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1. Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product (-,
and the norm || - ||. We denote weak convergence and strong convergence by nota-
tions — and —, respectively. Let F be a bifunction of H x H into R, where R is the set
of real numbers. A mapping A be a nonlinear mapping. The generalized mixed equili-
brium problem is to find x € C such that

F(x,y) +{Ax,y —x) + o(y) — ¢(x) =0, VyeC. (1.1)

The set of solutions of (1.1) is denoted by GMEP (F, ¢, A). If ¢ = 0, the problem
(1.1) is reduced into the generalized equilibrium problem is to find x € C such that

F(x,y) +(Ax,y —x) > 0, vy e C. (1.2)

The set of solutions of (1.2) is denoted by GEP(F, A). If A = 0, the problem (1.1) is
reduced into the mixed equilibrium problem is to find x € C such that

F(xy)+o(y) —¢@® >0, VYyeC. 3)

The set of solutions of (1.3) is denoted by MEP(F, ¢). If A = 0 and ¢ = 0, the pro-
blem (1.1) is reduced into the equilibrium problem [1] is to find x € C such that

F(x,y) >0, VYyeC. (1.4)
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The set of solutions of (1.4) is denoted by EP(F). If F = 0 and ¢ = 0, the problem
(1.1) is reduced into the Hartmann-Stampacchia variational inequality [2] is to find
x € C such that

(Ax,y—x)>0, WyeC. (1.5)

The set of solutions of (1.5) is denoted by VI(C, A). The variational inequality has
been extensively studied in the literature [3,4]. A mapping A of C into itself is called
an o-inverse-strongly monotone if there exists a positive real number o such that

(Ax—Ay,x—y) > a||Ax—Ay 2,

Vx,y € C.

A mapping f: C — C is called a p-contraction if there exists a constant p € [0, 1)
such that

If@—f@) <plx—y

, V¥x,yeC.
A mapping S: C — C is called nonexpansive if

[sx =Syl = |x—v

, VYx,yeC.

A point x € C is a fixed point of S provided Sx = x. Denote by F(S) the set of fixed
points of S; that is, F(S) = {x € C: Sx = a}. If C is bounded closed convex and S is a
nonexpansive mapping of C into itself, then F(S) is nonempty [5]. Let A and B are two
monotone operators, we consider the hierarchical problem over generalized mixed
equilibrium problem: Find a point x* € GMEP(F, ¢, B) such that

(Ax*,y —x*)>0, Vye GMEP(F,¢,B). (1.6)

We discuss the hierarchical problem over fixed point: Find a point x* € F(S) such
that

(Ax*,y—x*)=0, WyeF(©). (1.7)

Yao et al. [6] considered the hierarchical problem over generalize equilibrium pro-
blem and the set of fixed point, x,, be defined implicitly by

XKoo =5 [tf (%e0) + (1 — 1) (%o — Axg) ] + (1 =) Ty (X — Bxs;), s, t€(0,1), (1.8)

for each (s, t) € (0, 1)>. The net x,, hierarchically converges to the unique solution x*
of the hierarchical problem: Find a point x* € GEP (F, B) such that

(Ax*,x —x*) >0, Vxe GEP(F,B), (1.9)

where A and B are two monotone operators. The solution set of (1.9) is denoted
by Q.

Marino and Xu [7] studied an explicit algorithm, which generated a sequence {x,;}
recursively by the formula: For the initial guess xy € C is arbitrary

Xne1 = Anf () + (1 — Ap) (@nVXy + (1 — ) Txn), Vn >0, (1.10)

where {0} and {A,} are sequences in (0, 1) satisfy some conditions. Let T, V: C > C
are two nonexpansive self mappings and f'is a contraction on C. Then {x,} converges
strongly to a solution, which solves another variational inequality. Recently, Jitpeera
and Kumam [8] introduced and studied the iterative algorithm for solving a common
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element of the set of solution of fixed point for a nonexpansive mapping, the set of
solution of generalized mixed equilibrium problem, and the set of solution of the varia-
tional inclusion. They proved that the sequence converges strongly to a common ele-
ment of the above three sets under some mild conditions.

In this article, we consider the hierarchical problem over the set of fixed point and
generalized mixed equilibrium problem, which contains (1.6) and (1.7): Find a point x*
€ E: = F(S) N GMEP(F, ¢, B) such that

(Ax*,x —x*) > 0, Vxe E:=F(S)NGMEP(F,¢,B), (1.11)

where A and B are monotone operators. This solution set of (1.11) is denoted by Y

We present and construct a new iterative algorithm for solving the problem (1.11).
The strong convergence for the proposed algorithm to the solution is derived under
some assumptions. Our results generalize and improve the results of Marino and Xu
[7] and some authors.

2. Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall
that the metric (nearest point) projection Pc from H onto C assigns to each x € H, the
unique point in Pcx € C satisfying the property
—P = mi -y -
I = Pexll = min [« — ]

The following characterizes the projection Pc. We recall some lemmas which will be
needed in the rest of this article.

Lemma 2.1. The function x € C is a solution of the variational inequality (1.5) if and
only if x € C satisfies the relation x = Pc (x - AAx) for all 2 >0.

Lemma 2.2. Fora givenze Hyue C,u=Pz o (u-z v-uy>0,Vve C Itis well
known that Pc is a firmly nonexpansive mapping of H onto C and satisfies

||ch—PCyH2 <(Pcx—Pcy,x—y), Vx,y€H. (2.1)

Moreover, Pcx is characterized by the following properties: Pcx € C and for all x € H,
ye C

(x — Pcx,y — Pcx) < 0. (2.2)
Lemma 2.3. There holds the following inequality in an inner product space H
||x+y||2§ ||x||2+2(y,x+y), Vx,y € H.

Lemma 2.4. [9]Let C be a closed convex subset of a real Hilbert space H and let S: C —
C be a nonexpansive mapping. Then I - S is demiclosed at zero, that is,

Xp — xandx, — Sx, — 0

imply x = Sx.
For solving the generalized mixed equilibrium problem and the mixed equilibrium
problem, let us give the following assumptions for the bifunction F, ¢ and the set C:

(A1) F(x, x) =0 for all x € C;
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(A2) F is monotone, i.e., F(x, y) + F(y, x) < 0 for all x, y € C;

(A3) for each y € C, x » F(x, y) is weakly upper semicontinuous;

(A4) for each x € C, y » F(x, y) is convex;

(A5) for each x € C, y » F(x, y) is lower semicontinuous;

(B1) for each x € H and r >0, there exist a bounded subset D, € C and y, € C
such that for any ze C\ D,,

F(zy:) + 0 (rx) —9 @) + i(yx—z,z—x) <0; (2.3)

(B2) C is a bounded set;
(B3) for each x € H and r >0, there exist a bounded subset D, € C and y, € C
such that for any z e C\D,,

1
@ () — 0@+ r(yx—z,z—x)<0;

(B4) for each x € H and r >0, there exist a bounded subset D, € C and y, € C
such that for any z e C\D,,
1
F(z,yx) + (yx —z,z—x) < 0.
T

Lemma 2.5. [10]Let C be a nonempty closed convex subset of a real Hilbert space H.
Let F be a bifunction from C x C to Rsatisfying (A1) - (A5) and let ¢ : C — R be a
proper lower semicontinuous and convex function. For r >0 and x € H, define a map-
ping T,: H— C as follows.

1
T, (x) = {ze C:F(zy)+o(y)—¢@+ . y—zz—x)=0,we C} (2.4)
for all x € H. Assume that either (B1) or (B2) holds. Then, the following results hold:

(1) For each x € H, Tx) = &;

(2) T, is single-valued;

(3) T, is firmly nonexpansive, ie., for any x,y € H, ||Tx - Ty||* < (Tx - T,y, x - y);
(4) K(T,) = MEP(F, ¢);

(5) MEP(F, ¢) is closed and convex.

Lemma 2.6. [11]Assume {a,} is a sequence of nonnegative real numbers such that
ane1 < (1= ¥n) an + Yudn + Bu, YN >0,
where {y,}, {B,} € (0, 1) and {0,} is a sequence in Rsuch that

(i) ZZZI Vn = O
(ii) either lim sup,, ,.. 8,, < 0 0r > 721 ¥u 18a| < 00

(ii) Y021 Bn < 0.

Then lim,,_,.., a,, = 0.
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3. Strong convergence theorems
In this section, we introduce an iterative algorithm for solving some the hierarchical
problem over the set of fixed point and generalized mixed equilibrium problem.
Theorem 3.1. Let H be a real Hilbert space, A: C — C be an a-inverse-strongly
monotone, f: C — C be a p-contraction with coefficient p € [0, 1) and S, V: C — C be
two nonexpansive mappings. Let B: C — C be a B-inverse-strongly monotone and F be
a bifunction from C x C — R satisfying (A1)-(AS) and let ¢ : C — R is convex and
lower semicontinuous with either (B1) or (B2). Assume that Z: = F(S) n GMEP(F, ¢, B)
is nonempty. Suppose {x,} is a sequence generated by the following algorithm with x, €

C arbitrarily:
Xns1 = Bnf (Xn) + (1 — Bn) [Oan I = ApA) xn + (1 — an) STy, (xn — Tann)] , (3.1)

where {o,,} and {3,} < (0, 1) and A,, € (0, 20), r,, € (0, 2f) satisfy the following condi-

tions:

(C1): oA, < O, < YB, for all n and some constant y;

(C2): lim,, e B,y = 0, Y02, Bn = 00, limy,, o0 ﬁ;l =1
n

(C3): limnﬁooa;_l =1

n
(C4): Zzil [An — Ap—1| < 05

(CS5): 302, Itn — 1| < 00, lim inf,, .. 7, > O.
Then {x,} converges strongly to x* € Y, which is the unique solution of the variational
inequality:

(I=f)x*,x—x*)>0, VxeT. (32)

Proof. We will divide the proof into five steps.
Step 1. We will show {x,} is bounded. Since A, B are ¢, -inverse-strongly monotone

mappings, we have

[ =2y = (= 2y = (=) = 2 (Ax — A7) |*
| = ¥]* = 20 (x — y, Ax — AY) + 22| Ax — Ap||”

(3.3)
=y + h o — 20) [ Ax — Ap|®

IA

< Jx =yl

By Lemma 2.5, we have u, = Ty, (X, — 1,Bxy) for all n > 0. Then, we have

”un - Cl||2 = ”Trn (-xn - Tann) - Trn (q - Tan) ”2

= ” (Xn — TuBxy) — (fi - ran) ”2
= ||xn - 6/||2 +Tp (T — 2B) ||an - Bq”2

< o —al”
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—_

For any g € E. Since V, I - 1,A and T, are nonexpansive mappings, we have

[xner = a = | Baf ) + (1 = Bo) [0tnV (I = 2pA) Xn + (1 — @) STy, (%0 — TaBx)] — 4|
< Ballf ) — g + (1 = B) eV (I = AnA) X0 + (1 — ct) STy, (0 — TaBxa) — q|
<Bullf ) = f ()] +Balf (@) —a] + A = Bw) e [V T = 1) %0 — q|
+ (1= Ba) (1 — o) | STy, (xn — 1aBxn) — g
< Bup %0 —q| +Ba|[f (9) — ] + A = B e (J|V U = AnA) %0 — V(I = 2,4) 4|
+[VA =218 g —q|) + (1 = B) (1 — o) | Ty, (n — 1uBxa) — 4
< Bup [xn —al + Bu |f (@) = af + 0 = By o (|20 = af + [Va = q] + 20 [V Aq])
+ (1= Bn) (1 —a) |xn —q|
= Bup %0 —al| + Bu |If (a) —a] + QA = By oww |50 — q]| + (1 = Bu) otn |V — 4|
+(1 = By) otnhn [|VAG|| + 1 = B) (1 — ) [0 — 4|
< Bup %0 — g + Ba||f (@) — a]| + @ = Bu) |xn — g +n [|[Vg — || + curn |V Aq]
<= =p) Bl [xu =l +Ba (If () —al + v [Va—a| +v [VAq]).

By induction, it follows that

1
—al <max{lo—al, 1 (r@-al+yva-al+vvarh}, wn=o

Therefore {x,} is bounded and so are {u,}, {Ax,}, {V x,}, and {fix,)}.
Step 2. We claim that lim,,_,.||x,.1 - %,|| = 0. Setting y,, = (I - 1,,4)x,, since I - 1,A
be nonexpansive, we have

[ = yno1 | = 10 = An) %0 — (0 = An-14) X1
< I = AnA) xp — (I — AnA) X1 ||
+ (I = ApA) xp—1 — (I — Ap—14A) X1 |
< llxn — Xp—1ll + |An — An—1| [AXn—1 ||
< lxn = Xp1ll + My Ay — Apal,
where M =sup {||Ax,|| : n € N}. On the other hand, from
Up—1 =Ty, (Xp—1 — T—1Bxy—1) and u, = T, (x, — 14,Bxy), it follows that

1
F(un-1,7)+(Bxn_1,y — tin_1)+@ () —¢ -+ y—tn1,up1 —x1) 20, VyeC  (3.4)

n—1

and

1
F (tn,y) + (Bxn, y — tn) + @ () — @ (up) + . (y—upun —x,)=0, VyeC. (3.5)

n

Substituting y = u,, into (3.4) and y = u,,_; into (3.5), we have

1
F(unfll un)+(an,1, Up — un71>+§0 (Un)—(ﬂ (unfl)"'r (un — Up—1,Up—1 — xnfl) = 0

n—1

and

1
F Uy, Up—1) + (BxXp, Up—1 — Upn) + @ (Un—1) — @ (Up) + r (Up—1 — Utp, Uy — x5) > 0.
n

From (A2), we have

Up—1 — Xp—1 Up — Xn
<un — Up—1,Bxp—1 — Bxp + - >0,
Tn—1 Tn
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and then

Th—1
<”n — Up—1,Tn—1 (Bxp—1 — Bxy) + Up—1 — Xp—1 —

SO

Th—1

<un — Up—1,Tn—1BXp_1 — Ty 1 BXp + Up—1 — Up + Uy — Xp—1 — (un — xn)> > 0.

Tn

It follows that

Th—

1
<un —Up-1, I = 1—1B) Xy — (I = 17y—1B) Xn—1 + Upn—1 — Up + Uy — Xy — (uy — xn)> >0,

n

Th—1
(Up — Up—1, Up—1 — Up) + <un — Up—1,Xp — Xp—1 + (1 - ) (un — xn)> > 0.
n

Without loss of generality, let us assume that there exists a real number ¢ such that

7.1 > ¢ > 0, for all n € N. Then, we have

2 Th—1
lun — tp—1ll” < (uUp —Up—1, %0 —Xp—1+ 1 — . (Un — Xn)
n
”un _xn”}

Tn—1

1—

< lluy — up—1l {”xn — Xyl +
n

and hence

1
”un — Un—1 ” = ”xn — Xn—1 ” + |rn - rn—1| ”un - xn”
Tn (3.6)

M,
< lxp — xp—1ll + c ITh — Tu—1l,

where M; = sup {||u, — x,|| : n € N}. From (3.1), we have

%41 — xall = H,an (%) + (1 — Bn) [Oth}’n +(1—an) Sun]
—Bn-1f @n=1) — (1 = Bu—1) [en-1Vyn—1 + (1 — aty_1) Sup_1 ]|
< Bup %0 = Xna |+ 1Bn = Bua | |[f a0 || + [ (1 = B [ Vym + (1 — ) Sy
— (1 = Bn1) [otn—1Vyn—1 + (1 — @p_1) Sutn—1 ]
= Bup I1xn — Xn-1ll + 1B — Bua| | Gon = D
+ 11 = Ba) [enVyn — anVyn-1 + (1 — @) Sup — (1 — cty) Stin-1 ]
+ (1= Bn) anVyn—1 — (1 = Bu—1) an—1Vyn—1
+(1=Bn) (1 —an) Sup—1 — (1 — Bn—1) (1 — an—1) Sttn—1 |
< Bup X0 — Xn—11l +|Bn — Bn-1l Hf (xnfl)”
+(1—Bn) ”an [VYn - V}’n—l] + (1 —ayp) [Sun - Sun—l]”
+ ” (on — Buotn — ap—1 + Prn-10n-1) Vyn—1
+(1 = Bn—oan+ Bnn — 1+ Bn1 +n—1 — Bn_10n—1) Stin—1l

< Bnp X0 — Xn—1ll + |Bn — Bn-1l Hf (xnfl)”
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+(1 = Bn) an “Yn —Vn—1 ” + (1= Bn) (1 —an) llun — up—1l

+ ” (otn — an—1 = Bnoty + Bnotn—1 — Pnotn—1 + Bu—10n—1) Vyn—1

+(=Bn+ Bn—1 — an + 1 + B — Bun—1 + Bnotn—1 — Pr—10n—1) Suin—1 |
< Bnp l1xn — Xn—11l + 1Bn — Bn-1l ”f (Xn,1)||

+(1 = Bn) an {llxn — xn—1ll + M1 [y — Ap—1l}

M,

+(1 = Bn) (1 —an) y IXn — X021l + c [T — 11l

+ ” [(Ofn —ap-1) — Bu(an —an-1) — (Bn — ﬂn—l)an—l] Vyn_1

+ [_ (Bn — Bn-1) — (o — on—1) + B (otn — ap—1) + (Bn — ,Bn—l)an—l] Sup—1 H
= Bnp 1%y — Xp—1ll + 1Bn — Bn-1l Hf (xnfl)”

+(1 = Bn) an %0 — Xn—11l + (1 — Bn) anMy |2y — kn—[u

+(1 = Bn) (1 —an) %n — xp—1ll + (1 = Br) (1 —an) CZ 10 — Tn-1l

+ “ [(1 = Bn) (an — an—1) — (Bn — Bn-1) Ofn—l] Vyn-1

+ [(ﬂn = 1) (an — an—1) + (Bn — Bn—1) (tn—1 — 1)] Stin—1 ”
< Bnp X0 — xn—1 1l + (1 — Bn) 1Xn — X1l

+ |ﬂn - /Sn—1| ||f (xn_Al/I) ” + (1 - ,Bn) anMy |)\n - )\n—1|

+ (=) (A=) I =

+(1 — Bn) (@n — ap—1) ” Vyn—1 — Stin—1 ”

+ ” (Bn — Bn—1) (@n—1 — 1) Sup—1 — (Bn — Bn—1) tn—1Vyn—1 ”

= Bup 1xn — xn—1ll + (1 = By) 10 — X1l M
+(1 = Bn) oanMy [Ay — A1+ (1 — Bn) (1 — ay) c
+(1 = Bn) (an — atn—1) ||Vyn71 — Stip—1 ”

+1Bn — Bn-1l (”f (xnfl)” +0n—1 HVYnfl H +|1 = ap—1] ISun—1 ”)
< Bnp l1xn — Xp1ll + (1 = B) Iy — X1l + nM1q [Agy — A1

2
[Th — Tl

2
+ c [T — Tn—1] + (atn — 0tp—1) HVlefl — Stin—1 H
+1Bn — Bn-1l (”f (xnfl)” +0n—1 ”V}/nfl ” +|1 = ap—1] ISun—1 ”)
2
S[1—=QA—=p)Bulllxn — xp—1ll + tnMy Ay — Ap_1] + c ITn — Tn_1l
+(loy —ap_1| + 180 — Bn—1) M3 M
2
=[1—=1 = p)Bnlllxn — xp_1ll + My Ay — Ap_q] + c |Th — Tu_1]
+ ('an — ap-1l + [Bn _ﬁn—1|) B.Ms
Bn Bn
M,
S[1—=QA—=p)Bulllxny — xp—1ll + tnMy Ay — Ap_1] + c [T — Tn_1l
+ (V lotn — atp—1] . 1Bn — IBn—1|) B.Ms,

Qn Bn

where M3 = sup{max{||Vy,.1||, ||Su.1ll, ||If x,-1)||}}. Since conditions (C1)-(C5) by
Lemma 2.6, we have ||x,,; - x,|]| > 0 as n — oo.

Step 3. We claim that lim,,_,..||x, - Sx,|| = 0. For each g € E, we note that since T,
is firmly nonexpansive, then we have
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Hun - q”2 = ’ T;, (Xn — 1aBxn) — T, (q - Tan) H2
= <Trn (xn - Tann) - Tr,, (q - Tan) s Un — q)
= <(xn — T Bxy) — (q - Tan) s Up — q)

1
3 I =B = (0= 5Bl + o — al”

_” (xn — 1uBxy) — (q - Tan) - (u" - q) ”2}

1

= {5 =l + s = al* = 50 = s = 2 (B3, — B)°}
1

<, {lw—al® + Jun = gl = %o = wal?

#2120~ thn, B — Ba) — 12| Bxo — B},
which imply that
= all* < Jw = al* = 10 — > + 213 o — 0]l | Ba — B - 3.7)

From (3.1) and set w,: = o0,V(I - 1,,A)x, + (1 - &,,)Su,,, when y,, = (I - A,,A)x,,, then
we have

Hwn - q”2 = Hanv)’n + (1 —an) Suy — qH2
= JlotnVyn + (1 — ) Sty — (1 — ) Sq + (1 — 0t) Sq — g

; (3.8)
= Han (Vyn — Sq) + (1 — o) (Sun — Sq) + Sq — qH
< an[Vyn = Sal” + (1 =) [un —q”.
On the other hand, we note that
lun —q|* = | T, @ — 12Bxa) = Ty, (9 — ruBa) |
< || Gen — 1uBx) — (4 — 1uBa)|*
= [ (xn — @) = 1 (Bxa — Bq)|* (3.9)
< ||xn — q||2 — 21, (xn —(q, Bx, — Bq) + rﬁ ||an — Bq”2
< |lxw —dll” = 228 Bx, — Ba|* + 12| B, — Ba|”.
Using (3.8) and (3.9), we note that
e = a]” = | Baf Gon) + (1 = By —q?
< Bullf Go) = a* + (0 = B |wn —q?
< oo 5 —al” + (1 = B {nl| Vi = Sa) + 0 = @) s = ]*}
< Buplxn —a|* + (A = By au |V — S + (1 = ) (1 — @) |un — q]*
< Bup | — a|* +an | Vyn = Sq|* + (1 = ) (1 — )
x { e = al* = 2ra | Bru — Ba|* + 72 B, — Ba]*}
= Buplxn = all” + e[V = Sq* + (1 = B) (0 = ) (3.10)

x {15 = all* = 1 02 = 28 B, — Ba]’}

= Bup |20 —d|* + @[ Vyw = Sq|* + (1 = B) (0 — &) |20 — q]?
+ (1= Bu) (1 — atn) Ty (1 — 28) | Bxy — Bq

< Bl — | + au| Vyw — Sq|* + (1 = B |50 — a|*
+ (1= Bu) (1 = atn) Ty (1 — 28) | Bxa — Bq|

<11~ p)Bal |5n —a|)* +¥Bul Vru — Sa]’
+ (1= Ba) (1 = atn) T (1 — 2B) | Bxa — Ba|*.
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Then, we have

(1= B) (1 — ay) c (2B — d) |Bxn — Bq|* < v Ba|| Vi — Sal|* + %0 — a|)* = [[xne1 — ]

< B Vyu — Sq|’
+ltn — Xt | (0 — q| + [xne1 — 4] -

From (C2), {r,} € [c, d] € (0, 2B) and lim,,_,..||%,s1 - %,|| = O, we obtain

lim | Bx, — Bq| = 0. (3.11)

Using (3.7), (3.8) and (3.10), it follows that

[ner = al)* < Buolxa — al” + (1 = By an| Vin — Sa* + (1 = ) (1 = @) [un — g
< Bup 5w —a|) + @ | Vyn — Sq|* + (1 = Ba) (1 — )
x { oo = all® = e = all? + 25 Iy = el | B, — B}
= Bup | — q|” + o |Vyn — Sa|* + A = B) (1 — ) 20— q]?
= (1= B) (1 — ) %0 — tnl|” +2 (1 = ) (1 = ctn) 7 |0 — tnl| | Bxn — Be|
< Bub|xn — a|* + @] Vyn — Sa|* + (1 = B) % — q||
— (1= B0) (1 — ey 13 — unl|> + 21 1% — un | | Bxy — B
<1 =1 =) Bal |5u — d|)* + v Bul Vi — Sa]
— (1= B0) (1 — o) 13 — tn ]| + 21 1% — un | | Bxw — By -

(3.12)

Then, we have

(1= B) (1 =) 1n — ull® < %0 = q])* = |xne1 = a]|* + ¥ Ba] Vu — Sa*
+ 21 ||xn — Ul Han — By ||
< 1% = Xner Il (%0 = g + |21 = a])) + ¥ Ba] Vim — Sq||*
+ 27 [|1Xn — | | Bxa — Bq .
From (C1), (C2), (3.13) and lim,, ,..||%,41 - %,|| = 0, we obtain

lim [lxy — unll = 0. (3.13)
n—o0

By (C5), we obtain

. Xp — Up
lim
n—oo

1
= lim  |x, —u,| =0. (3.14)

n—>00 1y,

Tn

From (3.1), it follows that

1Xne1 — Sunll = ” Bnf (xn) + (1 — Br) [anv}’n +(1—ap) Sun] - Sun”
= || Baf Gen) + (1 = Bu) aaVyn + (1 — Bu) (1 — o) Sup — Suy||

(3.15)
= ” Bnf (xn) + (1 — Bn) anVyn + (1 — B) St + (1 — By) anStiy — Sun”
< Bu |If @) = Sun || + (1 = Ba) @ VY — Sun |-
By (C1) and (C2), then we get
nll)ngo %11 — Sunll = 0. (3.16)

Since

lxn — Sxull < l1%n — Xpa1 |l + %1 — Stnll + 1Sty — Sxy ||

< lxn — Xper | + %1 — Suigl + Nl — x|l -



Jitpeera and Kumam Journal of Inequalities and Applications 2012, 2012:82
http://www.journalofinequalitiesandapplications.com/content/2012/1/82

By lim,,_,o||%,41 - %,]| = 0, (3.13) and (3.16), so we obtain

lim ||x,, — Sx,|| = 0. (3.17)
n—oo

Step 4. Next, we will show that

limsup ((I — f) x*, x, — x*) < 0.

n—o00

Indeed, we choose a subsequence {x,,i} of {x,} such that

limsup ((I — f) x*, x, — x*) = limsup ((I — f) x*, x,, — x"). (3.18)

Since ?827? is bounded, there exists a subsequence {xnij} of ?82? which converge

weakly to z € C. Without loss of generality, we can assume that X», = 2. From ||x,, —
Sx,|| = 0, we obtain Sx,, — z. Now, we will show that z € E: = F (S) n GMEP (F, ¢,
B). Let us show z € F(S). Assume that z ¢ F(S). Since ?85? and Sz = z. By the Opial’s

condition, we obtain

liminf |x,, — z| < liminf |x, — S|

= liminf ||x,, — Sx, + Sxn, — Sz
1—> 00

< liminf (||x,, — Sxy, || + || Sxn, — Sz])
= liminf || Sx,, — Sz
1—00

< liminf |x,, —z]| .
1—00

This is a contradiction. Thus, we have z € F(S).
Next, we will show that z e GMEP (F, ¢, B). Since u, = T;, (x, — r,Bx,), we have

1
F (un,y) + (Bxn, y — tn) + @ (v) — ¢ () + . (y—upun —xs) =0, VyeC.

n

From (A2), we also have

1
(an,y—un)+g0(y)—<p(un)+r (y = upun —xa) = F(y,un), VWyeC.

n

and hence
(Bxn, y — un) + @ (y) — ¢ (un,) + <y — Uy, “r—x> >F(yu,), VyeC. (3.19)
n;

FortwithO<t<landye Clety, =ty + (1-t)z Since ye Cand ze C, we have
y; € C. So, from (3.19), we have

Un, — Xn,

i i

<)’t - ”nuB)’r> = (Vt - un,,BM —¢ (Vz) +¢@ (“n,) - ()’t — Un, an,) - <Yt — Un;,

ni

+F (ye, un,)
= <Yt — Un;, Byr — B“n.> + <Vt — Un,;, Buy, — me> -9 (}’t) +¢ (”nl)

- <}/[ — Un/ o > +F (}/z, ”m) :
Tn;
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Since ||uy, — xn,| — 0, we have |Bu,, — Bxy,| — 0. Further, from the inverse strongly

monotonicity of B, we have (y, — Up,, By, — Buni> > 0. So, from (A4), (A5), and the weak

Up, — Xn,

lower semicontinuity of ¢, — 0 and Uy, — %, we have at the limit

ni
(Vt -z BYt) > =@ (Yt) +¢ () +F (ytrz) (3.20)
as i — oo. From (Al), (A4), and (3.20), we also get

0=F (Yu Yz) +Q (}’t) - (yt)
SEFWuy)+A-0DFuz)+to(y) —(1—De @ —¢ (1)
tE(uy) +o (r) —o ()| + A =D [F(y.2) + 0 @ — ¢ (v)]

;t[F (rey)+o () —e )]+ =0y —zBy)
=t[F(yy)+o () —¢ )]+ Q—0tly—zBy),
0<F(yuy)+¢ () —¢ )+ —0y—=zBy).

Letting ¢t — 0, we have, for each y € C,
F(zy)+¢(y) —¢ @ +(y— 2z Bz) > 0.

This implies that z € GMEP (F, ¢, B). Therefore x* € E. It is easy to see that Py({ -
H(x*) is a contraction of H into itself. Hence H is complete, there exists a unique fixed
point x* € H, such that x* = Py(I - f)(x*). Since x* = Py(I - f)(x*), we have

limsup ((I — f) x*, x, — x*)= limsup ((I — f) x*, Sx, — x*)
n—-oo

n—o00

= limsup ((I — f) x*, Sx,, — x*) (3.21)

n—o0

=((I-f)x"z—x")<0.
Step 5. Last, we will prove x,, — x* € Y. It follows from (3.1) that, we compute

[ = 2% [* = [ Buf @) + (1 = Bu) [nV (I = 2nA) st + (1 = ) STy, (6w — 1uBon)] — x*|?
= [Ba[f @) = f ()] + (1 = Bo) {n [V 0 = 2nA) % — V (I = 2pA) 5]
+(1 = ay) [STy, (x5 — 1aBxn) — x*]} + B [f (x*) — x*]
+ (1= B o [V (0 = h) x* — ]|
< B [f @n) = F ()] + (@ = Bo) {orn [V T = 2pA) % — V (I — ApA) x*]
+(1 = ay) [STy, (%0 — 1uBxn) — x*]} ||2
+2(Ba [f (¢*) = 2]+ A = B ot [V (I — ApA) &* — &), g1 — x¥)
< Bullf o) = F ()| * + (1= B otn [V = 2nA) 20 — V (I = RpA) x¥]
+ (1= o) [STy, Gen — 1uBx) — ]|
+ 280 (f () — &%, X1 — 2) + 2.(1 = B) ot (V (I = ApA) x* — x*, X1 — x¥)
< B [n = * + (1= Bu) (ot | (= AnA) 2w — (1 = 2 x*]|
+(1 = an) | Ty, (e — 1aBxa) — x°]))°
+ 2B (f () — &%, X1 — x*) + 2.(1 = Ba) ot (VX — &%, 1 — x7)
—2(1 = Bu) dph (VAX*, x01 — x¥)
< Bup?|xn — x*|
+ (1= Ba) (o [Jon — [ + (1 = ) [Jn — )
+ 2B (f (%) — &%, %1 — x) + 2.(1 = Bu) ot (Va* — 2%, a1 — x7)
—2(1 = Bn) dtnhn (VAX*, xps1 — x¥)
< Bup?|xn —x*|* + (1 = Ba) 20 — 2|
+ 280 (f () — &%, %1 — x*) + 2.(1 = Bu) ot | V' — x*|| [ nar — 2|
=[1= (1= ) Ba] [ ="
+ 2B (f (%) = 6% Xt = 27) + 2(1 = B) B | V™ — | i1 — 2] .
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Setting
1
o 1—p? {20f () = 2" w1 —x")+ 20 = By |V — | [ xpar — 2}

By (3.18), the fact that lim sup,, ,.. 6, < 0. Therefore, by Lemma 2.6, we conclude

that x,, — x*, as n — . This complete the proof.

Next, the following example shows that all conditions of Theorem 3.1 are satisfied.
n+1 1 1
n? + 1,'3" ST 2(n+1)
the sequences {o,,}, {B,}, 4.} satisty the following condition (C1)

n
Example 3.2. For instance, let o, = and 1, = nal Then,
+

n+1 1 n+1 1
. < < .
2+l 2m+1) n2+1 Un

We will show that the condition (C2) is achieves. Indeed, we obtain that

. .1
lim B, = lim =0,
n— 00 n—oo n
00 oo 1
E Bn = E = 00,
n=1 n=1n
and
1
. -1 . _
lim #~! = lim it
n—oo ﬁ” n— o0
= lim 1
n—oo "~

=1.

Next, we will show that the condition (C3) is achieves. Indeed, we have that

(n+1)—1

lim ¥~ 1. lim (- D’+1
- n+1
n—oo o, L R
n
_ 1 n2—2n+1+1
- Jim, "
n?+1
T n n?+1
- nlgl;) n2—2n+2  n+l
=1.

Next, we will show that the condition (C4) is achieves. We observe that

00 S 1 1
Zn:l [ = Ana | = an 2mn+1) 2n
1 1 1 1 1 1
= - + — + — +.
22 21 23 22 24 23

5

Then, the sequence {4,} satisty the condition (C4).
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Finally, we will show that the condition (C5) is achieves. We compute

o 00 n n—1
E Ty — Tn1| = B
oy | =T Zn=1n+1 (”—1)+1‘

_Zoo nmn)—mnm—1m+1)
=1 n+1)n

—ZOO nz_n2+1
S Ln=1| (n+1)n

00 1
B Zn=1 nn+1)

and

liminfr, = liminf " =1.
n—00 n—oo N+ 1

Then, the sequence {r,} satisfy the condition (C5).

Corollary 3.3. Let H be a real Hilbert space, f: C — C be a p-contraction with coeffi-
cient pe [0, 1) and S, V: C — C be two nonexpansive mappings. Let F be a bifunction
from C x C — R satisfying (A1)-(AS) and let ¢ : C — R is convex and lower semicon-
tinuous with either (B1) or (B2). Assume that F (S) N MEP (F, ¢) is nonempty. Suppose
{x,)} is a sequence generated by the following algorithm xo € C arbitrarily:

Xns1 = Buf (Xn) + (1 — Bn) [anvxn + (1 —oan) STrnxn] , (3.22)

where {o,,} and {§,} € (0, 1) and r, € (0, 2P) satisfy the conditions (C1)-(C3) and
(C5). Then {x,} converges strongly to x* € F (S) N MEP (F, ¢), which is the unique solu-
tion of the variational inequality:

(I-f)x*,x—x*) >0, VxeF(S)NMEP(F,¢). (3.23)

The solution of (3.23) is denoted by A. This algorithm strongly converge to x* € A.

Proof. Putting A, B = 0 in Theorem 3.1, we can obtain desired conclusion
immediately.

Corollary 3.4. Let H be a real Hilbert space, f: C — C be a p-contraction with coeffi-
cient pe [0, 1) and S, V: C — C be two nonexpansive mappings. Let A: C — C be an
a-inverse-strongly monotone. Assume that F(S) is nonempty. Suppose {x,} is a sequence
generated by the following algorithm xo € C arbitrarily:

Xn+l = ,an (xn) + (1 = Bp) [0y VI — X3A) xp + (1 — ) Sxp], (3.24)

where {a,} and {B,} < (0, 1) and A,, € (0, 2a0) satisfy the conditions (C1)-(C4).
Then {x,; converges strongly to x* € F(S), which is the unique solution of the varia-
tional inequality:

(I=f)x"x—x") >0, VxeF(S). (3.25)

The solution of (3.25) is denoted by T'. This algorithm strongly converge to x* € T.

Proof. Putting B = 0 and T;, =1 in Theorem 3.1, we can obtain desired conclusion
immediately.

Corollary 3.5. Let H be a real Hilbert space, f C — C be a p-contraction with coeffi-
cient p e [0, 1) and S, V: C — C be two nonexpansive mappings. Assume that F(S) =
&. Suppose {x,} is a sequences generated by the following algorithm xo € C arbitrarily:
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Xne1 = Buf (tn) + (1 = Bn) [onVy + (1 — otn) Sxn], (3.26)

where {o,,} and {B,} < (0, 1) satisfy the conditions (C1)-(C3).
Then {x,} converges strongly to x* € F (S), which is the unique solution of the varia-
tional inequality:

(I=f)x",x—x") >0, VxeF(S). (3.27)

The solution of (3.27) is denoted by U'". This algorithm strongly converge to x* € T".

Proof. Putting A, B = 0 and Ty, =I in Theorem 3.1, we can obtain desired conclu-
sion immediately.

Remark 3.6. Corollary 3.5 generalizes and improves the result of Marino and Xu([7,
Theorem 3.1].
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