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Abstract

In this article, we obtain the necessary and sufficient conditions that the semi-
invariant submanifold to be a locally warped product submanifold of invariant and
anti-invariant submanifolds of a cosymplectic manifold in terms of canonical
structures T and F. The inequality and equality cases are also discussed for the
squared norm of the second fundamental form in terms of the warping function.
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1 Introduction
Bishop and O’Neill [1] introduced the notion of warped product manifolds in order to

construct a large variety of manifolds of negative curvature. Later on, the geometrical

aspects of these manifolds have been studied by many researchers (c.f., [2-5]). The idea

of warped product submanifolds was introduced by Chen [6]. He studied warped pro-

duct CR-submanifolds of the form M = M⊥ ×l MT such that M⊥ is a totally real sub-

manifold and MT is a holomorphic submanifold of a Kaehler manifold M̄ and proved

that warped product CR-submanifolds are simply CR-products. Therefore, he consid-

ered the warped product CR-submanifolds in the form of M = MT ×l M⊥ which are

known as CR-warped products where MT and M⊥ are holomorphic and totally real

submanifolds of a Kaehler manifold M̄ , respectively.

The warped product submanifolds of cosypmlectic manifolds was studied by Khan et.

al [7]. Recently, Atçeken studied warped product CR-submanifolds of cosymplectic

space form and obtained an inequality for the squared norm of the second fundamen-

tal form [2]. In this article, we obtain some basic results of semi-invariant submanifolds

of cosymplectic manifolds and prove that a semi-invariant submanifold M of a cosym-

plectic manifold M̄ is locally a Riemannian product if and only if the canonical struc-

ture T is parallel. The semi-invariant warped product submanifolds are the

generalization of locally Riemannian product submanifolds, so it will be worthwhile to

study warped product submanifolds in terms of canonical structures T and F, to this

end we obtain some characterization results on the warped product semi-invariant

submanifolds in terms of the canonical structures T and F.
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2 Preliminaries
A (2m + 1)-dimensional C∞-manifold M̄ is said to have an almost contact structure if

there exist on M̄ a tensor field j of type (1, 1), a vector field ξ and 1-form h satisfying:

φ2 = −I + η ⊗ ξ ,φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1. (2:1)

There always exists a Riemannian metric g on an almost contact manifold M̄ satisfy-

ing the following conditions

g(φX,φY) = g(X,Y) − η(X)η(Y), η(X) = g(X, ξ) (2:2)

where X, Y are vector fields on M̄ .

An almost contact structure (j, ξ, h) is said to be normal if the almost complex

structure J on the product manifold M̄ × R is given by

J(X, f
d
dt
) = (φX − f ξ , η(X)

d
dt
)

where f is the C∞ -function on M̄ × R has no torsion i.e., J is integrable. The condi-

tion for normality in terms of j, ξ, and h is [j, j] + 2dh ⊗ ξ = 0 on M̄ , where [j, j]
is the Nijenhuis tensor of j. Finally, the fundamental two-form F is defined by F(X,

Y) = g(X, jY).
An almost contact metric structure ( j, ξ, h, g) is said to be cosymplectic, if it is nor-

mal and both F and h are closed [8], and the structure equation of a cosymplectic

manifold is given by

(∇̄Xφ)Y = 0 (2:3)

for any X, Y tangent to M̄ , where ∇̄ denotes the Riemannian connection of the

metric g on M̄ . Moreover, for cosymplectic manifold

∇̄Xξ = 0. (2:4)

Let M be a submanifold of an almost contact metric manifold M̄ with induced

metric g and if ∇ and ∇⊥ are the induced connections on the tangent bundle TM and

the normal bundle T⊥M of M, respectively. Denote by F(M) the algebra of smooth

functions on M and by Γ(TM) the F(M) -module of smooth sections of a vector bun-

dle TM over M, then the Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h(X,Y) (2:5)

∇̄XV = −AVX + ∇⊥
X V (2:6)

for each X, Y Î Γ(TM) and V Î Γ(T⊥M), where h and AV are the second fundamen-

tal form and the shape operator (corresponding to the normal vector field V) respec-

tively, for the immersion of M into M̄ . They are related by

g(h(X,Y),V) = g(AVX,Y), (2:7)

where g denotes the Riemannian metric on M̄ as well as on M. The mean curvature

vector H on M is given by
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H =
1
n

n∑

i=1

h(ei, ei)

where n is the dimension of M and {e1, e2, . . . , en} is a local orthonormal frame of

vector fields on M. The squared norm of the second fundamental form is defined as

‖ h ‖ 2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

For any X Î Γ(TM), we write

φX = TX + FX, (2:8)

where TX and FX are the tangential and normal components of jX, respectively.
Similarly, for any V Î Γ(T⊥M), we write

φV = tV + fV, (2:9)

where tV is the tangential component and fV is the normal component of jV. The
covariant derivatives of the tensors T and F are defined as

(∇̄XT)Y = ∇XTY − T∇XY (2:10)

(∇̄XF)Y = ∇⊥
X FY − F∇XY (2:11)

for all X, Y Î Γ(TM).

Let M be a Riemannian manifold isometrically immersed in an almost contact metric

manifold M̄ , then for every x Î M there exist a maximal invariant subspace denoted

by Dx of the tangent space TxM of M. If the dimension of Dx is same for all values of

x Î M, then Dx gives an invariant distribution D on M.

A submanifold M of an almost contact metric manifold M̄ is called a semi-invariant

submanifold if there exist on M a differentiable distribution D whose orthogonal com-

plementary distribution D⊥ is anti-invariant, i.e.,

(i) TM = D ⊕ D⊥ ⊕ 〈ξ〉

(ii) D is an invariant distribution

(iii) D⊥ is an anti-invariant distribution i.e., jD⊥ ⊆ T⊥M.

A semi-invariant submanifold is anti-invariant if Dx = {0} and invariant if D⊥
x = {0}

respectively, for every x Î M. It is a proper semi-invariant submanifold if neither Dx =

{0} nor D⊥
x = {0} , for each x Î M.

Let M be a semi-invariant submanifold of an almost contact metric manifold M̄ .

Then, FTxM is a subspace of T⊥
x M such that

T⊥
x M = FTxM ⊕ νx (2:12)

where ν is the invariant subspace of T⊥M under j.
Let M be a proper semi-invariant submanifold of an almost contact metric manifold

M̄ , then for any X Î Γ(TM), we have

X = P1X + P2X + η(X)ξ , (2:13)
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where P1 and P2 are the orthogonal projections from TM to D and D⊥, respectively.

It follows immediately that

(a)TP2 = 0, (b)FP1 = 0, (c)t(T⊥M) = D⊥, (d)f T⊥M ⊆ ν. (2:14)

From (2.3), (2.5), (2.6), (2.8), and (2.9), we have

(∇̄XT)Y = AFYX + th(X,Y) (2:15)

(∇̄XF)Y = fh(X,Y) − h(X,TY) (2:16)

for any X, Y Î Γ(TM).

Definition 2.1 A semi-invariant submanifold M is said to be a locally semi-invariant

product submanifold if M is locally a Riemannian product of the leaves of distributions

D, D⊥, and 〈ξ〉.

Definition 2.2 Let (N1, g1) and (N2, g2) be two Riemannian manifolds with Rieman-

nian metrics g1 and g2, respectively, and l be a positive differentiable function on N1.

Then the warped product of N1 and N2 is the Riemannian manifold (N1 × N2, g), where

g = g1 + λ2g2.

The warped product manifold (N1 × N2, g) is denoted by N1 ×l N2. If U is any vector

field tangent to M = N1 ×l N2 at (p, q), then

‖ U ‖ 2 = ‖ dπ1U ‖ 2 + λ2(p) ‖ dπ2U ‖ 2,

where π1 and π2 are the canonical projections of M onto N1 and N2, respectively.

Bishop and O’Neill [1] proved the following results:

Theorem 2.1 Let M = N1 ×l N2 be a warped product manifold. If X, Y Î Γ(TN1)

and Z, W Î Γ(TN2), then

(i) ∇XY Î Γ(TN1)

(ii) ∇XZ = ∇ZX = (Xλ
λ
)Z,

(iii) ∇ZW = ∇N2
Z W − g(Z,W)

λ
∇λ .

where ∇N2 is the connection on N2 and ∇l is the gradient of the function l and is

defined as

g(∇λ,U) = Uλ, (2:17)

for each U Î Γ(TM).

Corollary 2. 1 On a warped product manifold M = N1 ×l N2, we have

(i) N1 is totally geodesic in M,

(ii) N2 is totally umbilical in M.

3 Some basic results on semi-invariant submanifolds
In the following section, we discuss some basic results on semi-invariant submanifolds

of a cosymplectic manifold for later use. First, we obtain the integrability conditions of

involved distributions in the definition of a semi-invariant submanifold and then we

will see the geometric properties of their leaves.

Proposition 3.1 [9]Let M be a semi-invariant submanifold of a cosymplectic mani-

fold then the anti-invariant distribution D⊥ is integrable.
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Proposition 3.2 The invariant distribution D on a semi-invariant submanifold of a

cosymplectic manifold is integrable if and only if

g(h(X,φY),φZ) = g(h(φX,Y),φZ)

for each X, Y Î Γ(D) and Z Î Γ(D⊥).

Proof. The result can be obtained by making use of (2.2), (2.3), and (2.5). ■
Proposition 3.3 If the invariant distribution D on a semi-invariant submanifold M of

a cosymplectic manifold M̄ is integrable, then its leaves are totally geodesic in M if and

only if

h(U,Y) ∈ �(ν),

for each U Î Γ(TM) and Y Î Γ(D).

Proof. From (2.16), we obtain

F∇UY = fh(U,Y) − h(U,TY),

for any U Î Γ(TM) and Y Î Γ(D). Taking the inner product with jZ for any Z Î
Γ(D⊥), we get

g(F∇UY,φZ) = −g(h(U,TY),φZ).

The result follows from the above equation. ■
Now, we have the following corollary for later use.

Corollary 3.1 The invariant distribution D on a semi-invariant submanifold M of a

cosymplectic manifold M̄ is integrable and its leaves are totally geodesic in M if and

only if

(∇̄XT)Y = 0.

for any X, Y Î Γ(D).

Proof. The result follows from (2.15) and Proposition 3.3. ■
Lemma 3.1 For a semi-invariant submanifold M of a cosymplectic manifold M̄ , the

leaf N⊥ of D⊥ is totally geodesic in M if and only if

g(h(X,Z),φW) = 0,

for any X Î Γ(D) and Z, W Î Γ(D⊥).

Proof. From (2.2), (2.3), (2.5), and (2.6), we obtain

g(∇ZW,φX) = g(h(X,Z),φW).

Thus, the result follows from the above equation. ■
Theorem 3.1 A semi-invariant submanifold M of a cosymplectic manifold M̄ is

locally a semi-invariant product if and only if

(∇̄UT)V = 0,

for any U, V Î Γ(TM).

Proof. If T is parallel then by (2.15), we have

AFVU = −th(U,V) (3:1)
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for any U, V tangent to M. In particular, if X Î Γ(D), then (3.1) gives, th(U, X) = 0,

that is,

AFZX = 0. (3:2)

for any Z Î Γ(D⊥). Thus by Proposition 3.2 and Lemma 3.1, D is integrable and the

leaf N⊥ of D⊥ is totally geodesic in M. Let NT be a leaf of D, now for any X, Y Î Γ(D)

and Z Î Γ(D⊥) by (3.2), we obtain g(AjZX, Y) = 0 and using (2.2), (2.3), (2.5), and (2.6),

we get g(∇XjY, Z) = 0, which shows that leaf of D is totally geodesic in M and distri-

bution 〈ξ〉 is already totally geodesic in M and hence M is locally a semi-invariant

product.

Conversely, if M is locally a semi-invariant product then ∇U × Î Γ(D) for any X Î

Γ(D) and U Î Γ(TM), thus by (2.15) and the Proposition 3.3, we get (∇̄UT)Y = 0 .

Similarly, for any Z Î Γ(D⊥) and U Î Γ(TM), we obtain ∇U Z Î Γ(D⊥) and then by

(2.10), we get (∇̄UT)Z = 0 and it is easy to see that (∇̄UT)ξ = 0 . By these observations

we find that (∇̄UT)V = 0, for all U, V Î Γ(TM), this proves the theorem completely. ■

4 Semi-invariant warped product submanifolds
Throughout this section, we denote NT and N⊥ the invariant and anti-invariant subma-

nifolds of a cosymplectic manifold M̄ , respectively. The warped product semi-invariant

submanifolds of a cosymplectic manifold M̄ are denoted by N⊥ ×l NT and NT ×l N⊥.

The first type of warped products do not exist of a cosymplectic manifold in the sense

of [5], here we discuss the second type of warped products and obtain some interesting

results. First, we have the following lemma:

Lemma 4.1 Let M = NT ×l N⊥ be a warped product semi-invariant submanifold of

an almost contact metric manifold M̄ . Then

(∇̄ZT)X = (TX lnλ)Z

(∇̄UT)Z = g(P2U,Z)T(∇ lnλ).

for any X, Z, and U tangent to NT, N⊥, and M, respectively.

Proof. Let M = NT ×l N⊥ be a warped product submanifold of invariant and anti-

invariant submanifolds of an almost contact metric manifold M̄ , then by Theorem 2.1

(ii), we have

∇XZ = ∇ZX = (X lnλ)Z (4:1)

for X Î Γ(TNT) and Z Î Γ(TN⊥). Then, from (2.10) and (4.1), we get

(∇̄ZT)X = (TX ln λ)Z,

which proves the first part of the lemma. Now, for any U Î Γ(TM), we have TU Î

Γ(TNT), therefore (∇̄UT)Z ∈ �(TNT) for any U Î Γ(TM). Furthermore, for any X Î

Γ(TNT), we obtain

g((∇̄UT)Z,X) = −g(Z,∇UTX).
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Using (2.13), the above equation reduced to

g((∇̄UT)Z,X) = −g(Z,∇P1U+P2U+η(U)ξTX).

= −g(Z,∇P2UTX) + η(U)g(∇ξZ,TX).

Using (4.1), the second term of right hand side is identically zero, then the above

equation takes the form

g((∇̄UT)Z,X) = −g(Z,∇P2UTX)

= −(TX ln λ)g(Z,P2U).

Using (2.17), we obtain

g((∇̄UT)Z,X) = g(T∇ lnλ,X)g(Z,P2U).

That is,

(∇̄UT)Z = T(∇ lnλ)g(Z,P2U).

This proves the lemma completely. ■
Theorem 4.1 A proper semi-invariant submanifold of a cosymplectic manifold M̄ is

locally a warped product semi-invariant submanifold if and only if

(∇̄UT)V = (TVμ)P2U + g(P2U,P2V)φ∇μ, (4:2)

for each U, V Î Γ(TM) and μ, a C∞ -function on M satisfying W μ = 0, for each W Î
Γ(D⊥).

Proof. Let M = NT ×l N⊥ be a warped product semi-invariant submanifold of a

cosymplectic manifold M̄ , then from (2.10) and (2.13), we have

(∇̄UT)V = (∇̄UT)P1V + (∇̄UT)P2V + η(U)(∇̄UT)ξ .

Again using (2.10) and (2.13), the above equation takes the form

(∇̄UT)V = (∇̄P1UT)P1V + (∇̄P2UT)P1V + (∇̄UT)P2V. (4:3)

Now, from Lemma 4.1, we have

(∇̄P2UT)P1V = (TV ln λ)P2U

and

(∇̄UT)P2V = g(P2U,P2V)T(∇ ln λ).

Substituting these values in (4.3), we obtain

(∇̄UT)V = (TVμ)P2U + g(P2U,P2V)φ∇μ.

Conversely, suppose that M is a semi-invariant submanifold of a cosymplectic mani-

fold M̄ and (4.2) holds, then (∇̄XT)Y = 0 , for each X, Y Î Γ(D). Then by Corollary

3.1, D is integrable and each leave NT of D is totally geodesic in M. Moreover, from

(4.2), we have

g((∇̄ZT)X,W) = (TXμ)g(Z,W).
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for X Î Γ(D) and Z, W Î Γ(D⊥). Using (2.3), (2.8), and (2.10), we obtain

g(φ∇̄ZX,W) = (TXμ)g(Z,W).

That is,

g(∇̄ZX,φW) = −(TXμ)g(Z,W).

Using cosymplectic character and (2.5), we derive

g(∇ZW,φX) = −(TXμ)g(Z,W).

By (2.17), the above equation takes the form

g(∇ZW,φX) = g(T∇μ,X)g(Z,W). (4:4)

Let us assume that N⊥ is a leaf of D⊥ and h’ is the second fundamental form of the

immersion of N⊥ into M, then

g(h′(Z,W),X) = g(∇ZW,X).

Using (4.4), we get

g(h′(Z,W),φX) = −g(∇μ,φX)g(Z,W)

or,

h′(Z,W) = −g(Z,W)∇μ.

This means that N⊥ is totally umbilical in M with non vanishing mean curvature ∇μ.
Also, as W μ = 0, for all W Î Γ(D⊥), i.e., the mean curvature vector of N⊥ is parallel

and the leaves of D⊥ are extrinsic spheres in M. Hence from a result of Hiepko [10],

the submanifold M is locally a warped product semi-invariant submanifold of NT and

N⊥ with warping function l = eμ. ■
Note. Theorem 4.1 is a generalization of Theorem 3.1, and shows that what is the

effect on ∇̄T , when the submanifold is a warped product semi-invariant submanifold.

Theorem 4.2 A semi-invariant submanifold M of a cosymplectic manifold M̄ is

locally a warped product semi-invariant submanifold if and only if

g((∇̄UF)V,φW) = −(P1Vμ)g(U,W), (4:5)

for U, V Î Γ(TM) and W Î Γ(D⊥), where μ is a C∞ -function on M such that Z μ =

0, for all Z Î D⊥.

Proof. If M = NT ×l N⊥ is a warped product semi-invariant submanifold of a cosym-

plectic manifold M̄ , then NT and N⊥ are totally geodesic and totally umbilical in M,

respectively. Moreover, we have

∇XZ = ∇ZX = (X ln λ)Z. (4:5:1)

for any X Î Γ(D) and Z Î Γ(D⊥). Now, by (2.13), we have

(∇̄UF)V = (∇̄P1U+P2U+η(U)ξF)V

= (∇̄P1UF)V + (∇̄P2UF)V + η(U)(∇̄ξF)V.
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Again, using (2.13), the above equation takes the form

(∇̄UF)V = (∇̄P1UF)P1V + (∇̄P1UF)P2V + η(V)(∇̄P1UF)ξ + (∇̄P2UF)P1V

+(∇̄P2UF)P2V + η(V)(∇̄P2UF)ξ + η(U)(∇̄ξF)P1V

+η(U)(∇̄ξF)P2V + η(U)η(V)(∇̄ξF)ξ .

In view of (2.4), (2.5), and (2.16), the above equation reduced to

(∇̄UF)V = (∇̄P1UF)P1V + (∇̄P1UF)P2V + (∇̄P2UF)P1V + (∇̄P2UF)P2V.

Taking the inner product with jW, for any W Î Γ(D⊥), we obtain

g(∇̄UF)V,φW) = g((∇̄P1UF)P1V + (∇̄P1UF)P2V

+ (∇̄P2UF)P1V + (∇̄P2UF)P2V,φW).

Using (2.14), (2.16) and the fact that P1U Î Γ(D) and P2U Î Γ(D⊥), for any U Î
Γ(TM), then the above equation becomes

g((∇̄UF)V,φW) = g(fh(P1U,P1V),φW) − g(h(P1U,TP1V),φW)

+g(fh(P1U,P2V),φW) + g(fh(P2U,P1V),φW)

+g(fh(P2U,P2V),φW) − g(h(P2U,TP1V),φW).

From (2.2), the above equation becomes

g((∇̄UF)V,φW) = −g(h(P1U,TP1V) + h(P2U,TP1V),φW).

Using (2.5), we derive

g((∇̄UF)V,φW) = −g(∇̄P1UφP1V,φW) − g(∇̄P2UφP1V,φW).

Using the covariant differentiation property of j and the fact that P1V Î Γ(D) and

P2V Î Γ(D⊥), for any V Î Γ(TM), then from (2.2), we obtain

g((∇̄UF)V,φW) = g(P1V, ∇̄P1UW) − g(∇̄P2UP1V,W).

Again using (2.5), we arrive at

g((∇̄UF)V,φW) = g(P1V,∇P1UW) − g(∇P2UP1V,W).

The first term of right-hand side is zero by (4.1) and the fact that P1V Î Γ(D) and W

Î Γ(D⊥), thus we obtain

g((∇̄UF)V,φW) = −(P1V lnλ)g(P2U,W)

= −(P1V lnλ)g(U,W)

= −(P1Vμ)g(U,W).

Conversely, suppose that M is a semi-invariant submanifold of a cosymplectic mani-

fold satisfying (4.5), then it is easy to see that

g((∇̄XF)Y,φW) = 0,

for each X, Y Î Γ(D) and W Î Γ(D⊥). Thus, by (2.16) we obtain

g(h(X,φY),φW) = 0.
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Therefore by Propositions 3.2 and 3.3, the distribution D is integrable and its leaves

are totally geodesic in M. Now for any Z Î Γ(D⊥), by (4.5), we have

g((∇̄ZF)X,φW) = −(Xμ)g(Z,W).

Using (2.16), we get

g(h(φX,Z),φW) = (Xμ)g(Z,W). (4:6)

Let N⊥ be a leaf of D⊥ and h’ be the second fundamental form of the immersion of

N⊥ into M and ∇’ is the induced connection on N⊥, then by Gauss formula, we have

∇ZW = ∇′
ZW + h′(Z,W). (4:7)

Now for any Z, W Î Γ(D⊥) and X Î Γ(D), by (2.3) and (2.5), we have

g(h(Z,X),φW) = g(φX,∇ZW).

From (4.7), we obtain

g(h(Z,X),φW) = g(h′(Z,W),φX). (4:8)

Thus, by (4.6) and (4.8), we derive

g(h′(Z,W),X) = −(Xμ)g(Z,W).

Using (2.17), we obtain

h′(Z,W) = −g(Z,W)∇μ,

which implies that N⊥ is totally umbilical in M with non vanishing mean curvature

vector ∇μ. Moreover, as Z μ = 0 for all Z Î Γ(D⊥) that is, the mean curvature is paral-

lel on N⊥, this show that N⊥ is extrinsic sphere. Hence, from a result of [10], M is

locally a warped product submanifold. ■
Proposition 4.1. Let M = NT ×l N⊥ be a warped product semi-invariant submanifold

of a cosymplectic manifold of M̄ . Then

(i) hφD⊥(φX,Z) = (X lnλ)φZ

(ii) g(h(jX, Z), jh(X, Z)) = ||hν(X, Z)||
2

for any × Î Γ(D) and Z Î Γ(D⊥).

Proof. For any X Î Γ(D) and Z Î Γ(D⊥), by Gauss formula, we have

h(φX,Z) = φ∇ZX + φh(X,Z) − ∇ZφX.

Using (4.1), we get

h(φX,Z) = (X ln λ)φZ + φh(X,Z) − (φX lnλ)Z. (4:9)

Equating the tangential components of (4.9), we get

(φX lnλ)Z = th(X,Z),

Taking the inner product with W Î Γ(D⊥), we obtain

g(h(X,Z),φW) = −(φX ln λ)g(Z,W),
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http://www.journalofinequalitiesandapplications.com/content/2012/1/19

Page 10 of 12



or equivalently

hφD⊥(X,Z) = −(φX ln λ)φZ.

Replacing X by jX, we obtain

hφD⊥(φX,Z) = (X lnλ)φZ,

which proves the part (i) of proposition. Now, for the second part comparing the

normal components of (4.9), we get

h(φX,Z) = (X ln λ)φZ + φhν(X,Z),

or,

h(φX,Z) − φhν(X,Z) = (X lnλ)φZ,

Taking the inner product with j h(X, Z), we derive

g(h(φX,Z),φh(X,Z)) = ‖ hν(X,Z) ‖ 2,

which completes the proof. ■
Theorem 4.3. Let M = NT ×l N⊥ be a warped product semi-invariant submanifold of

a cosymplectic manifold M̄ . Then

(i) The squared norm of the second fundamental form satisfies

‖ h ‖ 2 ≥ 2q ‖ ∇ lnλ ‖ 2,

where ∇ ln l is the gradient of the function ln l and q is the dimension of N⊥.

(ii) If the equality holds identically, then NT is a totally geodesic submanifold of M̄ ,

N⊥ is a totally umbilical submanifold of M̄ and M is minimal.

Proof. Let {X1, X2, . . . , Xp, Xp+1 = jX1, . . . , X2p = jXp, X2p+1 = ξ} be a local ortho-

normal frame of vector fields on NT and {Z1, Z2, . . . , Zq} a local orthonormal frame

on N⊥. Then by definition of squared norm of mean curvature vector

||h||2 =
2p+1∑

i,j=1

g(h(Xi,Xj), h(Xi,Xj))

+
2p+1∑

i=1

q∑

r=1

g(h(Xi,Zr), h(Xi,Zr))

+
q∑

r,s=1

g(h(Zr ,Zs), h(Zr ,Zs))

(4:10)

or,

‖ h ‖ 2 ≥
2p∑

i=1

q∑

r=1

g(h(Xi,Zr), h(Xi,Zr)).
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In view of Proposition 4.1 (i), we get

‖ h ‖ 2 ≥
2p∑

i=1

q∑

r=1

(φXi ln λ)2g(Zr ,Zr),

≥ 2q ‖ ∇ ln λ ‖ 2.

This verifies the assertion (i). If the equality sign holds, then from (4.10) and Propo-

sition 4.1 (i), we get

h(D,D) = 0, , h(D⊥,D⊥) = 0 and h(D,D⊥) ∈ �(φD⊥). (4:11)

As NT is a totally geodesic submanifold of M, the first condition of (4.11) implies

that NT is totally geodesic in M̄ . Moreover, N⊥ is totally umbilical in M, the second

condition of (4.11) implies that N⊥ is totally umbilical in M̄ , and also it follows from

(4.11) that M is minimal in M̄ . ■
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