G-metric spaces. In [–], the authors proved some common fixed point
results of three (or four, or six) mappings in G-metric spaces.
Recently, Abbas et al. [] and Mustafa et al. [] obtained some common fixed point

results for a pair of mappings satisfying the (E.A) property under certain generalized strict
contractive conditions. Long et al. [] obtained some common fixed points results of
two pairs of mappings when only one pair satisfies the (E.A) property. Gu and Yin []
obtained some common fixed points results of three pairs of mappings for which only
two pairs need to satisfy the common (E.A) property in the framework of a generalized
metric space. Very recently, Gu and Shatanawi [] used the concept of the common (E.A)
property, proved some common fixed point theorems for three pairs of weakly compatible
self-maps satisfying a generalized weakly G-contraction condition in generalized metric
spaces.
Very recently, Jleli and Samet [] and Samet et al. [] noticed that some fixed point

theorems in the context of a generalized metric space can be concluded by some exist-
ing results in the setting of a (quasi-)metric space. In fact, if the contraction condition of
the fixed point theorem on a generalized metric space can be reduced to two variables
instead of three variables, then one can construct an equivalent fixed point theorem in
the setting of a usual metric space. More precisely, in [, ], the authors noticed that
d(x, y) = G(x, y, y) forms a quasi-metric. Therefore, if one can transform the contraction
condition of existence results in a generalized metric space in such terms, G(x, y, y), then
the related fixed point results become the well-known fixed point results in the context of
a quasi-metric space.
The purpose of this paper is to use the concept of weakly commuting mappings and

weakly compatiblemappings to discuss some new common fixed point problem for a class
of twice power type contraction maps in G-metric spaces. The results presented in this
paper extend and improve some well-known corresponding results in the literature due
to Ye and Gu [].
The following definitions and results will be needed in the sequel.

Definition . [] Let X be a nonempty set and let G : X × X × X → R+ be a function
satisfying the following properties:

(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with z �= y;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · , symmetry in all three variables;
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X .
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Then the functionG is called a generalizedmetric, or,more specifically, aG-metric onX,
and the pair (X,G) is called a G-metric space.

It is well known that the function G(x, y, z) on G-metric space X is jointly continuous in
all three of its variables, and G(x, y, z) =  if and only if x = y = z (see []).

Definition . [] Let (X,G) be aG-metric space and let (xn) be a sequence of points ofX.
A point x ∈ X is said to be the limit of the sequence (xn) if limn,m→+∞ G(x,xn,xm) = , and
we say that the sequence (xn) is G-convergent to x or (xn) G-convergent to x.

Thus, xn → x in a G-metric space (X,G) if, for any ε > , there exists k ∈ N such that
G(x,xn,xm) < ε for allm,n≥ k.

Proposition . [] Let (X,G) be a G-metric space, then the following are equivalent:
. (xn) is G-convergent to x.
. G(xn,xn,x) →  as n→ +∞.
. G(xn,x,x)→  as n→ +∞.
. G(xn,xm,x) →  as n,m → +∞.

Definition . [] Let (X,G) be a G-metric space. A sequence (xn) is called G-Cauchy
if, for every ε > , there is k ∈ N such that G(xn,xm,xl) < ε for all m,n, l ≥ k; that is,
G(xn,xm,xl) →  as n,m, l → +∞.

Proposition . [] Let (X,G) be a G-metric space. Then the following are equivalent:
. The sequence (xn) is G-Cauchy.
. For every ε > , there is k ∈N such that G(xn,xm,xm) < ε for all m,n≥ k.

Definition . [] Let (X,G) and (X ′,G′) be G-metric spaces, and let f : (X,G) → (X ′,G′)
be a function. Then f is said to be G-continuous at a point a ∈ X if and only if, for ev-
ery ε > , there is δ >  such that x, y ∈ X and G(a,x, y) < δ imply G′(f (a), f (x), f (y)) < ε.
A function f is G-continuous at X if only if it is G-continuous at a ∈ X.

Definition . [] A G-metric space (X,G) is G-complete if every G-Cauchy sequence in
(X,G) is G-convergent in X.

Definition . [] Two self-mappings f and g of a G-metric space (X,G) are said to be
weakly commuting if G(fgx, gfx, gfx) ≤ G(fx, gx, gx) for all x in X.

Definition . [] Let f and g be two self-mappings from a G-metric space (X,G) into
itself. Then the mappings f and g are said to be weakly compatible if G(fgx, gfx, gfx) = 
whenever G(fx, gx, gx) = .

Proposition . [] Let (X,G) be a G-metric space. Then, for all x, y, z, a in X, it follows
that G(x, y, y) ≤ G(y,x,x).

2 Main results
Theorem . Let (X,G) be a complete G-metric space, and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:

http://www.journalofinequalitiesandapplications.com/content/2014/1/366
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(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) ∀x, y, z ∈ X,

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Sx,Sx)G(By,Ty,Ty),
G(By,Ty,Ty)G(Cz,Rz,Rz),
G(Cz,Rz,Rz)G(Ax,Sx,Sx)

⎫⎪⎬
⎪⎭ (.)

or

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Ax,Sx)G(By,By,Ty),
G(By,By,Ty)G(Cz,Cz,Rz),
G(Cz,Cz,Rz)G(Ax,Ax,Sx)

⎫⎪⎬
⎪⎭ , (.)

where k ∈ [, ). Then one of the pairs (S,A), (T ,B), and (R,C) has a coincidence point in X.
Moreover, if one of the following conditions is satisfied:
(a) either S or A is G-continuous, the pair (S,A) is weakly commuting, the pairs (T ,B)

and (R,C) are weakly compatible;
(b) either T or B is G-continuous, the pair (T ,B) is weakly commuting, the pairs (S,A)

and (R,C) are weakly compatible;
(c) either F or C is G-continuous, the pair (R,C) is weakly commuting, the pairs (S,A)

and (T ,B) are weakly compatible.
Then the mappings S, T , R, A, B, and C have a unique common fixed point in X.

Proof First, we suppose that the condition (.) holds.
Let x in X be an arbitrary point, since S(X) ⊂ B(X), T(X) ⊂ C(X), R(X) ⊂ A(X), there

exist the sequences {xn} and {yn} in X such that

yn = Sxn = Bxn+, yn+ = Txn+ = Cxn+, yn+ = Rxn+ = Axn+

for n = , , , . . . . If yn+ = yn+, then Sp = Ap where p = xn+. If yn = yn+, then Tp = Bp
where p = xn+. If yn+ = yn+, then Rp = Cp where p = xn+. Without loss of generality,
we can assume that yn �= yn+, for all n = , , , . . . .
Now we prove that {yn} is a G-Cauchy sequence in X.
Actually, using condition (.) and (G) we have

G(yn–, yn, yn+) = G(Sxn,Txn+,Rxn–)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Sxn)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn–,Rxn–,Rxn–),

G(Cxn–,Rxn–,Rxn–)G(Axn,Sxn,Sxn)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩

G(yn–, yn, yn)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn–, yn–, yn–),
G(yn–, yn–, yn–)G(yn–, yn, yn)

⎫⎪⎬
⎪⎭

≤ kmax

⎧⎪⎨
⎪⎩
G(yn–, yn–, yn)G(yn–, yn, yn+),
G(yn–, yn, yn+)G(yn–, yn–, yn),
G(yn–, yn–, yn)G(yn–, yn, yn+)

⎫⎪⎬
⎪⎭

= kG(yn–, yn–, yn)G(yn–, yn, yn+).

http://www.journalofinequalitiesandapplications.com/content/2014/1/366
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This implies that

G(yn–, yn, yn+) ≤ kG(yn–, yn–, yn). (.)

Again using condition (.) and (G) we have

G(yn, yn+, yn+) = G(Sxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Sxn)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn+,Rxn+,Rxn+),

G(Cxn+,Rxn+,Rxn+)G(Axn,Sxn,Sxn)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩

G(yn–, yn, yn)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn+),
G(yn+, yn+, yn+)G(yn–, yn, yn)

⎫⎪⎬
⎪⎭

≤ kmax

⎧⎪⎨
⎪⎩
G(yn–, yn, yn+)G(yn, yn+, yn+),
G(yn–, yn, yn+)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn–, yn, yn+)

⎫⎪⎬
⎪⎭

= kG(yn–, yn, yn+)G(yn, yn+, yn+).

This gives

G(yn, yn+, yn+)≤ kG(yn–, yn, yn+). (.)

Similarly, using condition (.) and (G) we have

G(yn+, yn+, yn+) = G(Sxn+,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩
G(Axn+,Sxn+,Sxn+)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn+,Rxn+,Rxn+),
G(Cxn+,Rxn+,Rxn+)G(Axn+,Sxn+,Sxn+)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩

G(yn+, yn+, yn+)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn+),
G(yn+, yn+, yn+)G(yn+, yn+, yn+)

⎫⎪⎬
⎪⎭

≤ kmax

⎧⎪⎨
⎪⎩
G(yn+, yn+, yn+)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn+)

⎫⎪⎬
⎪⎭

= kG(yn, yn+, yn+)G(yn+, yn+, yn+).

This implies that

G(yn+, yn+, yn+)≤ kG(yn, yn+, yn+). (.)

Combining (.), (.), and (.) we have

G(yn, yn+, yn+) ≤ kG(yn–, yn, yn+) ≤ kG(yn–, yn–, yn) ≤ · · · ≤ knG(y, y, y).

http://www.journalofinequalitiesandapplications.com/content/2014/1/366
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Therefore, for all n,m ∈N, n <m, by (G) and (G) we have

G(yn, ym, ym) ≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) +G(yn+, yn+, yn+) + · · ·
+G(ym–, ym, ym)

≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) + · · · +G(ym–, ym, ym+)

≤ (
kn + kn+ + kn+ + · · · + km–)G(y, y, y)

≤ kn

 – k
G(y, y, y) → , as n→ ∞.

Hence {yn} is aG-Cauchy sequence inX. SinceX is a completeG-metric space, there exists
a point u ∈ X such that yn → u (n→ ∞).
Since the sequences {Sxn} = {Bxn+}, {Txn+} = {Cxn+} and {Rxn–} = {Axn} are all

subsequences of {yn}, they all converge to u. We have

yn = Sxn = Bxn+ → u, yn+ = Txn+ = Cxn+ → u,

yn– = Rxn– = Axn → u (n→ ∞).
(.)

Nowwe prove that u is a common fixed point of S, T , R,A, B, and C under condition (a).
First, we suppose that A is continuous, the pair (S,A) is weakly commuting, the pairs

(T ,B) and (R,C) are weakly compatible.
Step . We prove that u = Su = Au.
By (.) and the weakly commuting of the mapping pair (S,A) we have

G(SAxn,ASxn,ASxn) ≤ G(Sxn,Axn,Axn) →  (n→ ∞). (.)

Since A is continuous, Axn → Au (n → ∞), ASxn → Au (n → ∞). By (.) we know
SAxn → Au (n→ ∞).
From condition (.) we know

G(SAxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,SAxn,SAxn)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn+,Rxn+,Rxn+),
G(Cxn+,Rxn+,Rxn+)G(Axn,SAxn,SAxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ we have

G(Au,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Au,Au)G(u,u,u),
G(u,u,u)G(u,u,u),

G(u,u,u)G(Au,Au,Au)

⎫⎪⎬
⎪⎭ = .

This implies that G(Au,u,u)=, and so Au = u.
Again by use of condition (.) we have

G(Su,Txn+,Rxn+)≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Su)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn+,Rxn+,Rxn+),

G(Cxn+,Rxn+,Rxn+)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ .
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Letting n→ ∞ we have

G(Su,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Su)G(u,u,u),
G(u,u,u)G(u,u,u),

G(u,u,u)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ = .

This implies that G(Su,u,u) = , and so Su = u.
So we have u = Au = Su.
Step . We prove that u = Tu = Bu.
Since S(X)⊂ B(X) and u = Su ∈ S(X), there is a point v ∈ X such that u = Su = Bv. Again,

by use of condition (ii), we have

G(Su,Tv,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Su)G(Bv,Tv,Tv),
G(Bv,Tv,Tv)G(Cxn+,Rxn+,Rxn+),
G(Cxn+,Rxn+,Rxn+)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Au = Su we have

G(u,Tv,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,u)G(u,Tv,Tv),
G(u,Tv,Tv)G(u,u,u),
G(u,u,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,Tv,u) = , and so Tv = u.
Since the pair (T ,B) is weakly compatible, we have

Tu = TBv = BTv = Bu.

Again, by use of condition (.), we have

G(Su,Tu,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Su)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cxn+,Rxn+,Rxn+),
G(Cxn+,Rxn+,Rxn+)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Au = Su and Tu = Bu we have

G(u,Tu,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,u)G(Tu,Tu,Tu),
G(Tu,Tu,Tu)G(u,u,u),
G(u,u,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,Tu,u) = , and so Tu = u.
So we have u = Tu = Bu.
Step . We prove that u = Ru = Cu.
Since T(X) ⊂ C(X) and u = Tu ∈ T(X), there is a point w ∈ X such that u = Tu = Cw.

Again, by use of condition (.), we have

G(Su,Tu,Rw) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Su)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cw,Rw,Rw),
G(Cw,Rw,Rw)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/366
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Using u = Au = Su and u = Tu = Bu = Cw, we obtain

G(u,u,Rw) ≤ kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,u),
G(u,u,u)G(u,Rw,Rw),
G(u,Rw,Rw)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,u,Rw) = , and so Rw = u = Cw.
Since the pair (R,C) is weakly compatible, we have

Ru = RCw = CRw = Cu.

Again by use of condition (.), Su = Au and Ru = Cu we have

G(u,u,Ru) =G(Su,Tu,Ru) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Su)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cu,Ru,Ru),
G(Cu,Ru,Ru)G(Au,Su,Su)

⎫⎪⎬
⎪⎭ = .

So we have G(u,u,Ru) = , and so u = Ru = Cu.
Therefore u is the common fixed point of S, T , R, A, B and C when A is continuous and

the pair (S,A) is weakly commuting, the pairs (T ,B) and (F ,C) are weakly compatible.
Next, we suppose that S is continuous, the pair (S,A) is weakly commuting, the pairs

(T ,B) and (R,C) are weakly compatible.
Step . We prove that u = Su.
By (.) and the weakly commuting of the mapping pair (S,A) we have

G(SAxn,ASxn,ASxn) ≤ G(Sxn,Axn,Axn) →  (n→ ∞). (.)

Since S is continuous, Sxn → Su (n → ∞), SAxn → Su (n → ∞). By (.) we know
ASxn → Su (n→ ∞).
From condition (.) we have

G(Sxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(ASxn,Sxn,Sxn)G(Bxn+,Txn+,Txn+),
G(Bxn+,Txn+,Txn+)G(Cxn+,Rxn+,Rxn+),
G(Cxn+,Rxn+,Rxn+)G(ASxn,Sxn,Sxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ we have

G(Su,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(Su,Su,Su)G(u,u,u),
G(u,u,u)G(u,u,u),

G(u,u,u)G(Su,Su,Su)

⎫⎪⎬
⎪⎭ = .

This implies that G(Su,u,u) = , and so Su = u.
Step . We prove that u = Tu = Bu.

http://www.journalofinequalitiesandapplications.com/content/2014/1/366
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Since S(X)⊂ B(X) and u = Su ∈ S(X), there is a point z ∈ X such that u = Su = Bz. Again
by use of condition (.), we have

G(Sxn,Tz,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(ASxn,Sxn,Sxn)G(Bz,Tz,Tz),
G(Bz,Tz,Tz)G(Cxn+,Rxn+,Rxn+),

G(Cxn+,Rxn+,Rxn+)G(ASxn,Sxn,Sxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Su we have

G(u,Tz,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,u)G(u,Tz,Tz),
G(u,Tz,Tz)G(u,u,u),
G(u,u,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,Tz,u) = , and so Tz = u = Bz.
Since the pair (T ,B) is weakly compatible, we have

Tu = TBz = BTz = Bu.

Again, by use of condition (.), we have

G(Sxn,Tu,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Sxn)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cxn+,Rxn+,Rxn+),

G(Cxn+,Rxn+,Rxn+)G(Axn,Sxn,Sxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Su and Tu = Bu we have

G(u,Tu,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,u)G(Tu,Tu,Tu),
G(Tu,Tu,Tu)G(u,u,u),
G(u,u,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,Tu,u) = , and so Tu = u = Bu.
So we have u = Tu = Bu.
Step . We prove that u = Ru = Cu.
SinceT(X)⊂ C(X) and u = Tu ∈ T(X), there is a point t ∈ X such that u = Tu = Ct. Again

by use of condition (.), we have

G(Sxn,Tu,Rt) ≤ kmax

⎧⎪⎨
⎪⎩
G(Axn,Sxn,Sxn)G(Bu,Tu,Tu),

G(Bu,Tu,Tu)G(Ct,Rt,Rt),
G(Ct,Rt,Rt)G(Axn,Sxn,Sxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Tu = Bu, we obtain

G(u,u,Rt) ≤ kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,u),
G(u,u,u)G(u,Rt,Rt),
G(u,Rt,Rt)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,u,Rt) = , and so Rt = u = Ct.
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Since the pair (R,C) is weakly compatible, we have

Ru = RCt = CRt = Cu.

Again, by use of condition (.), we have

G(Sxn,Tu,Ru) ≤ kmax

⎧⎪⎨
⎪⎩
G(Axn,Sxn,Sxn)G(Bu,Tu,Tu),

G(Bu,Tu,Tu)G(Cu,Ru,Ru),
G(Cu,Ru,Ru)G(Axn,Sxn,Sxn)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Tu = Bu we have

G(u,u,Ru) ≤ kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,u),
G(u,u,u)G(Ru,Ru,Ru),
G(Ru,Ru,Ru)G(u,u,u)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,u,Ru) = , and so Ru = u = Cu.
Step . We prove that u = Au.
Since R(X) ⊂ A(X) and u = Ru ∈ R(X), there is a point p ∈ X such that u = Ru = Ap.

Again by use of condition (.), we have

G(Sp,Tu,Ru) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ap,Sp,Sp)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cu,Ru,Ru),
G(Cu,Ru,Ru)G(Ap,Sp,Sp)

⎫⎪⎬
⎪⎭ .

Using u = Tu = Bu and u = Ru = Cu, we obtain

G(Sp,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,Sp,Sp)G(u,u,u),
G(u,u,u)G(u,u,u),
G(u,u,u)G(u,Sp,Sp)

⎫⎪⎬
⎪⎭ = .

This implies that G(Sp,u,u) = , and Sp = u = Ap.
Since the pair (S,A) is weakly compatible, we have

Su = SAp = ASp = Au = u.

Therefore u is the common fixed point of S, T , R, A, B, and C when S is continuous and
the pair (S,A) is weakly commuting, the pairs (T ,B) and (F ,C) are weakly compatible.
Similarly we can prove that u is the unique common fixed point of the maps S, T , R, A,

B, and C under the conditions of (b) and (c).
Next we prove the uniqueness of a common fixed point u.
Let u and v be two common fixed points of S, T , R, A, B, and C, by use of condition (.),

we have

G(u,u, v) =G(Su,Tu,Rv) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Su)G(Bu,Tu,Tu),
G(Bu,Tu,Tu)G(Cv,Rv,Rv),
G(Cv,Rv,Rv)G(Au,Su,Su))

⎫⎪⎬
⎪⎭ = .

This shows that G(u,u, v) = , and so u = v. Thus the common fixed point is unique.
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If condition (.) holds, then the argument is similar to that above, so we omit it. �

Theorem . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:

(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) the pairs (S,A), (T ,B), and (R,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G(Spx,Tqy,Rrz
) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Spx,Spx)G(By,Tqy,Tqy),
G(By,Tqy,Tqy)G(Cz,Rrz,Rrz),
G(Cz,Rrz,Rrz)G(Ax,Spx,Spx)

⎫⎪⎬
⎪⎭ (.)

or

G(Spx,Tqy,Rrz
) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Ax,Spx)G(By,By,Tqy),
G(By,By,Tqy)G(Cz,Cz,Rrz),
G(Cz,Cz,Rrz)G(Ax,Ax,Spx)

⎫⎪⎬
⎪⎭ , (.)

where k ∈ [, ), p,q, r ∈N, then S, T , R, A, B, and C have a unique common fixed
point in X .

Proof Suppose the condition (.) holds. Since SpX ⊂ Sp–X ⊂ · · · ⊂ SX, SX ⊂ BX, so that
SpX ⊂ BX. Similar, we can show that TqX ⊂ CX and RrX ⊂ AX. From Theorem ., we
see that Sp, Tq, Rr , A, B, and C have a unique common fixed point u.
Since Su = S(Spu) = Sp+u = Sp(Su), so that

G(SpSu,Tqu,Rru
) ≤ kmax

⎧⎪⎨
⎪⎩
G(ASu,SpSu,SpSu)G(Bu,Tqu,Tqu),
G(Bu,Tqu,Tqu)G(Cu,Rru,Rru),
G(Cu,Rru,Rru)G(ASu,SpSu,SpSu)

⎫⎪⎬
⎪⎭ .

Note that u = Au = Bu = Cu = Spu = Tqu = Rru and SpSu = Su, we obtain

G(Su,u,u) =G(SpSu,Tqu,Rru
) ≤ kmax

⎧⎪⎨
⎪⎩
G(ASu,Su,Su)G(u,u,u),

G(u,u,u)G(u,u,u),
G(u,u,u)G(ASu,Su,Su)

⎫⎪⎬
⎪⎭ = .

This implies that G(Su,u,u) = , and so Su = u.
By the same argument, we can prove Tu = u and Ru = u. Thus we have u = Su = Tu =

Fu = Au = Bu = Cu, so that S, T , R, A, B, and C have a common fixed point u in X. Let v
be any other common fixed point of S, T , R, A, B, and C, then use of condition (.), we
have

G(u,u, v) =G(Spu,Tqu,Rrv
) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Spu,Spu)G(Bu,Tqu,Tqu),
G(Bu,Tqu,Tqu)G(Cv,Rrv,Rrv),
G(Cv,Rrv,Rrv)G(Au,Spu,Spu)

⎫⎪⎬
⎪⎭ = .

This implies that G(u,u, v) = , and so u = v. Thus the common fixed point is unique.
If condition (.) holds, then the argument is similar to that above, so we omit it. �
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Remark . Theorems . and . improve and extend the corresponding results in Ye
and Gu [, Theorem ., Corollary .] from three self-mappings to six self-mappings.

Corollary . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:
(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) ∀x, y, z ∈ X,

G(Sx,Ty,Rz) ≤ aG(Ax,Sx,Sx)G(By,Ty,Ty) + bG(By,Ty,Ty)G(Cz,Rz,Rz)

+ cG(Cz,Rz,Rz)G(Ax,Sx,Sx) (.)

or

G(Sx,Ty,Rz) ≤ aG(Ax,Ax,Sx)G(By,By,Ty) + bG(By,By,Ty)G(Cz,Cz,Rz)

+ cG(Cz,Cz,Rz)G(Ax,Ax,Sx), (.)

where  ≤ a + b + c < . Then one of the pairs (S,A), (T ,B), and (R,C) has a coincidence
point in X.Moreover, assume one of the following conditions is satisfied:
(a) either S or A is G-continuous, the pair (S,A) is weakly commuting, the pairs (T ,B)

and (R,C) are weakly compatible;
(b) either T or B is G-continuous, the pair (T ,B) is weakly commuting, the pairs (S,A)

and (R,C) are weakly compatible;
(c) either F or C is G-continuous, the pair (R,C) is weakly commuting, the pairs (S,A)

and (T ,B) are weakly compatible.
Then the mappings S, T , R, A, B, and C have a unique common fixed point in X.

Proof Suppose the condition (.) holds. For x, y, z ∈ X, let

M(x, y, z) =max

⎧⎪⎨
⎪⎩
G(Ax,Sx,Sx)G(By,Ty,Ty),
G(By,Ty,Ty)G(Cz,Rz,Rz),
G(Cz,Rz,Rz)G(Ax,Sx,Sx)

⎫⎪⎬
⎪⎭ .

Then

aG(Ax,Sx,Sx)G(By,Ty,Ty) + bG(By,Ty,Ty)G(Cz,Rz,Rz)

+ cG(Cz,Rz,Rz)G(Ax,Sx,Sx)

≤ (a + b + c)M(x, y, z).

So, if

G(Sx,Ty,Rz) ≤ aG(Ax,Sx,Sx)G(By,Ty,Ty) + bG(By,Ty,Ty)G(Cz,Rz,Rz)

+ cG(Cz,Rz,Rz)G(Ax,Sx,Sx),

thenG(Sx,Ty,Rz)≤ (a+b+c)M(x, y, z). Taking k = a+b+c in Theorem ., the conclusion
of Corollary . can be obtained from Theorem . immediately.
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If condition (.) holds, then the argument is similar to that above, so we omit it. This
completes the proof of Corollary .. �

Remark . If A = B = C = I (I is the identity mapping, here and below), Corollary . is
reduced to Theorem . of Ye and Gu [].

Corollary . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:

(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) the pairs (S,A), (T ,B), and (R,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G(Spx,Tqy,Rrz
)

≤ aG
(
Ax,Spx,Spx

)
G

(
By,Tqy,Tqy

)
+ bG

(
By,Tqy,Tqy

)
G

(
Cz,Rrz,Rrz

)
+ cG

(
Cz,Rrz,Rrz

)
G

(
Ax,Spx,Spx

)
(.)

or

G(Spx,Tqy,Rrz
)

≤ aG
(
Ax,Ax,Spx

)
G

(
By,By,Tqy

)
+ bG

(
By,By,Tqy

)
G

(
Cz,Cz,Rrz

)
+ cG

(
Cz,Cz,Rrz

)
G

(
Ax,Ax,Spx

)
, (.)

where  ≤ a + b + c + d < , p,q, r ∈N, then S, T , R, A, B, and C have a unique
common fixed point in X .

Proof The proof follows from Theorem ., and from an argument similar to that used in
Corollary .. �

Remark . If A = B = C = I , Corollary . is reduced to Corollary . of Ye and Gu [].

In Theorem ., if we take A = B = C = I , then we have the following corollary.

Corollary . Let (X,G) be a complete G-metric space and let S, T , and R be three map-
pings of X into itself satisfying the following conditions:

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(x,Sx,Sx)G(y,Ty,Ty),
G(y,Ty,Ty)G(z,Rz,Rz),
G(z,Rz,Rz)G(x,Sx,Sx)

⎫⎪⎬
⎪⎭ (.)

or

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(x,x,Sx)G(y, y,Ty),
G(y, y,Ty)G(z, z,Rz),
G(z, z,Rz)G(x,x,Sx)

⎫⎪⎬
⎪⎭ (.)

for all x, y, z ∈ X, where k ∈ [, ).
Then the mappings S, T , and R have a unique common fixed point in X.
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Remark . In Theorems ., ., Corollaries ., . and ., we have taken: () S = T = R;
()A = B = C; ()A = B = C = I ; ()T = R andB = C; ()T = R,B = C = I , several new result
can be obtain.

Theorem . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:
(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) ∀x, y, z ∈ X,

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Sx,Ty)G(By,Ty,Rz),
G(By,Ty,Rz)G(Cz,Rz,Sx),
G(Cz,Rz,Sx)G(Ax,Sx,Ty)

⎫⎪⎬
⎪⎭ (.)

or

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Ax,Ty)G(By,By,Rz),
G(By,By,Rz)G(Cz,Cz,Sx),
G(Cz,Cz,Sx)G(Ax,Ax,Ty)

⎫⎪⎬
⎪⎭ , (.)

where k ∈ [,  ).Then one of the pairs (S,A), (T ,B), and (R,C) has a coincidence point in X.
Moreover, assume one of the following conditions is satisfied:
(a) either S or A is G-continuous, the pair (S,A) is weakly commuting, the pairs (T ,B)

and (R,C) are weakly compatible;
(b) either T or B is G-continuous, the pair (T ,B) is weakly commuting, the pairs (S,A)

and (R,C) are weakly compatible;
(c) either F or C is G-continuous, the pair (R,C) is weakly commuting, the pairs (S,A)

and (T ,B) are weakly compatible.
Then the mappings S, T , R, A, B, and C have a unique common fixed point in X.

Proof First, we suppose that the condition (.) holds.
Let x in X be an arbitrary point, since S(X) ⊂ B(X), T(X) ⊂ C(X), R(X) ⊂ A(X) there

exist the sequences {xn} and {yn} in X, such that

yn = Sxn = Bxn+, yn+ = Txn+ = Cxn+, yn+ = Rxn+ = Axn+

for n = , , , . . . .
If yn+ = yn+, then Sp = Apwhere p = xn+. If yn = yn+, then Tp = Bpwhere p = xn+.

If yn+ = yn+, then Rp = Cp where p = xn+. Without loss of generality, we can assume
that yn �= yn+, for all n = , , , . . . .
Now we prove that {yn} is a G-Cauchy sequence in X.
In fact, using condition (.) we have

G(yn–, yn, yn+) = G(Sxn,Txn+,Rxn–)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Txn+)G(Bxn+,Txn+,Rxn–),
G(Bxn+,Txn+,Rxn–)G(Cxn–,Rxn–,Sxn),
G(Cxn–,Rxn–,Sxn)G(Axn,Sxn,Txn+)

⎫⎪⎬
⎪⎭
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= kmax

⎧⎪⎨
⎪⎩
G(yn–, yn, yn+)G(yn, yn+, yn–),
G(yn, yn+, yn–)G(yn–, yn–, yn),
G(yn–, yn–, yn)G(yn–, yn, yn+)

⎫⎪⎬
⎪⎭

= kmax

{
G(yn–, yn, yn+),

G(yn–, yn–, yn)G(yn–, yn, yn+)

}
. (.)

If

max
{
G(yn–, yn, yn+),G(yn–, yn–, yn)G(yn–, yn, yn+)

}
=G(yn–, yn, yn+),

then by the inequality (.) we obtain

G(yn–, yn, yn+) ≤ kG(yn–, yn, yn+),

which is a contradiction since ≤ k < 
 , and hence

max
{
G(yn–, yn, yn+),G(yn–, yn–, yn)G(yn–, yn, yn+)

}
=G(yn–, yn–, yn)G(yn–, yn, yn+).

Therefore, the inequality (.) implies that

G(yn–, yn, yn+) ≤ kG(yn–, yn–, yn). (.)

Again using the condition (.) we have

G(yn, yn+, yn+) = G(Sxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Txn+)G(Bxn+,Txn+,Rxn+),
G(Bxn+,Txn+,Rxn+)G(Cxn+,Rxn+,Sxn),
G(Cxn+,Rxn+,Sxn)G(Axn,Sxn,Txn+)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩
G(yn–, yn, yn+)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn),
G(yn+, yn+, yn)G(yn–, yn, yn+)

⎫⎪⎬
⎪⎭

= kmax

{
G(yn–, yn, yn+)G(yn, yn+, yn+),

G(yn, yn+, yn+)

}
. (.)

If

max
{
G(yn–, yn, yn+)G(yn, yn+, yn+),G(yn, yn+, yn+)

}
=G(yn, yn+, yn+),

then the inequality (.) implies that

G(yn, yn+, yn+)≤ kG(yn, yn+, yn+),
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this is a contradiction, and so

max
{
G(yn–, yn, yn+)G(yn, yn+, yn+),G(yn, yn+, yn+)

}
=G(yn–, yn, yn+)G(yn, yn+, yn+).

Therefore, the inequality (.) implies that

G(yn, yn+, yn+)≤ kG(yn–, yn, yn+). (.)

Similarly, using condition (.), we have

G(yn+, yn+, yn+)

=G(Sxn+,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩
G(Axn+,Sxn+,Txn+)G(Bxn+,Txn+,Rxn+),
G(Bxn+,Txn+,Rxn+)G(Cxn+,Rxn+,Sxn+),
G(Cxn+,Rxn+,Sxn+)G(Axn+,Sxn+,Txn+)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩

G(yn+, yn+, yn+)G(yn, yn+, yn+),
G(yn, yn+, yn+)G(yn+, yn+, yn+),
G(yn+, yn+, yn+)G(yn+, yn+, yn+)

⎫⎪⎬
⎪⎭

= kmax

{
G(yn, yn+, yn+)G(yn+, yn+, yn+),

G(yn+, yn+, yn+)

}
. (.)

If

max
{
G(yn, yn+, yn+)G(yn+, yn+, yn+),G(yn+, yn+, yn+)

}
=G(yn+, yn+, yn+),

then from the inequality (.) we get

G(yn+, yn+, yn+)≤ kG(yn+, yn+, yn+),

which is a contradiction, hence we have

max
{
G(yn, yn+, yn+)G(yn+, yn+, yn+),G(yn+, yn+, yn+)

}
=G(yn, yn+, yn+)G(yn+, yn+, yn+).

Therefore, the above inequality (.) becomes

G(yn+, yn+, yn+)≤ kG(yn, yn+, yn+). (.)

By combining (.), (.), and (.), ∀n ∈N, we have

G(yn, yn+, yn+) ≤ kG(yn–, yn, yn+) ≤ · · · ≤ knG(y, y, y). (.)
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Therefore, for allm,n ∈N,m > n, by (G), (G), and (.) we have

G(yn, ym, ym) ≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) + · · · +G(ym–, ym, ym)

≤ G(yn, yn+, yn+) +G(yn+, yn+, yn+) + · · · +G(ym–, ym, ym+)

≤ (
kn + kn+ + · · · + km–)G(y, y, y)

<
kn

 – k
G(y, y, y) →  (n→ ∞).

This implies thatG(yn, ym, ym)→ , as n,m → ∞. Thus {yn} is aG-Cauchy sequence in X.
Due to the G-completeness of X, there exists u ∈ X, such that {yn} is G-convergent to u.
Since the sequences {Sxn} = {Bxn+}, {Txn+} = {Cxn+} and {Rxn–} = {Axn} are all

subsequences of {yn}, they all converge to u. We have

yn = Sxn = Bxn+ → u, yn+ = Txn+ = Cxn+ → u,

yn– = Rxn– = Axn → u (n→ ∞)
(.)

Now we prove that u is a common fixed point of S, T , R, A, B, and C under the condi-
tion (a).
First, we suppose that A is continuous, the pair (S,A) is weakly commuting, the pairs

(T ,B) and (R,C) are weakly compatible.
Step . We prove that u = Su = Au.
By (.) and the weakly commuting of the mapping pair (S,A) we have

G(SAxn,ASxn,ASxn) ≤ G(Sxn,Axn,Axn) →  (n→ ∞). (.)

Since A is continuous, Axn → Au (n→ ∞), ASxn → Au (n→ ∞). By (.) we know
SAxn → Au (n→ ∞).
From condition (.) we know

G(SAxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,SAxn,Txn+)G(Bxn+,Txn+,Rxn+),
G(Bxn+,Txn+,Rxn+)G(Cxn+,Rxn+,SAxn),
G(Cxn+,Rxn+,SAxn)G(Axn,SAxn,Txn+)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ we have

G(Au,u,u) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Au,u)G(u,u,u),
G(u,u,u)G(u,u,Au),

G(u,u,Au)G(Au,Au,u)

⎫⎪⎬
⎪⎭ = kG(u,u,Au)G(Au,Au,u). (.)

If G(Au,u,u) �= , then from (.) and Proposition ., we obtain

G(Au,u,u) ≤ kG(Au,Au,u) ≤ kG(Au,u,u),

which is a contradiction since ≤ k < 
 . So G(Au,u,u) = , this is Au = u.
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Again, by use of condition (.) we have

G(Su,Txn+,Rxn+)≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Txn+)G(Bxn+,Txn+,Rxn+),
G(Bxn+,Txn+,Rxn+)G(Cxn+,Rxn+,Su),

G(Cxn+,Rxn+,Su)G(Au,Su,Txn+)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using Au = u we have

G(Su,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,Su,u)G(u,u,u),
G(u,u,u)G(u,u,Su),
G(u,u,Su)G(u,Su,u)

⎫⎪⎬
⎪⎭ = kG(Su,u,u).

This implies that G(Su,u,u) = , and so Su = u. Therefore we have u = Au = Su.
Step . We prove that u = Tu = Bu.
Since S(X)⊂ B(X) and u = Su ∈ S(X), there is a point v ∈ X such that u = Su = Bv. Again

by use of condition (.), we have

G(Su,Tv,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Tv)G(Bv,Tv,Rxn+),
G(Bv,Tv,Rxn+)G(Cxn+,Rxn+,Su),
G(Cxn+,Rxn+,Su)G(Au,Su,Tv)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Au = Su = Bv we have

G(u,Tv,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,Tv)G(u,Tv,u),
G(u,Tv,u)G(u,u,u),
G(u,u,u)G(u,u,Tv)

⎫⎪⎬
⎪⎭ = kG(u,Tv,u).

This implies that G(u,Tv,u) = , and so Tv = u.
Since the pair (T ,B) is weakly compatible, we have

Tu = TBv = BTv = Bu.

Again by use of condition (.), we have

G(Su,Tu,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Au,Su,Tu)G(Bu,Tu,Rxn+),
G(Bu,Tu,Rxn+)G(Cxn+,Rxn+,Su),
G(Cxn+,Rxn+,Su)G(Au,Su,Tu)

⎫⎪⎬
⎪⎭ .

Letting n → ∞, using u = Au = Su, Tu = Bu, and Proposition ., we have

G(u,Tu,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,Tu)G(Tu,Tu,u),
G(Tu,Tu,u)G(u,u,u),
G(u,u,u)G(u,u,Tu)

⎫⎪⎬
⎪⎭

= kG(u,u,Tu)G(Tu,Tu,u)

≤ kG(u,Tu,u).

This implies that G(u,Tu,u) = , and so Tu = u.
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So we have u = Tu = Bu.
Step . We prove that u = Ru = Cu.
Since T(X) ⊂ C(X) and u = Tu ∈ T(X), there is a point w ∈ X such that u = Tu = Cw.

Again by use of condition (.), we have

G(Su,Tu,Rw) ≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Tu)G(Bu,Tu,Rw),
G(Bu,Tu,Rw)G(Cw,Rw,Su),
G(Cw,Rw,Su)G(Au,Su,Tu)

⎫⎪⎬
⎪⎭ .

Using u = Au = Su and u = Tu = Bu = Cw, we obtain

G(u,u,Rw) ≤ kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,Rw),
G(u,u,Rw)G(u,Rw,u),
G(u,Rw,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = kG(u,u,Rw).

This implies that G(u,u,Rw) = , and so Rw = u = Cw.
Since the pair (R,C) is weakly compatible, we have

Ru = RCw = CRw = Cu.

Again, by use of condition (.), u = Su = Au = Tu = Bu, Ru = Cu, and Proposition ., we
have

G(u,u,Ru) = G(Su,Tu,Ru)

≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Tu)G(Bu,Tu,Ru),
G(Bu,Tu,Ru)G(Cu,Ru,Su),
G(Cu,Ru,Su)G(Au,Su,Tu)

⎫⎪⎬
⎪⎭

= kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,Ru),
G(u,u,Ru)G(Ru,Ru,u),
G(Ru,Ru,u)G(u,u,u)

⎫⎪⎬
⎪⎭

= kG(u,u,Ru)G(Ru,Ru,u)

≤ kG(u,u,Ru).

This implies that G(u,u,Ru) = , and so Ru = u = Cu.
Therefore u is the common fixed point of S, T , R, A, B and C when A is continuous and

the pair (S,A) is weakly commuting, the pairs (T ,B) and (F ,C) are weakly compatible.
Next, we suppose that S is continuous, the pair (S,A) is weakly commuting, the pairs

(T ,B) and (R,C) are weakly compatible.
Step . We prove that u = Su.
By (.) and the weakly commuting of the mapping pair (S,A) we have

G(SAxn,ASxn,ASxn) ≤ G(Sxn,Axn,Axn) →  (n→ ∞). (.)

Since S is continuous, Sxn → Su (n → ∞), SAxn → Su (n → ∞). By (.) we know
ASxn → Su (n→ ∞).
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From condition (.) we have

G(Sxn,Txn+,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩
G(ASxn,Sxn,Txn+)G(Bxn+,Txn+,Rxn+),
G(Bxn+,Txn+,Rxn+)G(Cxn+,Rxn+,Sxn),
G(Cxn+,Rxn+,Sxn)G(ASxn,Sxn,Txn+)

⎫⎪⎬
⎪⎭ .

Letting n → ∞, and using Proposition ., we have

G(Su,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(Su,Su,u)G(u,u,u),
G(u,u,u)G(u,u,Su),
G(u,u,Su)G(Su,Su,u)

⎫⎪⎬
⎪⎭

= kG(u,u,Su)G(Su,Su,u)

≤ kG(Su,u,u).

This implies that G(Su,u,u) = , and so Su = u.
Step . We prove that u = Tu = Bu.
Since S(X)⊂ B(X) and u = Su ∈ S(X), there is a point z ∈ X such that u = Su = Bz. Again

by use of condition (.), we have

G(Sxn,Tz,Rxn+)

≤ kmax

⎧⎪⎨
⎪⎩

G(ASxn,Sxn,Tz)G(Bz,Tz,Rxn+),
G(Bz,Tz,Rxn+)G(Cxn+,Rxn+,Sxn),
G(Cxn+,Rxn+,Sxn)G(ASxn,Sxn,Tz)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Su = Bz we have

G(u,Tz,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,Tz)G(u,Tz,u),
G(u,Tz,u)G(u,u,u),
G(u,u,u)G(u,u,Tz)

⎫⎪⎬
⎪⎭ = kG(u,Tz,u).

This implies that G(u,Tz,u) = , and so Tz = u = Bz.
Since the pair (T ,B) is weakly compatible, we have

Tu = TBz = BTz = Bu.

Again, by use of condition (.), we have

G(Sxn,Tu,Rxn+) ≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Tu)G(Bu,Tu,Rxn+),
G(Bu,Tu,Rxn+)G(Cxn+,Rxn+,Sxn),
G(Cxn+,Rxn+,Sxn)G(Axn,Sxn,Tu)

⎫⎪⎬
⎪⎭ .
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Letting n → ∞, using u = Su, Tu = Bu, and Proposition ., we have

G(u,Tu,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,Tu)G(Tu,Tu,u),
G(Tu,Tu,u)G(u,u,u),
G(u,u,u)G(u,u,Tu)

⎫⎪⎬
⎪⎭

= kG(u,u,Tu)G(Tu,Tu,u)

≤ kG(u,Tu,u).

This implies that G(u,Tu,u) = , and so Tu = u = Bu.
So we have u = Tu = Bu.
Step . We prove that u = Ru = Cu.
Since T(X) ⊂ C(X) and u = Tu ∈ T(X), there is a point t ∈ X such that u = Tu = Ct.

Again, by use of condition (.), we have

G(Sxn,Tu,Rt) ≤ kmax

⎧⎪⎨
⎪⎩
G(Axn,Sxn,Tu)G(Bu,Tu,Rt),
G(Bu,Tu,Rt)G(Ct,Rt,Sxn),

G(Ct,Rt,Sxn)G(Axn,Sxn,Tu)

⎫⎪⎬
⎪⎭ .

Letting n → ∞ and using u = Tu = Bu = Ct, we obtain

G(u,u,Rt) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,u,u)G(u,u,Rt),
G(u,u,Rt)G(u,Rt,u),
G(u,Rt,u)G(u,u,u)

⎫⎪⎬
⎪⎭ = kG(u,u,Rt).

This implies that G(u,u,Rt) = , and so Rt = u = Ct.
Since the pair (R,C) is weakly compatible, we have

Ru = RCt = CRt = Cu.

Again, by use of condition (.), we have

G(Sxn,Tu,Ru) ≤ kmax

⎧⎪⎨
⎪⎩

G(Axn,Sxn,Tu)G(Bu,Tu,Ru),
G(Bu,Tu,Ru)G(Cu,Ru,Sxn),

G(Cu,Ru,Sxn)G(Axn,Sxn,Tu)

⎫⎪⎬
⎪⎭ .

Letting n → ∞, using u = Tu = Bu, Ru = Cu, and Proposition ., we have

G(u,u,Ru) ≤ kmax

⎧⎪⎨
⎪⎩

G(u,u,u)G(u,u,Ru),
G(u,u,Ru)G(Ru,Ru,u),
G(Ru,Ru,u)G(u,u,u)

⎫⎪⎬
⎪⎭

= kG(u,u,Ru)G(Ru,Ru,u)

≤ kG(u,u,Ru).

This implies that G(u,u,Ru) = , and so Ru = u = Cu.
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Step . We prove that u = Au.
Since R(X) ⊂ A(X) and u = Ru ∈ R(X), there is a point p ∈ X such that u = Ru = Ap.

Again, by use of condition (.), we have

G(Sp,Tu,Ru) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ap,Sp,Tu)G(Bu,Tu,Ru),
G(Bu,Tu,Ru)G(Cu,Ru,Sp),
G(Cu,Ru,Sp)G(Ap,Sp,Tu)

⎫⎪⎬
⎪⎭ .

Using u = Tu = Bu and u = Ru = Cu = Ap, we obtain

G(Sp,u,u) ≤ kmax

⎧⎪⎨
⎪⎩
G(u,Sp,uu)G(u,u,u),
G(u,u,u)G(u,u,Sp),
G(u,u,Sp)G(u,Sp,u)

⎫⎪⎬
⎪⎭ = kG(Sp,u,u).

This implies that G(Sp,u,u) = , and Sp = u = Ap.
Since the pair (S,A) is weakly compatible, we have

u = Su = SAp = ASp = Au.

Therefore u is the common fixed point of S, T , R, A, B and C when S is continuous and
the pair (S,A) is weakly commuting, the pairs (T ,B) and (F ,C) are weakly compatible.
Similarly we can prove that u is the unique common fixed point of the maps S, T , R, A,

B, and C under the conditions of (b) and (c).
Next we prove the uniqueness of a common fixed point u.
Let u and v are two common fixed point of S, T , R, A, B, and C, by (.) and Proposi-

tion . we have

G(u,u, v) = G(Su,Tu,Rv)

≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Su,Tu)G(Bu,Tu,Rv),
G(Bu,Tu,Rv)G(Cv,Rv,Su),
G(Cv,Rv,Su)G(Au,Su,Tu))

⎫⎪⎬
⎪⎭

= kG(u,u, v)G(v, v,u)

≤ kG(u,u, v).

This shows that G(u,u, v) = , and so u = v. Thus the common fixed point is unique.
If condition (.) holds, then the argument is similar to that above, so we omit it. �

Now we introduce an example to support Theorem ..

Example . Let X = [, ], and (X,G) be a G-metric space defined by G(x, y, z) = |x– y|+
|y – z| + |z – x| for all x, y, z in X. Let f , g , h, A, B, and C be self-mappings defined by

Sx =



, Tx =

{

 , x ∈ [,  ],

 , x ∈ (  , ],

Rx =

{

 , x ∈ [,  ],

 , x ∈ (  , ],

Ax =

⎧⎪⎨
⎪⎩
, x ∈ [,  ],

 , x ∈ (  , ),

 , x = ,

Bx =

{
, x ∈ [,  ],

 , x ∈ (  , ],

Cx =

⎧⎪⎨
⎪⎩
, x ∈ [,  ],

 , x ∈ (  , ),

 , x = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/366


Yang Journal of Inequalities and Applications 2014, 2014:366 Page 23 of 31
http://www.journalofinequalitiesandapplications.com/content/2014/1/366

Note that S is G-continuous in X, and T , R, A, B, and C are not G-continuous in X.
Clearly we get S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X).
By the definition of the mappings of S and A, for all x ∈ [, ], we have

G(SAx,ASx,ASx) =G
(



,



,



)
=  ≤ G(Sx,Ax,Ax),

so we can see the pair (S,A) is weakly commuting.
By the definition of the mappings of T and B, only for x ∈ (  , ], Tx = Bx, at this time

TBx = T(  ) =

 = B(  ) = BTx, so TBx = BTx, so we can see that the pair (T ,B) is weakly

compatible. Similarly we can prove the pair (R,C) is also weakly compatible.
Now we prove the mappings S, T , R, A, B, and C satisfy condition (.) of Theorem .

with k = 
 ∈ [,  ). Let

N(x, y, z) =max

⎧⎪⎨
⎪⎩
G(Ax,Sx,Ty)G(By,Ty,Rz),
G(By,Ty,Rz)G(Cz,Rz,Sx),
G(Cz,Rz,Sx)G(Ax,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Case . If x, y, z ∈ [,  ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(Ax,Sx,Ty) =G
(
,



,



)
=




, G(By,Ty,Rz) =G
(
,



,



)
=




.

Thus we have

G(Sx,Ty,Rz) =
(




)

<



· 


· 


=



G(Ax,Sx,Ty)G(By,Ty,Rz)

≤ 


N(x, y, z).

Case . If x, y ∈ [,  ], z ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(Ax,Sx,Ty) =G
(
,



,



)
=




, G(By,Ty,Rz) =G
(
,



,



)
=




.

Therefore we get

G(Sx,Ty,Rz) =
(




)

<



· 


· 


=



G(Ax,Sx,Ty)G(By,Ty,Rz)

≤ 


N(x, y, z).
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Case . If x, z ∈ [,  ], y ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(Ax,Sx,Ty) =G
(
,



,



)
=




, G(By,Ty,Rz) =G
(



,



,



)
=




.

Hence we have

G(Sx,Ty,Rz) =
(




)

<



· 


· 


=



G(Ax,Sx,Ty)G(By,Ty,Rz)

≤ 


N(x, y, z).

Case . If y, z ∈ [,  ], x ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(By,Ty,Rz) =G
(
,



,



)
=




,

G(Cz,Rz,Sx) =G
(
,



,



)
=




.

So we get

G(Sx,Ty,Rz) =
(




)

<



· 


· 


=



G(By,Ty,Rz)G(Cz,Rz,Sx)

≤ 


N(x, y, z).

Case . If x ∈ [,  ], y, z ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=  ≤ 


N(x, y, z).

Case . If y ∈ [,  ], x, z ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(Ax,Sx,Ty) =

{
G(  ,


 ,


 ), x ∈ (  , ),

G(  ,

 ,


 ), x = ,

=

{


 , x ∈ (  , ),


 , x = ,
=




,

G(By,Ty,Rz) =G
(
,



,



)
=




.

http://www.journalofinequalitiesandapplications.com/content/2014/1/366


Yang Journal of Inequalities and Applications 2014, 2014:366 Page 25 of 31
http://www.journalofinequalitiesandapplications.com/content/2014/1/366

Thus we have

G(Sx,Ty,Rz) =
(




)

=



· 


· 


=



G(Ax,Sx,Ty)G(By,Ty,Rz)

≤ 


N(x, y, z).

Case . If z ∈ [,  ], x, y ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=

(




)

,

G(By,Ty,Rz) =G
(



,



,



)
=




, G(Cz,Rz,Sx) =G
(
,



,



)
=




.

Hence we have

G(Sx,Ty,Rz) =
(




)

<



· 


· 


=



G(By,Ty,Rz)G(Cz,Rz,Sx)

≤ 


N(x, y, z).

Case . If x, y, z ∈ (  , ], then

G(Sx,Ty,Rz) =G
(



,



,



)
=  ≤ 


N(x, y, z).

Then in all the above cases, the mappings S, T , R, A, B, and C are satisfying the condition
(.) of Theorem . with k = 

 . Thus all the conditions of Theorem . are satisfied.
Moreover, 

 is the unique common fixed point for all of the mappings S, T , R, A, B,
and C.

Theorem . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:

(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) the pairs (S,A), (T ,B), and (R,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G(Spx,Tqy,Rrz
) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Spx,Tqy)G(By,Tqy,Rrz),
G(By,Tqy,Rrz)G(Cz,Rrz,Spx),
G(Cz,Rrz,Spx)G(Ax,Spx,Tqy)

⎫⎪⎬
⎪⎭ (.)

or

G(Spx,Tqy,Rrz
) ≤ kmax

⎧⎪⎨
⎪⎩
G(Ax,Ax,Tqy)G(By,By,Rrz),
G(By,By,Rrz)G(Cz,Cz,Spx),
G(Cz,Cz,Spx)G(Ax,Ax,Tqy)

⎫⎪⎬
⎪⎭ , (.)
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where k ∈ [,  ), p,q, r ∈N, then S, T , R, A, B, and C have a unique common fixed
point in X .

Proof Suppose the condition (.) holds. Since SpX ⊂ Sp–X ⊂ · · · ⊂ SX, SX ⊂ BX, so
that SpX ⊂ BX. Similar, we can show that TqX ⊂ CX and RrX ⊂ AX. From Theorem .,
we see that Sp, Tq, Rr , A, B, and C have a unique common fixed point u.
Since Su = S(Spu) = Sp+u = Sp(Su),

G(SpSu,Tqu,Rru
) ≤ kmax

⎧⎪⎨
⎪⎩
G(ASu,SpSu,Tqu)G(Bu,Tqu,Rru),
G(Bu,Tqu,Rru)G(Cu,Rru,SpSu),
G(Cu,Rru,SpSu)G(ASu,SpSu,Tqu)

⎫⎪⎬
⎪⎭ .

Note that u = Au = Bu = Cu = Spu = Tqu = Rru, SpSu = Su, and AS = SA, using Proposi-
tion ., we obtain

G(Su,u,u) = G(SpSu,Tqu,Rru
)

≤ kmax

⎧⎪⎨
⎪⎩
G(Su,Su,u)G(u,u,u),
G(u,u,u)G(u,u,Su),
G(u,u,Su)G(Su,Su,u)

⎫⎪⎬
⎪⎭

= kG(u,u,Su)G(Su,Su,u)

≤ kG(Su,u,u).

This implies that G(Su,u,u) = , and so Su = u.
By the same argument, we can prove Tu = u and Ru = u. Thus we have u = Su = Tu =

Ru = Au = Bu = Cu, so that S, T , R, A, B, and C have a common fixed point u in X. Let v
be any other common fixed point of S, T , R, A, B, and C, then by use of condition (.)
and Proposition ., we have

G(u,u, v) = G(Spu,Tqu,Rrv
)

≤ kmax

⎧⎪⎨
⎪⎩
G(Au,Spu,Tqu)G(Bu,Tqu,Rrv),
G(Bu,Tqu,Rrv)G(Cv,Rrv,Spu),
G(Cv,Rrv,Spu)G(Au,Spu,Tqu)

⎫⎪⎬
⎪⎭

= kG(u,u, v)G(v, v,u)

≤ G(u,u, v).

This implies that G(u,u, v) = , and so u = v. Thus the common fixed point is unique.
If condition (.) holds, then the argument is similar to that above, so we omit it. �

Remark . Theorems . and . improve and extend the corresponding results in Ye
and Gu [, Theorem ., Corollary .] from three self-mappings to six self-mappings.

Corollary . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:
(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
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(ii) ∀x, y, z ∈ X,

G(Sx,Ty,Rz) ≤ aG(Ax,Sx,Ty)G(By,Ty,Rz) + bG(By,Ty,Rz)G(Cz,Rz,Sx)

+ cG(Cz,Rz,Sx)G(Ax,Sx,Ty) (.)

or

G(Sx,Ty,Rz) ≤ aG(Ax,Ax,Ty)G(By,By,Rz) + bG(By,By,Rz)G(Cz,Cz,Sx)

+ cG(Cz,Cz,Sx)G(Ax,Ax,Ty), (.)

where  ≤ a+ b+ c+d < 
 . Then one of the pairs (S,A), (T ,B), and (R,C) has a coincidence

point in X.Moreover, assume one of the following conditions is satisfied:
(a) either S or A is G-continuous, the pair (S,A) is weakly commuting, the pairs (T ,B)

and (R,C) are weakly compatible;
(b) either T or B is G-continuous, the pair (T ,B) is weakly commuting, the pairs (S,A)

and (R,C) are weakly compatible;
(c) either F or C is G-continuous, the pair (R,C) is weakly commuting, the pairs (S,A)

and (T ,B) are weakly compatible.
Then the mappings S, T , R, A, B, and C have a unique common fixed point in X.

Proof Suppose the condition (.) holds. For x, y, z ∈ X, let

M(x, y, z) =max

⎧⎪⎨
⎪⎩
G(Ax,Sx,Ty)G(By,Ty,Rz),
G(By,Ty,Rz)G(Cz,Rz,Sx),
G(Cz,Rz,Sx)G(Ax,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Then

aG(Ax,Sx,Ty)G(By,Ty,Rz) + bG(By,Ty,Rz)G(Cz,Rz,Sx)

+ cG(Cz,Rz,Sx)G(Ax,Sx,Ty)

≤ (a + b + c)M(x, y, z).

So, if

G(Sx,Ty,Rz) ≤ aG(Ax,Sx,Ty)G(By,Ty,Rz) + bG(By,Ty,Rz)G(Cz,Rz,Sx)

+ cG(Cz,Rz,Rz)G(Ax,Sx,Sx),

then G(Sx,Ty,Rz)≤ (a + b + c)M(x, y, z). Taking k = a + b + c in Theorem ., the conclu-
sion of Corollary . can be obtained from Theorem . immediately.
If condition (.) holds, then the argument is similar to that above, so we omit it. This

completes the proof of Corollary .. �

Remark . Corollary . improve and extend the corresponding results in Ye and Gu
[, Theorem .] from three self-mappings to six self-mappings.
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Corollary . Let (X,G) be a complete G-metric space and let S, T , R, A, B, and C be six
mappings of X into itself satisfying the following conditions:

(i) S(X)⊂ B(X), T(X)⊂ C(X), R(X)⊂ A(X);
(ii) the pairs (S,A), (T ,B), and (R,C) are commuting mappings;
(iii) ∀x, y, z ∈ X ,

G(Spx,Tqy,Rrz
) ≤ aG

(
Ax,Spx,Tqy

)
G

(
By,Tqy,Rrz

)
+ bG

(
By,Tqy,Rrz

)
G

(
Cz,Rrz,Spx

)
+ cG

(
Cz,Rrz,Spx

)
G

(
Ax,Spx,Tqy

)
(.)

or

G(Spx,Tqy,Rrz
) ≤ aG

(
Ax,Ax,Tqy

)
G

(
By,By,Rrz

)
+ bG

(
By,By,Rrz

)
G

(
Cz,Cz,Spx

)
+ cG

(
Cz,Cz,Spx

)
G

(
Ax,Ax,Tqy

)
, (.)

where  ≤ a + b + c + d < 
 , p,q, r ∈N, then S, T , R, A, B, and C have a unique

common fixed point in X .

Proof The proof follows from Theorem ., and from an argument similar to that used in
Corollary .. �

Remark . Corollary . improve and extend the corresponding results in Ye and Gu
[, Corollary .] from three self-mappings to six self-mappings.

In Theorem ., if we take A = B = C = I , then we have the following corollary.

Corollary . Let (X,G) be a complete G-metric space and let S, T , and R be three map-
pings of X into itself satisfying the following conditions:

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(x,Sx,Ty)G(y,Ty,Rz),
G(y,Ty,Rz)G(z,Rz,Sx),
G(z,Rz,Sx)G(x,Sx,Ty)

⎫⎪⎬
⎪⎭ (.)

or

G(Sx,Ty,Rz)≤ kmax

⎧⎪⎨
⎪⎩
G(x,x,Ty)G(y, y,Rz),
G(y, y,Rz)G(z, z,Sx),
G(z, z,Sx)G(x,x,Ty)

⎫⎪⎬
⎪⎭ (.)

for all x, y, z ∈ X, where k ∈ [,  ).
Then the mappings S, T , and R have a unique common fixed point in X.

Remark . In Theorems ., ., Corollaries ., . and ., we have taken: () S = T =
R; () A = B = C; () A = B = C = I ; () T = R and B = C; () T = R, B = C = I , several new
result can be obtained.
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Now we introduce an example to support Corollary ..

Example . Let X = [, ], and (X,G) be a G-metric space defined by G(x, y, z) = |x– y|+
|y – z| + |z – x|, for all x, y, z in X. Let T , S, and R be three self-mappings defined by

Sx =

{
, x ∈ [,  ],

 , x ∈ (  , ],

Tx =

{

 , x ∈ [,  ],

 , x ∈ (  , ],

Rx =



, x ∈ [, ].

Next we prove the mappings S, T , and R satisfy condition (.) of Corollary . with
k = 

 .
Case . If x, y ∈ [,  ], z ∈ [, ], then

G(Sx,Ty,Rz) =G
(
,



,



)
=




,

G(x,Sx,Ty) =G
(
x, ,




)
= |x – | +

∣∣∣∣x – 


∣∣∣∣ + 


≥ 

+




+



= ,

G(y,Ty,Rz) =G
(
y,



,



)
=

∣∣∣∣y – 


∣∣∣∣ +
∣∣∣∣y – 



∣∣∣∣ + 


≥ 


+



+



=



.

Thus, we have

G(Sx,Ty,Rz) =



<



·  · 


≤ 

G(x,Sx,Ty)G(y,Ty,Rz)

≤ 

max

⎧⎪⎨
⎪⎩
G(x,Sx,Ty)G(y,Ty,Rz),
G(y,Ty,Rz)G(z,Rz,Sx),
G(z,Rz,Sx)G(x,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Case . If x ∈ [,  ], y ∈ (  , ], z ∈ [, ], then we get

G(Sx,Ty,Rz) =G
(
,



,



)
=




,

G(x,Sx,Ty) =G
(
x, ,




)
= |x – | +

∣∣∣∣x – 


∣∣∣∣ + 


≥ 

+




+



= ,

G(z,Rz,Sx) =G
(
z,



, 
)
=

∣∣∣∣z – 


∣∣∣∣ + |z – | + 


≥  +  +



=



.

Thus, we have

G(Sx,Ty,Rz) =



=



·  · 


≤ 

G(x,Sx,Ty)G(z,Rz,Sx)

≤ 

max

⎧⎪⎨
⎪⎩
G(x,Sx,Ty)G(y,Ty,Rz),
G(y,Ty,Rz)G(z,Rz,Sx),
G(z,Rz,Sx)G(x,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Case . If x ∈ (  , ], y ∈ [,  ], z ∈ [, ], then we have

G(Sx,Ty,Rz) =G
(



,



,



)
=




,
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G(x,Sx,Ty) =G
(
x,




,



)
=

∣∣∣∣x – 


∣∣∣∣ +
∣∣∣∣x – 



∣∣∣∣ + 


≥  +  +



=




,

G(y,Ty,Rz) =G
(
y,



,



)
=

∣∣∣∣y – 


∣∣∣∣ +
∣∣∣∣y – 



∣∣∣∣ + 


≥ 


+



+



=



.

Thus, we have

G(Sx,Ty,Rz) =



≤ 


· 


· 


≤ 

G(x,Sx,Ty)G(y,Ty,Rz)

≤ 

max

⎧⎪⎨
⎪⎩
G(x,Sx,Ty)G(y,Ty,Rz),
G(y,Ty,Rz)G(z,Rz,Sx),
G(z,Rz,Sx)G(x,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Case . If x, y ∈ (  , ], z ∈ [, ], then we have

G(Sx,Ty,Rz) =G
(



,



,



)
= .

Thus, we have

G(Sx,Ty,Rz)≤ 

max

⎧⎪⎨
⎪⎩
G(x,Sx,Ty)G(y,Ty,Rz),
G(y,Ty,Rz)G(z,Rz,Sx),
G(z,Rz,Sx)G(x,Sx,Ty)

⎫⎪⎬
⎪⎭ .

Then in all of the above cases, the mappings S, T , and R satisfy the contractive condition
(.) of Corollary . with k = 

 . Thus all the conditions of Corollary . are satisfied.
Moreover, 

 is the unique common fixed point for all of the three mappings S, T , and R.
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31. Abbas, M, Nazir, T, Dorić, D: Common fixed point of mappings satisfying (E.A) property in generalized metric spaces.

Appl. Math. Comput. 218(14), 7665-7670 (2012)
32. Mustafa, Z, Aydi, H, Karapınar, E: On common fixed points in G-metric spaces using (E.A) property. Comput. Math.

Appl. 64(6), 1944-1956 (2012)
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