Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

Wang et al. Journal of Inequalities and Applications 2013, 2013:376 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2013/1/376 a SpringerOpen Journal

RESEARCH Open Access

Generalized retarded nonlinear integral
inequalities involving iterated integrals and
an application

Wu-Sheng Wang'", Deging Huang? and Xuefang Li?

“Correspondence:

wang4896@126.com Abstract

' Department of Mathematics, Hechi . . . . . " .
University, Yizhou, Guangxi 546300 In this work, some new generalized retarded nonlinear integral inequalities, which
PR. China include nonlinear composite functions of unknown functions between iterated

Full list of author information is

_ , integrals, are discussed. By adopting novel analysis techniques, the upper bounds of
available at the end of the article

the embedded unknown functions are estimated explicitly. The derived results can
be applied in the study of differential-integral equations and some practical problems
in engineering.

MSC: 26D15; 26D20; 34A12

Keywords: integral inequality; iterated integrals; analysis technique; estimation

1 Introduction

Integral inequality that provides an explicit bound to the unknown function furnishes
a handy tool to investigate qualitative properties of solutions of differential and integral
equations. One of the best known and widely used inequalities in the study of nonlinear
differential equations is Gronwall-Bellman inequality [1, 2], which can be stated as follows:
If # and f are nonnegative continuous functions on an interval [, b] satisfying

u(t) <c+ /tf(s)u(s) ds, tela,b],

for some constant ¢ > 0, then

u(t) < cexp(/tf(s) ds), t € [a,b]. (1.1)

It has become one of the very few classical and most influential results in the theory and
applications of inequalities. Because of its fundamental importance, over the years, many
generalizations and analogous results of (1.1) have been established, such as [3-23].

Among these references, Bainov et al. [7, p.107] considered the following interesting
Gronwall-type inequality

u(t) <alt)+ tf(t,t)( tlf(t,t)...
121:/“1 1 /a 2(f1, 2o

X (/tilﬁ(ti_l, ti)bt(ti) dtl') .. ) dtl, (12)
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in which the unknown function only exists in the innermost layer of iterated integrals.
In 2005 Kim [8] considered analogous Gronwall-type integral inequalities involving iter-
ated integrals by replacing the unknown function # in the right-hand side of (1.2) with
u? for some constant p. In 2007, Agarwal et al. [10] investigated some nonlinear retarded
inequalities with iterated integrals to extend Kim’s results in [8],

1t

)
o (u(t) < alt) + f PN da

n o(t) o(t1) d(ti—2)
t t cee i1 (L
+i22:/¢(“) pi( 1)(/;(00 pa( 2)( (/q}(a) pia(tia)
d(ti1)
X ( / P E)ult)e(u(e) da») dti_l) . ) dt2> dn,
¢

(@)

which include the composite functions of unknown function only in the innermost layer
of iterated integrals.

In 2011, Abdeldaim et al. [11] studied some new integral inequalities of Gronwall-
Bellman-Pachpatte-type such as

ut) < uo + /0 f(s)u(s)[u(s)+ /O h(r)[u(r)+ /0 g(E)u(E)ds] dr]ds,

and
+ + ds + + T drt | ds,
u(t) < ug /0 [f(S)M(S) Q(S)] s /Of(s)u(s)[u(s) /0 g(t)u(r) r] s

which include the composite functions of unknown functions in every layer of iterated
integrals, but the iterated integrals are double integrals.

In this paper, we extend certain results that were proved in [7-11] to obtain new gen-
eralizations of formerly famous Gronwall-Bellman-Pachpatte-type inequalities. There are
not only composite functions of unknown functions in iterated integrals on the right hand
side of our inequalities, but also the composite functions of unknown function exist in ev-
ery layer of the iterated integrals. In this work, we give the upper bounds of the embedded
unknown functions by adopting novel analysis techniques in three different scenarios and
illustrate an application of our results, which verifies that our results are handy tools to

study the qualitative properties of nonlinear differential equations and integral equations.

2 Main result
In this section, we state and prove some new integral inequalities of Gronwall-Bellman-
Pachpatte-type, which can be used in the analysis of various problems in the theory of
nonlinear ordinary differential and integral equations.
First, we give five assumptions for functions that will appear in our main results.
1. u(#) and a(¢) are nonnegative and continuous functions on [£y, +00). In addition, a(t)
is nondecreasing;
2. fi(t,s), i=1,2,3 are nonnegative and continuous functions for ) <s < ¢ < +00, and
nondecreasing in ¢ for fixed s € ¢y, +00);
3. w(u) is a nondecreasing and continuous function on [0, +00) with w(x) > 0 for u > 0;
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4. ¢(u) is an increasing continuous function with ¢(u) > 0 for # > 0 and ¢(c0) = oo;
5. «(t) is a continuous, differentiable and nondecreasing function on [£y, +00) with
a(t) <t, alty) = tp.
In order to clearly present our main idea, we first consider a class of simple integral
inequalities, namely, the composite function of unknown function ¢ () is involved in the

innermost layer of iterated integrals only.

Theorem 1 Assume that Assumptions 1-5 and the following inequality hold

a(t)
o(ut) <at)+ [ () s
alt

) s
+ filt, s)(/ s, r)w(u(r)) d‘L’) ds

a(to)

a(t) s T
+ ﬁ(w)( / fz(s,r>< / A Ew(u(@)) ds) dr) ds 2.1)
altg) to to

for t € [ty,00). Then we have

u(®) < (WHUh(0)), Ve lto, T1), (2.2)
where
a(t) a(t) s
UL (t) := W(u(t)) + ( )fl(t,s)ds+ ( )ﬁ(t,s)(/ fz(s,t)dr) ds
a(t) s T
+ a(f{))ﬁ(t,s)(/%ﬁ(s,t)(/to f3(‘L’,‘§)d$> dt) ds, (2.3)
¥ ds

W(lx[) = v/uo m, u>uo, (24)

and o', W are the inverse functions of ¢, W, respectively, and
T := max{¢ € [to, +00)|Uy(¢) € Dom(W™)}.

Proof Choose T € [ty, T1) arbitrarily. For V¢ € £y, T'], we obtain that

alt)
@(u(t)) < a(T) + /( )fl(T,s)w(u(s)) ds

at

) s
+ ﬁ(T,S)(/ Sals, T)w(u(r)) dr) ds

al(to)

al(t) s T
+ AT, s)(/ fols, r)(/ fg(t,é)w(u(S)) dé) dr) ds, (2.5)
altg) to to

from (2.1), by Assumption 2 that f;(¢, s) are nondecreasing in t. Let z;(¢) be the right-hand
side of (2.5), which is a positive and nondecreasing function on [ty, 7] with z (o) = a(T).

Then (2.5) can be written as

u(t) <9 (z1(8), Vtelt,T), (2.6)
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since the inverse function ¢! of ¢ exists by Assumption 4. From (2.5) and (2.6), we can
obtain that

dz;i” < O (T,a®)w(e™ (2(0)

a(t)
o (O (T,a(0)) / Ala®),)w(e™ (@) de

to

a(t) T
raOA(Ta0) [ Ao [ Ao @©) de)an @)
to to
for all ¢ € [y, T]. Applying the monotonicity of w, ¢ and z;, (2.7) can be written as

dz (t) (

a(t)
@) = (O a0) o O(ra0) [ et )

to

+o/(t)f1(T,ot(t))/a @), (/ f(1,€) ds) dr) dt, (2.8)

for all £ € [ty, T]. Integrating both sides of the above inequality from ¢, to £, we can obtain
that

a(t)

W(z) < W(ak)+ | A(T,s)ds

a(to)

+ f1Ts</fzs, dr)ds
a(to)

+ fl(T s)(/ f2(5,f)</ fa(T, S)d“g‘) d‘l:) ds, Vtelty,T], (2.9)
a(to)

where W is defined as (2.4). In consequence, we get that

ut) < ¢! (W'I (W(a(T))

a(t)

a(t)
+ Si(T,s)ds + f1 (T,s (/ fals, T dr) ds

a(f) a(ty

al(t) s
+ ﬁ(T,s)(/ f2(5,7:)</ f3(1’,§)d"§> d‘r) ds)), Vtelty, T, (2.10)
a(tg) to to

by (2.6) and (2.9). Let t = T on both hand sides of (2.10), then we have that

a(T)

u(T) < ¢1<W1<W(a(T)) + fi(T,s)ds

a(to)

+ “ ﬁ(Ts)(fﬁ(s, dr)ds

a(to)

+ 0:0) ﬁ(T,s)(/ton(s,r)</t0 fg(t,é)dé) dr) ds)). (2.11)
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Thus, we obtain that

ut) < (WHUh(v))

from (2.11), where U (t) is defined as (2.3), since T is chosen arbitrarily.

Next, consider a more general scenario: the composite function of unknown function

exists not only in the innermost layer of iterated integrals, but also in the outermost layer

of iterated integrals.

Theorem 2 Assume that Assumptions 1-5 and the following inequality hold

a(t)

o(ud) <al)+ | AlbIw(uls)ds

a(t)

+ » ﬁ(t,s)w(u(s)) (/sﬁ(s, T)w(u(r)) dv:) ds

s ﬁts u(s)) ([fzs,r)(/fsrs )dé)dt)ds.

Then the integral inequality (2.12) implies that
u(®) < W (Ua0)]}, Vet T2,

where W is defined in (2.4) and

u ds
Je:= fm, PETUTE)

a(t) a(t) s
U (2) :=](W(a(t)) + ﬁ(t,s)ds) +/ ﬁ(t,s)(/ fz(s,r)dr> ds
an " s)( / fz(s,r)( f Al s)ds> df) s,

and o1, W, ]! are the inverse functions of p, W, ], respectively, and
T := max{t € [ty, +00)|Us(t) € Dom(]’l),]_l(l,lz(t)) € Dom(W‘l)}.

Proof Choose T € [y, T>] arbitrarily. For V¢ € [£y, T, from (2.12), we have that

alt)
o (u®)) < a(T) + ( )fl(T,s)w(u(s)) ds
a(t)

+ ( )fl(T,S)w(u(s)) (/sz(s,t)w(u(r)) dr) ds

a(t) s T
+ ( )fl(T,s)w(u(s)) (/ fg(S,'L’)(/ ST E)w(u)) d&) d‘L’> ds

O

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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by Assumption 2. Denote the right-hand side of (2.16) by z,(£), which can be proved that
it is positive and nondecreasing on [t, T'] with z5(f) = a(T). Then (2.16) can be written as

u(t) <o (z2(t)), Vtelto, Tl (2.17)

by Assumption 4. From (2.16) and (2.17), we obtain that

dz;t(t) < o O (T,a®)w(p™ (22(0))) + o (B)fi (T, (0))

a(t)
X w(<p’1(zz(t)))f fz(a(t),r)w(tp’l(zz(r))) drt + o' (t) I(T,a(t))

to

a(t) T
<l w0) [ fz(a(t),r)( [ j%(T»E)W(w_l(Zz(E)))de) dr, (218)

to

By the property of monotonicity of functions w, ¢ and z,, we can obtain that

dzy(t) ,
Wz @) < <Ol OA(T, a(2))

a(t)
+ o/ (O (T, (1) / Fla®) ) (o™ (@) dr

Lo

a(t)
o (O (T, (1) / Alal),7)

]

x ( /torfs(f,S)W(w‘l (22(6))) ds) dr> d,

from (2.18). Integrating both sides of the above inequality from ¢, to ¢, we have that

a(t)
W(Zz(t)) < W(Zz(to)) + A(T,s)ds

a(to)

ot

) s
+ A(T,s) </ Hlsw(e™ (Zg(l')))dl’) ds

a(to)

alt

) s T
+ fl(T,s)( / ﬁ(s,r)( f fs(r,E)W(wl(@(é)))dé) dr) ds

a(to)
o(T

)
< W(zz(to)) + f(T,s)ds

a(to)

alt

) s
+ A(T,s) (f fols, r)w(q)’l (Zz(‘l,'))) dr) ds

al(to)

alt

) s T
+ ﬁ(T,s)(/ fz(s,r)(/ fs(t,S)W(so‘l(Zz(S)))dé>dr)ds, (2.19)

a(to)

for all t € [ty, T], where W is given in (2.4). Let v;(¢) denote the right-hand side of (2.19),
which can be proved to be a positive and nondecreasing function on [ty, T'] with v; () =
W(a(T)) + f:(g))ﬁ(T,s) ds. Then (2.19) is equivalent to

) < W (n(), Vtelt, T). (2.20)
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Differentiating v;, we get that

(6
dvé,ft) "0f (T, a(0)) f fala@®, t)w(e™ (W (n(1)))) dr

to

a(t)
+o' (OA(T,a(t)) / SHola(®),T)

to

X (/ HEEWw(e (W (n(©)))) dé) dr, (2.21)

using (2.20), for all ¢ € [ty, T]. By (2.21) and the monotonicity of w, ¢, W~ and v, we
further obtain that

dVl(t) a(t)

sy = (+@(Ta0) [ et
alt) T

+a Of(T,0t0) fz(a(r),r)< [ fs(r,sms) dr) d,

for all £ € [ty, T']. Integrating both sides of the above inequality from #; to ¢, we obtain

J(m(®) <J(n(t)) + » fl (T,s (/ S S’T)df> ds

a(t)
+ ﬁ(T,s)(f fg(s,t)(f fg(t,é)d&) dl') ds, (2.22)
altp) to to
for all £ € [ty, T'], where ] is defined by (2.14). Hence, inequalities (2.17), (2.20) and (2.22)

yield that

u(t) < o Hz®)} <™ {W'n®)]}

BT

+ ﬁ(TS)dS)+ f1T5</f2s, dr)ds
alty

a(to)

al(t) s
+ ()ﬁ(T,s)(/ﬁ(s,r)(/ Jg(f,g)ds)dr)dsﬂ}, Vielto T). (2.23)

Let t = T on both hand sides of (2.23), we have that

a(T)

u(T) < ¢-1{W-1 [1-1 <]<W(a(T)) + A(T,s) ds)

a(to)

+ “ ﬁ(Ts)(/fz(s, dr)ds
a(to)

N ﬁ(T,s)< [eo( [ peod)a)a) |} 024)

Due to the randomness of T, (2.13) is achieved immediately from (2.24). O
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Obviously, the most general scenario is that the composite function of unknown func-
tion is involved in every layer of iterated integrals. For this kind of integral inequalities, we
have the following result.

Theorem 3 Assume that Assumptions 1-5 and the following inequality hold

a(t)
(p(u(t)) <al(t) + /( )fl(t,s)wl(u(s)) ds

at

) s
+ ﬁ(t,s)wl(u(s))( f fz(s,T)W2(u(r))dr> ds

a(to)
a(t) s
+ filt, s)my (u(s)) </ fals, T)ws (u(f))

a(to)

X (/ f3(T,&)ws (u(é)) d&) dt) ds. (2.25)

Then we have that

u(®) < o703 (251 (Us(®))]},  Veeln, T3, (2.26)
where
“ ds
cbl(l/l) = /MO m, u>up, (227)
“ ds
(Dz(l/i) = \/u\o m, u>uo, (228)

“ ds
Palu)= / we @@ 229

a(t)
Ug(t) = CI>3{CI>2|:<I>1(a(t)) + /( )fl(t,s) ds:|

alt) s
+ ﬁ(m)( [ fz(s,f)df) ds}
a(to) to

al(t) s T
[ Ay ( / s, r)( / fe(r,é)df?) dr) ds, (2.30)
a(ty) to to

and 971, @71, i =1,2,3 are the inverse functions of ¢, ®;, i = 1,2,3, respectively, and

T := max{t € [to, +00)|Us(¢) € Dom(®3"),

CDEI(UB(I?)) € Dom(®;'), &5 (3" (Us(1)) € Dom(cbl_l) }.

Proof Choose T € [ty, T3] arbitrarily. For V¢ € [¢, T'], we obtain that

o

t)
o(u®)) <a(T)+ | AT,5)wi(uls))ds

alto)

ot

) s
+ AT, s)wy (u(s)) (/ Sa(s, T)wa (u(1)) dr) ds

al(to)
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a(t)
+ AT, s)wr (uls))

a(to)

x (fsﬁ(s, T)wa(u(r)) (frfg(r,f;‘)u@ (u(®)) di;‘) dr) ds. (2.31)

from (2.25) and the monotonicity of f;(¢,s), i = 1,2,3 on t. Let z3(¢) be the right-hand side of
(2.31), which is a positive and nondecreasing function on [ty, 7] with z3(¢y) = a(T). Then
(2.31) is equivalent to

u(t) < ¢ (z3(t)), Vnelt,T). (2.32)

Differentiating z3, we can obtain that

dz;;t) < OA(T,a@®)m (e (23(2))) + &' OA(T, (@) w1 (07 (23(2)))

a(t)
x / Fla®) 7)™ (25(0))) dr
a(t)
+ O (T, 00w (97 (0)) / Ala®),7)

< w9~ (z(0))) ( / W (e () ds) dr, (2.33)

from (2.32) and the monotonicity of wy, ¢ and zs, for all £ € [ty, T]. Thus, we have

dz3(t) , , a(t)
m S <Ol (t)ﬁ(T,O[(t)) + o (t) 1(T,a(t)) /L:O ﬁ(a(t),f)
a(t)
x wa(97 (2(0))) d + o (Ofi (T, (0) / Ala)r7)

x wa (¢ (23(7))) </torf3(f,$)W3 (07" (23(8))) dé) dr) dt,

by (2.33) for all £ € [y, T]. Integrating both sides of the above inequality from ¢, to ¢, we
obtain

o

®
®1(z3(2)) < P1(z3(t0)) + f(T,5)ds

a(to)

o(t) s
+ ()ﬁ(T,s)(/ fz(s,t)W2(<p‘1(22(r)))dr)ds

a(t) s
) )fl(T,S)< f A5 Dwa(e™ (2(0)))

o

x ( /tOTJ%(r,s)wB ) ds) dr) ds

o(T)
< @y(z3(t0)) + f(T,s)ds

a(to)

a(t) s
" >f1(T’S)</ fZ(s’T)WZ(‘/’l(Zz(T)))df)ds

o

Page9of 17


http://www.journalofinequalitiesandapplications.com/content/2013/1/376

Wang et al. Journal of Inequalities and Applications 2013, 2013:376
http://www.journalofinequalitiesandapplications.com/content/2013/1/376

; ﬁ(T s>< / s (g™ (e2(0)))
(f ST, &)ws(p (E)))dé) dr) ds, (2.34)

where ®; is defined by (2.27). Let v,(¢) denote the right-hand side of (2. 34) which is a

positive and nondecreasing function on [y, T] with v,(¢y) = ®1(a(T)) + f (to) ﬁ(T s)ds.
Then (2.34) is equivalent to

z3(t) < @71 (v2(0), Ve [to, T). (2.35)

Differentiating v,, we obtain

a(t)
d;z;t) §a’(t)ﬁ(T,a(t))f fZ(a(t),-L—)Wz((p—l(q)l—l(vz(r)))) dr

to

a(t)
o (O(T, (1) / Fla®), 7wl (07 (1))

Lo

x(/ f3(1’,“;‘)W3(<p"1(d>1"1(v2(§))))d&)d‘L’, Yt e [to, T (2.36)

by (2.35). Applying (2.36) and the monotonicity of wy, !, 7' and v,, we can get that

dvy(t) - (

a(t)
e @ ey = (¢ @A) | Aet,7)dr

to

a(t)
(O (T,a () / Ala®)7)

to

« ( / B e (o7 (07 (1(6)) ds) df) at

for all ¢ € [y, T]. Integrating both sides of the above inequality from £, to ¢, we obtain

Dy (v2(2)) < D2 (va(to)) + ( f1 (T,s (/ fols, T dr) ds

+/az:ﬁ(T,s)(/ fz(s,r)(/ L@ Ews (o7 (@7 (12(8)))) dé‘) dr) ds

Dt

§<I>2(vz(to)) ﬁ(Ts)(/fzs, dr)ds+ 3 flTs(/fzs,t)

a(to)
x ( f tfs(ryé ws (o™ (@1 (128)))) dé) dr) ds, (2.37)

for all ¢ € [ty, T], where @, is defined by (2.28). Now, let v3(¢) be the right-hand side of
(2.37), which is a positive and nondecreasing function on [y, T] with

o(T) s
va(to) = B (vato)) + / - fl(T,s)< / fz(S,T)dr) ds

o(T) a(T)
= d, (<I>1(a(T)) + f(T,s) ds> + fl(T s) (/ fz(s,r)dr) ds. (2.38)

alto) a(to

Page 10 of 17
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Then, (2.37) is equivalent to
va(£) < @51 (v3()),  Vte [to, T1. (2.39)

Differentiating v; and applying (2.39), we can obtain that

alt

()
B < oo (1,0 f

to

)
So(a(t),7)
X (/r_}%(r’S)WB (q)—l(qbl—l((bgl(vg(s))))) dé) dt, (2.40)

for all £ € [to, T]. By (2.40) and the monotonicity of w3, ¢!, @7, @3 and v3, we get

dvs(t) (

a(t) T
walg (@@ ) — \* (t)ﬁ(T’“(”)/ ﬁ(“(t)”)</mﬁ(f’€)d’s> dt) b

to

for all ¢ € [y, T]. Integrating both sides of the inequality above, from £ to ¢, we obtain

a(t) s T
s (v5(0)) < Da(v3t0)) + / ( )ﬁ(T»)( / fz<s,r)< f fs(f,é)a%) dr) s, (2.41)

for all ¢ € [to, T], where ®; is defined by (2.29). By combining (2.32), (2.35), (2.39) and
(2.41), we can obtain that

u®) < ¢ 0] ¢ {0 [nO]} = ¢ {0 [0 (»0)]]

}
n-1 s T
E(p1:cpll|:cp21(q>31(d>3(v3(to))+Zfl(T,s)/fz(s,r)/ ﬁ(r,é))):”

5=ty

=g ot [cb;l (@;l (cbg(cpz <<I>1(a(T))
a(T) o(T) s
+ o ﬁ(T,s)ds) + /WO) ﬁ(T,s)(/tofz(s,f)dT> ds)

a(t) s T
+ a(to)fl(T’S)(/tOfZ(s,t)(/to f;.;(r,é)dfg‘) dr) ds))” (2.42)

for all £ € [ty, T]. Let t = T on both hand sides of (2.42), we have
uw(T) < go-l{cbl-l[q:;l (@51 <o1>3(<1>2 (¢1(a(T))
a(T) a(T) s
+ ﬁ(T,s)ds) +/ fl(T,S)(/ fz(S,‘L')dT) ds)
al(to) alto) to

ao(T) s T
" ﬁ(T,s)( / fz(m( / fs(r,f)dé) dt) ds))“. (243)
a(tg) to to

Since T is chosen arbitrarily in (2.43), thus (2.26) is proved. O

As a generalization of Theorem 3, we can obtain the following corollary, which can be
proved similarly as Theorem 3.
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Corollary 1 Assume that Assumptions 1-5 and the following inequality hold
t
ue) < a@)+ [ il (uw) e
n t t1
3 [ et (ute) ( | e
i=2 V¥ o
x wa (u(t)) < (/ Siti, t)wi(ut) dt) )dtz) dn. (2.44)

Then we have that

u(t) < ' [@7' - (9,5 (2, (Uu®))) -]}, VEelto, Tu), (2.45)
where
a(t)
Uy(t) := @n{%_l[---% (CDI(zz(t)) + ( )fl(t,s)) +
a®)
+ fl(t t)
( / At ( / ngﬁq—z(tn—s,tn—ﬂdtn—z) s dr2> dtl]
+ ﬁ(t )

tn-2
(/ Llt,t)--- (/ Ju—1(En—2s tn1) dtn—1> dtyy--- dtz) dt1}
to

+ ﬁ(t, t)
a(to)

x ( /t "ttt < /t ", tn)dtn) by dtg) dt, (2.46)
and
Y W e o e e mr ) (247

®, (1) = /“ ds
TN W (@TH@FC - (51, (951 (9)) - ++)))

and @71, CDi‘l, i=1,2,...,n are the inverse functions of ¢, ®;,i=1,2,...,n, respectively, and

T, == max{t € [to, +00)|Us4(T4) € Dom(®,'), @, (Us(T4)) € Dom(®,L,),
8507 (- (074 (07 (E(T2) ) € Dom(83),

5 (@' (- (@,54(@; (Ua(T4))) ---)) € Dom(®7 ) .
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3 Application

In this section, we apply our result in Theorem 3 to investigate the robust stability of a
class of closed-loop control systems, which demonstrates that our results are handy tools
to analyze the qualitative properties of solutions of some nonlinear ordinary differential
and integral equations.

For a given control system

dx(t)
dt

=Ao(£)x(t) + Bo(t)u(t), (3.1)

there is no doubt that controller design plays a pivotal role. Choosing the full state feedback
controller u = —Fx with the appropriate gain F for (3.1), one can immediately obtain the

following stable closed-loop system

= A(Dx(0), (3.2)

where A(t) = Ao(t) — Bo(t)F. However, in practice, some undesirable system factors, in-
cluding nonlinear uncertainties and input disturbance, will be involved. As such, before
applying the designed controller to real processes, the stability of a closed-loop system
against external perturbations must be verified, which is the so-called robust stability anal-
ysis.

Consider a perturbed system of (3.2)

dx(t)
dt

= A@)x(t) +f(t,x((D)), 0 («(8))), ¢ € [to,00),%(t9) = %o (3.3)

with

o(t)=60(t) + /tk(t,s,x(s)) ds, (3.4)

to

where o € C!([ty,0), [ty,00)) is a nondecreasing function with a(t)) = o, %,%,0,0 €
CHR,R"), A(t) is a r x r continuous nonsingular matrix, and the function f € C(R x R" x
R’,R") and k € C(R x R x R, R") satisfy the following conditions

If (£:x(x(®), 0 ()| < @@ P wi(|x(a(®)]e’D) (1 + |0 («(®)]), (3.5)
’k(t, s,x(s)| §g2(t,s)wz(’x(s)’eﬁs) (1 + / g3(s, t)W3(|x(1:)|eﬁf) dt), (3.6)

where 8 > 0 is a constant, g; € C([£y,00),R;) and g; € C([ty, 0) X [£y,00),R,), i = 2,3, are
nondecreasing in ¢ for fixed s € [£y,00), w;(u), i = 1,2, 3, are positive and continuous func-
tions defined on [0, 00). In general, the perturbation term f (¢, x(c(¢)), o («(¢))) could result
from modeling errors, aging, uncertainties, disturbances, or some other reasons. Suppose
that the nominal system (3.2) has a uniformly asymptotically stable equilibrium at the ori-
gin, we next exploit the stability of the perturbed system (3.3). The result is presented in

the following proposition.
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Proposition 1 If there exists a constant C > 0 such that the fundamental solution matrix
X(¢) of the linear system (3.2) satisfies

|X(t)X_1(s)| < Cexp(—ﬂ(t—s)), 0<s<t<oo (3.7)
then we have that
| (£, t0,%0) | < exp(=BE){ @' [ @51 (@5 (Ua(0))]}, Ve € [to, +00), (3.8)

where x,(t, o, x0) is a solution of the control system (3.3) with (3.4) and

Cai(a'(s)e’ (1 + 16(s)1)

fils) = TR (39)
Dy () := /1 %(SS), u>0, (3.10)
®s (1) = fl ' #;(5)), u>0, (3.11)
D () := /1 m, u>0, (3.12)

alt) a(t) s
Uy(2) = d>6{<1>5 |:d>4(|x0|Cexp(ﬂto)) +/ fl(s)dsj| +/ fl(s)(/ gz(s,r)dr> ds}

to
a(t) s T
- fl(s)[ / gz(s,r)( [ gs(f,f)d§> dr}ds, (313)
to to to
and <I>i‘1, i=4,5,6 are the inverse functions of ®;, i = 4,5, 6, respectively, and

Ty := max{t € [to, +00)|U4(2) € Dom(@gl),

@' (Ua(t)) € Dom(®@5'), @5 (P! (Ua(t))) € Dom (P51}
Further, if there exists a positive constant b such that
{@7'[@5' (@5 (Us®))]} < b,
any solution of the control system (3.3) with (3.4) is exponentially asymptotically stable.
Proof Firstly, we can obtain the solution of (3.3) with (3.4)
%6 (£, b0, %0) = X(£)X ™ (to)x0

+ ]tX(s)Xl(s +1)f (5,50 (ct(s), 0, %0), o (x(s))) dis, (3.14)

by using the variation of constants formula. Then we have that

| (£, 20, %0)| < Ix0|C exp(-B(t - to)) +/ Cexp(-B(t-s-1))

to

x gi(s)e P wy (|ao (e (), to,x0) [€”°) (1 + |0 (ex(s))

), (3.15)
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by conditions (3.5) and (3.7) from (3.14). Further, by using conditions (3.6), we can obtain
that

|x(r (t; tO)x0)|

< ol Cexp(-B(t - 1)) + f Cexp(—B(t - 1))a(s)

to

a(s)
X wl(’x(7 (a(s),to,xo)’eﬁ“(s)){l + ’9(0[(5))’ +/ gz(oz(s),t)

to

X wz(‘xa(r,to,xoﬂe‘gr) (1 + / gg(r,S)Wg,(‘x(,(“g‘,to,xo)’eﬁf) dé‘) dr} ds
to
from (3.4) and (3.15). Then we have that

’xa (t: t07x0)|

o

t)
< Ixo|Cexp(=Blt — o) + ¢ f Cefgr (o~ ()

to

n
x wi(|%6 (1, to,%0)| ") x {1 +|o()| +/ &0, T)wa(|% (7, t0, %0)|€”7)
to

’ d
X(1+f gg(t,g)w3(|x0($,to,xo)‘eﬂ‘g)df)dr} - L (3.16)

o' (e ()’

where we use the change n = a(s). Let u(t) = |x, (1, ty, x0)| exp(Bt), (3.16) can be rewritten
as

al(t)
u(t) < |xo|Cexp(Bto) +/ Ceﬂgl(a‘l(s))wl(u(s)){l +60s)|

to

+ /sgz(s, T)ws (u(7)) (1 + /ng(‘l.',é;')W3 (u(8)) dé) dr } s (3.17)

to to 05/(05_1(5))'

Letting a(t) = |xo|C exp(Bto), we have
o) <att)+ [ :(t)ﬁ(sm (w9 ds+ [ :mﬁ (i (u(5) ( / :fz(s, o (u(0)) dr) ds
+ ft :(t)fl(s)wl (u(s))
x [ /t:ﬁ(s,rm(u(r)) ( /torj%(f,%‘)%(u(é)) ds) dr] ds (318)

from (3.10) and (3.17). Applying the result of Theorem 3, the inequality

o (2, to,%0)| < exp(—BO){ @3 [@5" (¥4 (Ua(1)))]}

is proved.
If there exists a positive constant b such that

[ [@5 (05! (Ua®))]} <b VneN,
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then we have that
%o (£, £0,%0)| < bexp(-Bt),

i.e., the nonlinear control system (3.3) with (3.4) is exponentially asymptotically stable.
O
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