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Abstract
In this article, a semigroup approach is presented for the mathematical analysis of the
inverse problems of identifying the unknown boundary condition u(1, t) = f (t) in a
linear parabolic equation ut(x, t) = (k(u(x, t))ux(x, t))x with Dirichlet boundary conditions
u(0, t) =ψ0, u(1, t) = f (t) by making use of the over measured data u(x0, t) =ψ1 and
ux(x0, t) =ψ2 separately.

1 Introduction
Consider the following initial boundary value problem for the linear diffusion equation:

ut(x, t) = (k(x)ux(x, t))x, (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,

u(, t) = ψ, u(, t) = f (t),  < t < T ,

()

where �T = {(x, t) ∈ R :  < x < ,  < t ≤ T}. The left boundary value ψ is assumed to be
constant. The functions c > k(x)≥ c >  and g(x) satisfy the following conditions:
(C) k(x) ∈H,[, ];
(C) g(x) ∈H,[, ], g() = ψ, g() = f ().
The initial boundary value problem () has the unique solution u(x, t) satisfying u(x, t) ∈

H,[, ]∩H,[, ] [–] under these conditions.
In physics, many applications of this problem can be found. The simple model of flame

propagation and the spread of a biological populations, where u = u(x, t), k(x) denote the
temperature and density respectively, are given by the equation in problem (). Especially
k = k(x) represents the density-dependent coefficient in the problems of the spread of
biological populations [–].
Let us consider the inverse problems [] of determining boundary u(, t) at x =  in

problem () from Dirichlet type of measured output data at the boundaries x = x:

u(x, t) = ψ, t ∈ (,T]; ()

and from Neumann type of measured output data at the boundaries x = x:

ux(x, t) = ψ, t ∈ (,T]. ()
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Here the solution of the parabolic problem () is denoted by u = u(x, t). In this context,
the parabolic problem () will be referred to as a direct (forward) problem with the inputs
g(x), k(x) and f (t). Notice that u(x, ) = ψ and ux(x, ) = ψ. Therefore it is assumed that
the functions u(x, t) = ψ and ux(x, t) = ψ respectively satisfy the consistency conditions
ψ = g(x) and ψ = g ′(x).
The purpose of this paper is to determine the boundary function u(, t) at x =  via the

semigroup approach which is studied by [–].
The paper is organized as follows. In Section , an analysis of the semigroup approach

is given for the inverse problem with the single measured output data u(x, t) = ψ given
at x = x. A similar analysis is applied to the inverse problem with the single measured
output data ux(x, t) = ψ given at the point x = x in Section . Some concluding remarks
are given in Section .

2 Analysis of the inverse problem of the boundary condition by Dirichlet type
of over measured data u(x0, t) =ψ1

Consider now the inverse problem with one measured output data u(x, t) = ψ at x = x.
In order to formulate the solution of the parabolic problem () in terms of semigroup, let
us first arrange the parabolic equation as follows:

ut(x, t) –
(
k()ux(x, t)

)
x =

([
k(x) – k()

]
ux(x, t)

)
x, (x, t) ∈ �T .

Then the initial boundary value problem () can be rewritten in the following form:

ut(x, t) – k()uxx(x, t) =
((
k(x) – k()

)
ux(x, t)

)
x, (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,

u(, t) = ψ, u(, t) = f (t),  < t < T .

()

In order to determine the unknown boundary condition u(, t) = f (t), we need to deter-
mine the solution of the following parabolic problem:

ut(x, t) – k()uxx(x, t) =
((
k(x) – k()

)
ux(x, t)

)
x, (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,

u(, t) = ψ, u(x, t) = ψ,  < t < T .

()

To formulate the solution of the above problem in terms of semigroup, we need to define
a new function

v(x, t) = u(x, t) +
(ψ –ψ)x

x
–ψ, x ∈ [, ], ()

which satisfies the following parabolic problem:

vt(x, t) +A
[
v(x, t)

]
=

((
k(x) – k()

)(
vx(x, t) –

(ψ –ψ)
x

))
x
, (x, t) ∈ �T ,

v(x, ) = g(x) +
(ψ –ψ)x

x
–ψ,  < x < ,

v(, t) = , v(x, t) = ,  < t < T .

()
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Here,A[·] := –k() d
[·]
dx is a second-order differential operator and its domain isDA = {v ∈

H,(,x) ∩ H,[,x] : v() = v(x) = }, where H,
 (,x) = C

(,x) and H,
 [,x] =

C
[,x] are Sobolev spaces. Obviously, by completion g(x) ∈ DA since the initial value

function g(x) belongs to C[, ]. Hence DA is dense in H,
 [, ], which is a necessary

condition for being an infinitesimal generator.
In the following, despite doing the calculations in the smooth function space, by com-

pletion they are valid in the Sobolev space.
Let us denote a semigroup of linear operators by T(t) generated by the operator –A

[, ]. We can easily find the eigenvalues and eigenfunctions of the differential opera-
tor A. Moreover, the semigroup T(t) can be easily constructed by using the eigenvalues
and eigenfunctions of the infinitesimal generator A. Hence we first consider the following
eigenvalue problem:

Aφ(x) = λφ(x),

φ() = ; φ(x) = .
()

It can easily be determined that the eigenvalues are λn = k() nπ

x
for all n = , , . . . and

hence the corresponding eigenfunctions are φn(x) = sin( nπx
x

). This allows us to represent
the semigroup T(t) in the following way:

T(t)U(x, s) =
∞∑
n=

〈
φn(x),U(x, s)

〉
e–λntφn(x), ()

where 〈φn(x),U(x, s)〉 = ∫ 
 φn(x)U(x, s)dx. Under this representation, the null space of the

semigroup T(t) of the linear operators can be defined as follows:

N(T) =
{
U(x, s) : 〈φn(x),U(x, s)〉 = , for all n = , , , , . . .

}
.

From the construction of the semigroup T(t), it can be concluded that the null space of it
consists of only zero function, i.e., N(T) = {}. This result implies the uniqueness of the
unknown boundary condition u(, t).
The unique solution of the initial-boundary value problem () in terms of semigroup

T(t) can be represented in the following form:

v(x, t) = T(t)v(x, ) +
∫ t


T(t – s)

((
k(x) – k()

)(
vx(x, s) –

(ψ –ψ)
x

))
x
ds.

Now, by using the identity () and taking the initial value u(x, ) = g(x) into account, the
integral equation for the solution u(x, t) of the parabolic problem () in terms of semigroup
can be written in the following form:

u(x, t) = ψ –
(ψ –ψ)x

x
+ T(t)

(
g(x) +

(ψ –ψ)x
x

–ψ

)

+
∫ t


T(t – s)

((
k(x) – k()

)
ux(x, s)

)
x ds. ()
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In order to arrange the above integral equation, let us define the following:

ζ (x) =
(
g(x) +

(ψ –ψ)x
x

–ψ

)
,

ξ (x, t) =
((
k(x) – k()

)
ux(x, t)

)
x.

Thenwe can rewrite the integral equation in terms of ζ (x) and ξ (x, s) in the following form:

u(x, t) = ψ –
(ψ –ψ)x

x
+

(
T(t)ζ (·))(x, t) +

∫ t



(
T(t – s)ξ (·, s))(x, t, s)ds. ()

This is the integral representation of a solution of the initial-boundary value problem
() on �T = {(x, t) ∈ R :  < x < x,  < t ≤ T}. It is obvious from the eigenfunctions
φn(x), the domain of eigenfunctions can be extended to a closed interval [, ]. More-
over, they are continuous on [, ]. Under this extension, the uniqueness of the initial-
boundary value problems () and () imply that the integral representation () becomes
the integral representation of a solution of the initial-boundary value problem () on
�T = {(x, t) ∈ R :  < x < ,  < t ≤ T}.
At this stage, it is obvious that the solution of the inverse problem can easily be obtained

by substituting x =  into the integral representation () of the solution u(x, t):

u(, t) = f (t) = ψ –
(ψ –ψ)

x
+

(
T(t)ζ (·))(, t) +

∫ t



(
T(t – s)ξ (·, s))(, t, s)ds, ()

which implies that f (t) can be determined analytically. The right-hand side of identity ()
defines the semigroup representation of the unknown boundary condition u(, t) at x = .
Substituting t =  into equation () yields

u(, ) = f () = g(), ()

which is the condition we have for the initial-boundary value problems (). Similarly, plug-
ging t =  into equation () produces the following:

u(x, ) = g(x), ()

which is the initial condition we have.

3 Analysis of the inverse problem of the boundary condition by Neumann type
of over measured data ux(x0, t) =ψ2

Consider now the inverse problem with one measured output data ux(x, t) = ψ at x = x.
In order to formulate the solution of the parabolic problem () in terms of semigroup, as
before, we arrange the parabolic equation as follows:

ut(x, t) –
(
k()ux(x, t)

)
x =

([
k(x) – k()

]
ux(x, t)

)
x, (x, t) ∈ �T .
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Then the initial boundary value problem () can be rewritten in the following form:

ut(x, t) – k()uxx(x, t) =
((
k(x) – k()

)
ux(x, t)

)
x, (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,

u(, t) = ψ, u(, t) = f (t),  < t < T .

()

In order to determine the unknown boundary condition u(, t) = f (t), we need to deter-
mine the solution of the following parabolic problem:

ut(x, t) – k()uxx(x, t) =
((
k(x) – k()

)
ux(x, t)

)
x, (x, t) ∈ �T ,

u(x, ) = g(x),  < x < ,

u(, t) = ψ, ux(x, t) = ψ,  < t < T .

()

To formulate the solution of the above problem in terms of semigroup, we need to define
a new function

v(x, t) = u(x, t) –ψx –ψ, x ∈ [, ], ()

which satisfies the following parabolic problem:

vt(x, t) + B
[
v(x, t)

]
=

((
k(x) – k()

)(
vx(x, t) +ψ

))
x, (x, t) ∈ �T ,

v(x, ) = g(x) –ψx –ψ,  < x < ,

v(, t) = , vx(x, t) = ,  < t < T .

()

Here B[·] := –k() d
[·]
dx is a second-order differential operator, its domain is DB = {v ∈

H,(,x) ∩ H,[,x] : v() = vx(x) = }. It is clear from the definition of DB that DB ⊂
H,[,x].
Let us denote the semigroup of linear operators by S(t) generated by the operator –B

[, ]. We can easily find the eigenvalues and eigenfunctions of the differential opera-
tor B. Moreover, the semigroup S(t) can be easily constructed by using the eigenvalues
and eigenfunctions of the infinitesimal generator B. Hence we first consider the following
eigenvalue problem:

Bφ(x) = λφ(x),

φ() = ; φx(x) = .
()

The eigenvalues are determined as λn = k() (n+)
π

x
for all n = , , . . . . Therefore the cor-

responding eigenfunctions are φn(x) = sin( (n+)πxx
). Under these eigenfunctions and eigen-

values, the semigroup S(t) can be represented in the following way:

S(t)U(x, s) =
∞∑
n=

〈
φn(x),U(x, s)

〉
e–λntφn(x), ()
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where 〈φn(x),U(x, s)〉 = ∫ 
 φn(x)U(x, s)dx. Under this representation, the null space of the

semigroup S(t) of the linear operators can be defined as follows:

N(S) =
{
U(x, s) :

〈
φn(x),U(x, s)

〉
= , for all n = , , , , . . .

}
.

As in the previous section, the construction of the semigroup S(t) implies that the null
space of it consists of only zero function, i.e., N(S) = {}. The uniqueness of the unknown
boundary condition u(, t) follows from this result.
The unique solution of the initial-boundary value problem () in terms of semigroup

S(t) can be represented in the following form:

v(x, t) = S(t)v(x, ) +
∫ t


S(t – s)

((
k(x) – k()

)(
vx(x, s) +ψ

))
x ds.

Now, by using the identity () and taking the initial value u(x, ) = g(x) into account, the
integral equation for the solution u(x, t) of the parabolic problem () in terms of semi-
group can be written in the following form:

u(x, t) = ψ +ψx + S(t)
(
g(x) –ψ –ψx

)

+
∫ t


S(t – s)

((
k(x) – k()

)
ux(x, s)

)
x ds. ()

In order to arrange the above integral equation, let us define the following:

ζ (x) =
(
g(x) –ψ –ψx

)
,

ξ (x, t) =
((
k(x) – k()

)
ux(x, t)

)
x.

Thenwe can rewrite the integral equation in terms of ζ (x) and ξ (x, s) in the following form:

u(x, t) = ψ +ψx +
(
S(t)ζ (·))(x, t) +

∫ t



(
S(t – s)ξ (·, s))(x, t, s)ds. ()

This is the integral representation of a solution of the initial-boundary value problem
() on �T = {(x, t) ∈ R :  < x < x,  < t ≤ T}. It is obvious from the eigenfunctions
φn(x), the domain of eigenfunctions can be extended to a closed interval [, ]. More-
over, they are continuous on [, ]. Under this extension, the uniqueness of the initial-
boundary value problems () and () imply that integral representation () becomes
the integral representation of a solution of the initial-boundary value problem () on
�T = {(x, t) ∈ R :  < x < ,  < t ≤ T}.
Substituting x =  into the integral representation () of the solution u(x, t) yields

u(, t) = f (t) = ψ +ψ +
(
S(t)ζ (·))(, t) +

∫ t



(
S(t – s)ξ (·, s))(, t, s)ds, ()

which implies that f (t) can be determined analytically.
The right-hand side of identity () defines the semigroup representation of the unknown

boundary condition u(, t) at x = .
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4 Conclusion
The purpose of this study is to identify the unknown boundary condition u(, t) at x =  via
the semigroup approach by using the over measured data u(x, t) = ψ and ux(x, t) = ψ.
The crucial point here is the unique extensions of the solutions on {(x, t) ∈ R :  < x <
x,  < t ≤ T} to {(x, t) ∈ R :  < x < ,  < t ≤ T} which are implied by the uniqueness
of the solutions. This key leads to the integral representation of the unknown boundary
condition u(, t) at x =  obtained analytically.
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