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Abstract
In this paper, we use the q-binomial theorem to establish an inequality for the
q-integral. As applications of the inequality, we give some sufficient conditions for
convergence of the q-integral.
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1 Introduction andmain result
q-Series, which are also called basic hypergeometric series, play a very important role in
many fields, such as affine root systems, Lie algebras and groups, number theory, orthog-
onal polynomials, physics, etc. The inequality technique is one of the useful tools in the
study of special functions. There are many papers about the inequalities and q-integral;
see [–]. Convergence is the key problem of a q-series. In order to give some newmeth-
ods for convergence of a q-series, we derive an inequality for the q-integral with the basic
hypergeometric series r+φr . Some applications of the inequality are also given. The main
result of this paper is the following inequality.

Theorem . Suppose ai, bi, t be any real numbers such that |t| < (
∏r+

i= Mi)– and bi < 
with i = , , . . . , r. Then we have

∣∣∣∣
∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣ ≤ |t|
( – |t|∏r+

i= Mi)(q;q)∞
, (.)

where br+ = ,Mi =max{, |–ai|
–bi

} for i = , , . . . , r + .

Before we present the proof of the theorem, we recall some definitions, notation, and
known results whichwill be used in this paper. Throughout the whole paper, it is supposed
that  < q < . The q-shifted factorials are defined as

(a;q) = , (a;q)n =
n–∏
k=

(
 – aqk

)
, (a;q)∞ =

∞∏
k=

(
 – aqk

)
. (.)
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We also adopt the following compact notation for a multiple q-shifted factorial:

(a,a, . . . ,am;q)n = (a;q)n(a;q)n · · · (am;q)n, (.)

where n is an integer or ∞.
The q-binomial theorem is [, ]

∞∑
k=

(a;q)kzk

(q;q)k
=
(az;q)∞
(z;q)∞

, |z| < . (.)

Heine introduced the r+φr basic hypergeometric series, which is defined by [, ]

r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
=

∞∑
n=

(a,a, . . . ,ar+;q)nzn

(q,b,b, . . . ,br ;q)n
. (.)

Jackson defined the q-integral by []

∫ d


f (t)dqt = d( – q)

∞∑
n=

f
(
dqn

)
qn (.)

and
∫ d

c
f (t)dqt =

∫ d


f (t)dqt –

∫ c


f (t)dqt. (.)

In [], the author gives the following inequality.

Theorem . Suppose ai, bi and z be any real numbers such that |z| < (
∏r+

i= Mi)–, bi < 
with i = , , . . . , r. Then we have

∣∣∣∣∣r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)∣∣∣∣∣ ≤ 
(|z|∏r+

i= Mi;q)∞
, (.)

where br+ = ,Mi =max{, |–ai|
–bi

} for i = , , . . . , r + .

As an application of (.), the author give the following sufficient condition for conver-
gence of q-series [].

Theorem . Suppose ai, bi, t be any real numbers such that |t| <  and bi <  with i =
, , . . . , r. Let {cn} be any number series. If

lim
n→∞

∣∣∣∣ cn+cn

∣∣∣∣ = p < ,

then the q-series

∞∑
n=

cn · r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, tqn
)

(.)

converges absolutely.
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2 Proof of theorem
In this section, we use Theorems . and . to prove Theorem ..

Proof First we point out that, under the conditions of Theorem ., the q-integral

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz (.)

converges absolutely.
In fact, by the definition of q-integral (.), we get

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

= t( – q)
∞∑
n=

qnr+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, tqn
)
. (.)

Using Theorem . and noticing

lim
n→∞

qn+

qn
= q < ,

we see that the q-integral (.) converges absolutely.
Letting z = tqn in (.) gives∣∣∣∣∣r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, tqn
)∣∣∣∣∣ ≤ 

(|t|qn ∏r+
i= Mi;q)∞

, (.)

where br+ = ,Mi =max{, |–ai|
–bi

} for i = , , . . . , r + .
Using the definition of q-integral (.) again one gets∣∣∣∣∣

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
≤ |t|( – q)

∞∑
n=

qn
∣∣∣∣∣r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, tqn
)∣∣∣∣∣

≤ |t|( – q)
∞∑
n=

qn

(|t|qn ∏r+
i= Mi;q)∞

=
|t|( – q)

(|t|∏r+
i= Mi;q)∞

∞∑
n=

(
|t|

r+∏
i=

Mi;q

)
n

qn

≤ |t|( – q)
(|t|∏r+

i= Mi;q)∞

∞∑
n=

(|t|∏r+
i= Mi;q)nqn

(q;q)n
. (.)

Employing the q-binomial theorem (.) gives

∞∑
n=

(|t|∏r+
i= Mi;q)nqn

(q;q)n
=
(q|t|∏r+

i= Mi;q)∞
(q;q)∞

. (.)

Substituting (.) into (.), we get (.). �
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Corollary . Suppose ai, bi, c, d be any real numbers such that |c| < (
∏r+

i= Mi)–, |d| <
(
∏r+

i= Mi)– and bi <  with i = , , . . . , r. Then we have

∣∣∣∣∣
∫ d

c
r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
≤ |d| + |c| – |dc|∏r+

i= Mi

( – |d|∏r+
i= Mi)( – |c|∏r+

i= Mi)(q;q)∞
. (.)

Proof By the definition of q-integral (.), we get

∣∣∣∣∣
∫ d

c
r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
=

∣∣∣∣∣
∫ d


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz –

∫ c


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
≤

∣∣∣∣∣
∫ d


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
+

∣∣∣∣∣
∫ c


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣
≤ |d|

( – |d|∏r+
i= Mi)(q;q)∞

+
|c|

( – |c|∏r+
i= Mi)(q;q)∞

=
|d| + |c| – |dc|∏r+

i= Mi

( – |d|∏r+
i= Mi)( – |c|∏r+

i= Mi)(q;q)∞
. (.)

Thus, the inequality (.) holds. �

3 Some applications of the inequality
In this section, we use the inequality obtained in this paper to give a sufficient condition for
convergence of a q-series. Convergence is an important problem in the study of a q-series.
There are some results about it. For example, Ito used an inequality technique to give a
sufficient condition for the convergence of a special q-series called the Jackson integral
[].

Theorem . Suppose ai, bi are any real numbers such that bi <  with i = , , . . . , r. Let
{cn} be any number series. If

lim
n→∞

∣∣∣∣ cn+cn

∣∣∣∣ = p <

q
,

then the q-series

∞∑
n=

cn
∫ qn


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz (.)

converges absolutely.
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Proof Since

lim
n→∞qn = , (.)

there exists an integer N such that, when n >N,

qn <

( r+∏
i=

Mi

)–

, (.)

where br+ = ,Mi =max{, |–ai|
–bi

} for i = , , . . . , r + .
When n >N, letting t = qn in (.) gives

∣∣∣∣∣
∫ qn


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣ ≤ qn

( – qn
∏r+

i= Mi)(q;q)∞
. (.)

Multiplying both sides of (.) by |cn| one gets
∣∣∣∣∣cn

∫ qn


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

∣∣∣∣∣ ≤ |cn|qn
( – qn

∏r+
i= Mi)(q;q)∞

. (.)

The ratio test shows that the series

∞∑
n=

cnqn

( – qn
∏r+

i= Mi)(q;q)∞

is absolutely convergent. From (.), it is sufficient to establish that (.) is absolutely con-
vergent. �

Corollary . Suppose ai, bi are any real numbers such that bi <  with i = , , . . . , r. Then
the q-integral

∫ 


dqt

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz (.)

is absolutely convergent. Here

∫ 


dqt

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

=
∫ 



[∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

]
dqt. (.)

Proof By the definition of q-integral (.), we get

∫ 


dqt

∫ t


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz

= ( – q)
∞∑
n=

qn
∫ qn


r+φr

(
a,a, . . . ,ar+
b,b, . . . ,br

;q, z

)
dqz. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/268


Wang Journal of Inequalities and Applications 2014, 2014:268 Page 6 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/268

Since

lim
n→∞

∣∣∣∣qn+qn

∣∣∣∣ = q <

q
,

from the theorem, we know that (.) is absolutely convergent. �
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