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Nonlocal methods have shown great potential in many image restoration tasks including compressive sensing (CS) reconstruction
through use of image self-similarity prior. However, they are still limited in recovering fine-scale details and sharp features,
when rich repetitive patterns cannot be guaranteed; moreover the CS measurements are corrupted. In this paper, we propose a
novel CS recovery algorithm that combines nonlocal sparsity with local and global prior, which soften and complement the self-
similarity assumption for irregular structures. First, a Laplacian scalemixture (LSM) prior is utilized tomodel dependencies among
similar patches. For achieving group sparsity, each singular value of similar packed patches is modeled as a Laplacian distribution
with a variable scale parameter. Second, a global prior and a compensation-based sparsity prior of local patch are designed in
order to maintain differences between packed patches. The former refers to a prediction which integrates the information at the
independent processing stage and is used as side information, while the latter enforces a small (i.e., sparse) prediction error and is
alsomodeledwith the LSMmodel so as to obtain local sparsity. Afterward,we derive an efficient algorithmbased on the expectation-
maximization (EM) and approximate message passing (AMP) frame for the maximum a posteriori (MAP) estimation of the sparse
coefficients. Numerical experiments show that the proposed method outperforms many CS recovery algorithms.

1. Introduction

Compressive sensing (CS) [1, 2] allows us to reconstruct high-
dimensional data with only a small number of random sam-
ples or measurements, if the original signal can be sparsely
represented by some given appropriate basis. Owing to the
fact that image prior knowledge plays a critical role in the
performance of compressive sensing reconstruction, much
efforts have been made to develop an effective regularization
term or signal model to reflect the image prior knowledge.
Standard CS methods exploit the sparsity of signal in some
domains, such as DCT [3], wavelets [4, 5], total variation
(TV) [6, 7], and learneddictionary [8, 9].Unfortunately, these
methods are less appropriate for many imaging applications.
The reason for this failure is that natural images do not have
an exactly sparse representation in any above basis. These
models favor piecewise constant image structures and hence
tend to smooth much the image details.

More recently, the concept of sparsity has evolved into
various sophisticated forms, including group sparsity [10,
11], tree sparsity [12–14], and nonlocal sparsity [15–19],
where higher-order dependency among sparse coefficients is
exploited. Among them, nonlocal sparsity, which refers to the
fact that a patch often has many nonlocal similar patches to
it across the image, has been shown to be most beneficial to
CS image recovery. In [15], a nonlocal total variation (NLTV)
regularization model for CS image recovery is proposed by
using the self-similarity property in gradient domain. In
order to obtain an adaptive sparsity regularization term for
CS image recovery process, a local piecewise autoregressive
model is designed in [16]. In [17], similar patches are grouped
to form a two-dimensional data matrix for characterizing
the low-rank property, leading to a CS recovery method via
nonlocal low-rank regularization (NLR-CS). In [18, 19], a
probabilistic graphical model is established, which uses col-
laborative filtering [20] to promote sparsity of packedpatches.
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Despite the steady progress in nonlocal methods, they still
tend to smooth the detailed image textures, degrading the
image visual quality, for the reason that the lack of self-
repetitive structures and corruption for data is unavoidable.

To deal with this issue, local and global priors are
designed to soften and complement the nonlocal sparsity for
irregular structures so as to preserve image details. More
specifically, the nonlocal sparsity is only imposed on a set
of patches with limited influence from neighboring pixels,
while the global prior refers to a prediction used as a
reference which integrates the outcomes at the independent
processing stage and can maintain the entire consistency
of image; moreover, a compensation-based constraint term
of local patch is utilized to enforce a small (i.e., sparse)
prediction error. Both local sparsity and nonlocal sparsity
are represented by Laplacian scale mixture (LSM) [21, 22]
models, which are adopted to force coefficients, that is,
singular values of local patches and similar packed patches,
to be sparse. Each coefficient is modeled as a Laplacian distri-
bution with a variable scale parameter, resulting in weighted
singular value minimization problems, where weights are
adaptively assigned according to the signal-to-noise ratio.
On the other hand, the reference image can be used as
side information. Finally, we obtain a side information-
aided LSM prior model for CS image reconstruction. To
solve this model, the expectation-maximization (EM) [23]
method is adopted, turning the CS recovery problem into
a prior parameter estimation problem and a singular value
minimization problem. In particular, owing to its promising
performance and efficiency, we are motivated to apply the
approximate message passing (AMP) algorithm [24, 25],
which is an iterative algorithm that can be used in signal
and image reconstruction by performing denoising at each
iteration, to solve the latter. Experimental results on natural
images show that our approach can achieve more accurate
reconstruction than other competing approaches.

2. Background

2.1. CS Recovery Problem. The CS recovery problem aims to
find the sparsest solution 𝑥 ∈ C𝑛 from the underdetermined
linear system 𝑦 = 𝐴𝑥 + 𝑤, where 𝑦 ∈ C𝑚 are the
measurements, 𝐴 ∈ C𝑚×𝑛, 𝑚 < 𝑛 is the measurement matrix,
and 𝑤 denotes the additive noise. One can solve the following
objective function:

𝑥 = argmin
𝑥

󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥󵄩󵄩󵄩󵄩222 + 𝜆R (𝑥) . (1)

The first term is the data fidelity term that represents the
closeness of the solution to the measurements. The second
term is a regularization term that represents a priori sparse
information of the original signal. 𝜆 is a regularization
parameter that balances the contribution of both terms. As
mentioned in Introduction, CS recovery methods exploit the
sparsity of signal in some domains, such as DCT [3], wavelets
[4, 5], learned dictionary [8, 9], and total variation (TV) [6, 7],
leading to various forms ofR(𝑥) : ‖DCT(𝑥)‖𝑝, ‖Ψ(𝑥)‖𝑝, and‖Dic(𝑥)‖𝑝 where 𝑝 ∈ {0, 1} and ‖𝑥‖TV, respectively.

2.2. Nonlocal Sparsity. The abundance of self-repeating pat-
terns in natural image (as shown in Figure 1) can be
characterized by the nonlocal sparsity [16, 17]. As shown
in Figure 2, for each local patch, we can find the first 𝑀
most similar nonlocal patches to it. In practice, this can be
done by Euclidean distance based block matching in a large
enough local window. Let 𝑅𝑖𝑥 (or 𝑥𝑖) denote an exemplar
patch located at the 𝑖th position. Patches that are similar to𝑅𝑖𝑥 including 𝑅𝑖𝑥 itself are found to form a low-rank matrix𝐶𝑖𝑥 = [𝑅𝑖1𝑥, 𝑅𝑖2𝑥, . . . , 𝑅𝑖𝑁𝑥]: 𝐶𝑖𝑥 ∈ R𝑀×𝑁. Here, we suppose
that 𝑀 ≥ 𝑁. An objective function that reflects the group
sparsity of similar patches with a low-rank regularization
term for CS recovery can be formulated as follows:

𝑥 = argmin
𝑥

󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥󵄩󵄩󵄩󵄩222 + 𝐺∑
𝑖=1

󵄩󵄩󵄩󵄩𝐶𝑖𝑥󵄩󵄩󵄩󵄩∗ , (2)

where 𝐺 is the total number of similar patch groups; ‖𝐶𝑖𝑥‖∗
is the nuclear norm of 𝐶𝑖𝑥, taking a sum value of its singular
values, namely, ‖𝐶𝑖𝑥‖∗ = ∑𝑗 |𝑠𝑖,𝑗|. 𝑠𝑖 = [𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑁]
denotes the singular value vector of 𝐶𝑖𝑥, that is, 𝐶𝑖𝑥 =
𝑈𝑖Σ𝑖𝑉𝑇𝑖 , and 𝑠𝑖 is a vector that contains the diagonal elements
of Σ𝑖.
2.3. The Approximate Message Passing Algorithm. On the
other hand, these minimizing problems (e.g., (1) and (2))
can be solved easily by iterative shrinkage/thresholding (IST)
methods [26–28], alternating directionmethod ofmultipliers
(ADMM) [29, 30], or Bregman iterative algorithms [31, 32].
The approximate message passing reconstruction algorithm
defined by Donoho et al. [24] has recently become a popular
algorithm for solving signal reconstruction problems in lin-
ear systems as defined in (1). It is based on the theory of belief
propagation in graphical models. Unlike belief propagation
that needs to calculate 2𝑚𝑛 messages in each iteration, by
employing quadratic approximation, the expression of each
message can be simplified in the AMP algorithm, and the
number of messages can be reduced to 𝑚 + 𝑛 [33]. The
final alternating expressions to solve the objective function
min𝑥‖𝑦 − 𝐴𝑥‖22/2 + 𝜆‖Ψ(𝑥)‖1 are

𝑥(𝑡+1) = 𝜂 (𝑥(𝑡) + 𝐴∗𝑧(𝑡)) , (3)

𝑧(𝑡) = 𝑦 − 𝐴𝑥(𝑡) + 𝑧(𝑡−1) 󵄩󵄩󵄩󵄩󵄩𝜂󸀠 (𝑥(𝑡−1) + 𝐴∗𝑧(𝑡−1))󵄩󵄩󵄩󵄩󵄩1𝑚 , (4)

where Ψ(⋅) denotes wavelet transforms; 𝑥(𝑡) and 𝑧(𝑡) are the
estimates of 𝑥 and the residual at iteration 𝑡. The iteration
starts from 𝑥(0) = 0 and 𝑧(0) = 𝑦. 𝐴∗ is the conjugate
transpose of 𝐴. The functions 𝜂(⋅) and 𝜂󸀠(⋅) are the wavelet
threshold function and its first derivative, respectively. The
last term in (4) is called the “Onsager reaction term” [24] in
statistical physics. This Onsager reaction term helps improve
the phase transition (trade-off between the measurement
rate and signal sparsity) of the reconstruction process over
existing IST algorithms [26–28].We can summarize theAMP
algorithm in three steps: a residue update step (i.e., (4)), a
back-projection step to yield a noisy image 𝑞(𝑡) = 𝑥(𝑡)+𝐴∗𝑧(𝑡),
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Figure 1: The nonlocal similar patches in natural images.

Patch groups PG means PG variations Low-rank matrices

=

=

−

−
· · ·

· · ·

...

...

...
...

Cix = [Ri,1x, Ri,2x, . . . , Ri,Nx]

Cjx = [Rj,1x, Rj,2x, . . . , Rj,Nx]

...

Figure 2: Illustration for the low-rank matrices construction.

and a proximal denoising correction (i.e., (3)). These steps
are identical to the ones of IST methods. As a result, the
AMP algorithm can be viewed as a special IST method. One
benefit of this interpretation is that if R(𝑥) varies, only the
proximal denoising operator needs to be altered, when the
AMP algorithm is utilized to solve (1). Some AMP variants
[13, 34, 35] have been proposed with various forms of R(𝑥),
such as total variation [34], a Cauchy prior in the wavelet
domain [35], and tree sparsity [13]. This motivates us to find
a more suitable prior for natural images to improve the AMP
algorithm.

3. Side Information-Aided LSM
Prior Modeling

Image nonlocal self-similarity has been widely adopted in
patch based CS image reconstruction methods. Despite the
great success, most of the existing works exploit the nonlocal
sparsity from the degraded image, which may cause the
mismatching issue in the block matching stage. Moreover,
they treat irregular and regular structures equally, resulting in
an oversmoothed outcome. In fact, unlike large-scale edges,
the fine-scale textures have much higher randomness in local
structure and they are hard to characterize by using a local
or nonlocal model. In this paper, we soften and complement
the nonlocal sparsity for irregular structures by combining
with local and global priors and propose a side information-
aided LSM prior model for achieving detail-preserving and
content-aware CS image reconstruction.

3.1. The Laplacian Scale Mixture Distribution. A random
variable 𝜃𝑖 = 𝜅−1𝑖 𝜍𝑖 is a Laplacian scale mixture if 𝜍𝑖
has a Laplacian distribution with scale 1; that is, 𝑝(𝜍𝑖) =
exp(−|𝜍𝑖|)/2, and the multiplier variable 𝜅𝑖 is a positive
random variable with probability 𝑝(𝜅𝑖) [21]. Supposing that𝜍𝑖 and 𝜅𝑖 are independent, conditioned on the parameter 𝜅𝑖,
the coefficient 𝜃𝑖 has a Laplacian distribution with inverse
scale 𝑝(𝜃𝑖 | 𝜅𝑖) = 𝜅𝑖 exp(−𝜅𝑖|𝜃𝑖|)/2. The distribution over 𝜃𝑖
is therefore a continuous mixture of Laplacian distributions
with different inverse scales:

𝑝 (𝜃𝑖) = ∫∞
0

𝑝 (𝜃𝑖 | 𝜅𝑖) 𝑝 (𝜅𝑖) 𝑑𝜅𝑖

= ∫∞
0

𝜅𝑖2 exp (−𝜅𝑖 󵄨󵄨󵄨󵄨𝜃𝑖󵄨󵄨󵄨󵄨) 𝑝 (𝜅𝑖) 𝑑𝜅𝑖.
(5)

The distribution in (5) is defined as a Laplacian scale mixture.
Note that, for most choices of 𝑝(𝜅𝑖), we do not have an
analytical expression for 𝑝(𝜃𝑖).
3.2. The Proposed Model. In this section, we formulate the
side information-aided LSM prior model and apply the MAP
theory to estimate the original signal. As discussed earlier,
the global information of image refers to a prediction that
is actually a reference image. We use this reference image
denoted by 𝑢 as side information which is supposed to
be known in each iteration to assist the reconstruction.
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Using Bayesian formula, we might derive the following MAP
estimation problem:

𝑥 = argmin
𝑥

𝑝 (𝑥 | 𝑦, 𝑢)
= argmin

𝑥

𝑝 (𝑦, 𝑢 | 𝑥) 𝑝 (𝑥)
𝑝 (𝑦, 𝑢)

= argmin
𝑥

𝑝 (𝑦 | 𝑥) 𝑝 (𝑢 | 𝑥) 𝑝 (𝑥)
𝑝 (𝑦, 𝑢)

= argmin
𝑥

𝑝 (𝑦 | 𝑥) 𝑝 (𝑢 | 𝑥) 𝑝 (𝑥) .

(6)

The side information 𝑢 and themeasurements𝑦 are supposed
to be independent. According to (6), we need to define three
terms 𝑝(𝑦 | 𝑥), 𝑝(𝑢 | 𝑥), and 𝑝(𝑥) for the MAP estimation.

First, the additive noise𝑤 is assumed to bewhiteGaussian
with variance 𝜎2, that is, 𝑤 ∼ 𝑁(0, 𝜎2). Thus, we have the
following likelihood of CS:

𝑝 (𝑦 | 𝑥) = 1
(2𝜋𝜎2)𝑚/2 exp(− 1

2𝜎2 󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥󵄩󵄩󵄩󵄩22) . (7)

Second, we characterize the nonlocal sparsity of image
with the Laplacian scale mixture model. Recall that, in
Section 2, we define 𝑠𝑖 = [𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑁] as the singular
value vector of the low-rank matrix 𝐶𝑖𝑥. For each coefficient𝑠𝑖,𝑗, we assign it a Laplacian distribution with a variable scale
parameter,

𝑝 (𝑠𝑖,𝑗) = ∫∞
0

𝑝 (𝑠𝑖,𝑗 | 𝛾𝑖,𝑗) 𝑝 (𝛾𝑖,𝑗) 𝑑𝛾𝑖,𝑗
= ∫∞
0

𝛾𝑖,𝑗
2 exp (−𝛾𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨) 𝑝 (𝛾𝑖,𝑗) 𝑑𝛾𝑖,𝑗,

(8)

with a Gamma distribution prior over the scale parameter,
that is, 𝛾𝑖,𝑗 ∼ Gamma(𝑎, 𝑏). Note that the mean of the
Laplacian distribution is 0. Hence, the mean subtraction
should be carried out as shown in Figure 2. The observation
that the singular values can be modeled by a Laplacian
distribution has been proposed and validated in [36]. Here,
we extend this idea by viewing scale parameters as random
variables for achieving a better spatial adaptation. Assume
that the sparse coefficients are i.i.d., and then the LSM prior
of the coefficients can be expressed as𝑝(𝑠) = ∏𝐺𝑖=1∏𝑁𝑗=1𝑝(𝑠𝑖,𝑗).

Third, for irregular structures, the packed patches are
less similar. We wish to preserve the relative difference
among these patches. Supposing that the reference image u is
available, we wish to get a solution that has a small Euclidean
distance from uwhile being constrained by the self-similarity
prior:

𝑝 (𝑢 | 𝑥) = 𝐻∏
𝑖=1

𝑝 (𝑢𝑖 | 𝑥𝑖)

= 𝐻∏
𝑖=1

exp(− 1
2𝜎2𝑢

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑢𝑖󵄩󵄩󵄩󵄩22) ,
(9)

where 𝑢𝑖 and 𝑥𝑖 denote the patches located at the 𝑖th position
and 𝐻 is the total number of patches. In practice, the
reference image 𝑢 is produced byminimizing the data fidelity
term with the gradient descent method [26]. Note that the
resulting image 𝑢 has fine details as well as a small amount
of noise; thus the noise level might be a little higher than the
estimated one. The image 𝑢 which integrates the outcomes
at the independent processing stage can represent the global
information of image. This approach is similar to the one
reported in [37], which is a denoising method. It reduces the
local-global gap by encouraging the overlapping patches to
reach an agreement before they merge their forces by the
averaging.

At last, when the packed patches have an obvious dis-
similarity, a local constraint imposed on each local patch
is added by enforcing a small (i.e., sparse) prediction error𝑒𝑖 = 𝑥𝑖 − V𝑖, where V is the noiseless version of the image 𝑢. To
get V, the mean filtering is applied. The singular value vector
of the prediction error of the 𝑖th patch is denoted by 𝑟𝑖 =[𝑟𝑖,1, 𝑟𝑖,2, . . . , 𝑟𝑖,𝐾], which is imposed on a LSM distribution
𝑝(𝑟𝑖) = ∏𝐾𝑗=1𝑝(𝑟𝑖,𝑗), where

𝑝 (𝑟𝑖,𝑗) = ∫∞
0

𝑝 (𝑟𝑖,𝑗 | 𝜋𝑖,𝑗) 𝑝 (𝜋𝑖,𝑗) 𝑑𝜋𝑖,𝑗
= ∫∞
0

𝜋𝑖,𝑗
2 exp (−𝜋𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨) 𝑝 (𝜋𝑖,𝑗) 𝑑𝜋𝑖,𝑗,

(10)

with a Gamma distribution prior over the scale parameter,
that is, 𝜋𝑖,𝑗 ∼ Gamma(𝑐, 𝑑). 𝐾 is the total number of singular
values of the 𝑖th patch.

The proposed hierarchical model can be summarized in
Figure 3. We will have an objective function that can be
maximized with respect to 𝑥, if we observe the latent variable𝛾 and 𝜋. The standard approach in machine learning when
confronted with such a problem is the EM algorithm. Note
that once the spare coefficients (i.e., 𝑠 and 𝑟) are determined,
the image 𝑥 can be obtained by averaging all reconstructed
patches.

4. EM-AMP Algorithm for CS Recovery

In this section, we simultaneously learn the hidden parame-
ters and do inference. To accomplish this task, we embed the
AMP algorithm within an EM framework.

4.1. EM Learning of the Prior Parameters. We use Jensen’s
inequality and obtain the following upper bound on the
posterior likelihood, denoted by 𝐽(Θ, 𝑥), where Θ = {𝑄, 𝐷},
according to (6):

− log𝑝 (𝑥 | 𝑦, 𝑢) ≤ − log𝑝 (𝑦 | 𝑥) − log𝑝 (𝑢 | 𝑥)
− ∫
𝛾

𝑄 (𝛾) log 𝑝 (𝑠, 𝛾)
𝑄 (𝛾) 𝑑𝑟

− ∫
𝜋

𝐷 (𝜋) log 𝑝 (𝑟, 𝜋)
𝐷 (𝜋) 𝑑𝜋,

(11)



Mathematical Problems in Engineering 5

Gamma(a, b)
a

b

c

d

r

y

u

s

x





Gamma(c, d)
y = Ax + w

N(0, 2)

Observation variable

Unknown variable

∏H
i=1∏

K
j=1 ，３－(i,j)

∏G
i=1∏

N
j=1 ，３－(i,j)

p(u | x)

Figure 3: The proposed hierarchical model.

where

log𝑝 (𝑠, 𝛾) = log𝑝 (𝑠 | 𝛾) + log𝑝 (𝛾)
= 𝐺∑
𝑖=1

𝑁∑
𝑗=1

(−𝛾𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + log
𝛾𝑖,𝑗
2 )

+ log𝑝 (𝛾) ,
log𝑝 (𝑟, 𝜋) = log𝑝 (𝑟 | 𝜋) + log𝑝 (𝜋)

= 𝐻∑
𝑖=1

𝐾∑
𝑗=1

(−𝜋𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + log
𝜋𝑖,𝑗
2 )

+ log𝑝 (𝜋) .

(12)

Performing coordinate descent in the auxiliary function𝐽(Θ, 𝑥) leads to the following updates that are usually called
the E step and the M step:

𝐸 𝑠𝑡𝑒𝑝:Θ(𝑡+1) = argmin
Θ

𝐽 (Θ, 𝑥(𝑡)) , (13)

𝑀 𝑠𝑡𝑒𝑝: 𝑥(𝑡+1) = argmin
𝑥

𝐽 (Θ(𝑡+1), 𝑥) . (14)

The E step and theM step represent the prior learning and the
signal reconstruction, respectively. First, we have equality in
the Jensen inequality if 𝑄(𝛾) = 𝑝(𝛾 | 𝑠) and 𝐷(𝜋) = 𝑝(𝜋 | 𝑟),
which implies that the E step can be reduced to 𝑄(𝑡+1) = 𝑝(𝛾 |
𝑠(𝑡)) and 𝐷(𝑡+1) = 𝑝(𝜋 | 𝑟(𝑡)). Second, let 𝜏 and 𝜀 denote the
expectation with respect to 𝑄(𝛾) and 𝐷(𝜋), respectively; that
is, 𝜏𝑖,𝑗 = ∫

𝛾𝑖,𝑗
𝛾𝑖,𝑗𝑄(𝛾𝑖,𝑗)𝑑𝛾𝑖,𝑗 and 𝜀𝑖,𝑗 = ∫

𝜋𝑖,𝑗
𝜋𝑖,𝑗𝐷(𝜋𝑖,𝑗)𝑑𝜋𝑖,𝑗. The

M Step (14) simplifies to

𝑥(𝑡+1) = argmin
𝑥,𝑠,𝑟

󵄩󵄩󵄩󵄩𝑦 − 𝐴𝑥󵄩󵄩󵄩󵄩222𝜎2 + 𝐻∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑢𝑖󵄩󵄩󵄩󵄩222𝜎2𝑢
+ 𝐺∑
𝑖=1

𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + 𝐻∑
𝑖=1

𝐾∑
𝑗=1

𝜀(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 .
(15)

Finally, we have the proposed objective function for CS
recovery. These four terms are the data fidelity term, side
information-aided term, the nonlocal regularization, and the
local regularization, respectively.

The Gamma distribution and Laplacian distribution are
conjugate; that is, the posterior probability of 𝛾𝑖,𝑗 (or 𝜋𝑖,𝑗)
given 𝑠𝑖,𝑗 (or 𝑟𝑖,𝑗) is also a Gamma distribution with param-
eters 𝑎 + 1 (or 𝑐 + 1) and 𝑏 + |𝑠𝑖,𝑗| (or 𝑑 + |𝑟𝑖,𝑗|). Hence, the
expectations are given by

𝜏(𝑡+1)𝑖,𝑗 = ∫
𝛾𝑖,𝑗

𝛾𝑖,𝑗𝑝 (𝛾𝑖,𝑗 | 𝑠(𝑡)𝑖,𝑗 ) 𝑑𝛾𝑖,𝑗 = (𝑎 + 1)
(𝑏 + 󵄨󵄨󵄨󵄨󵄨𝑠(𝑡)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨)

,

𝜀(𝑡+1)𝑖,𝑗 = ∫
𝜋𝑖,𝑗

𝜋𝑖,𝑗𝑝 (𝜋𝑖,𝑗 | 𝑟(𝑡)𝑖,𝑗 ) 𝑑𝜋𝑖,𝑗 = (𝑐 + 1)
(𝑑 + 󵄨󵄨󵄨󵄨󵄨𝑟(𝑡)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨)

.
(16)

4.2. Image Recovery via the AMP Algorithm. Once the prior
parameters are estimated, the composite regularization prob-
lem, that is, (15), can be solvedwith variousCS reconstruction
algorithms [29–32]. Owing to its promising performance, the
AMP algorithm [24, 25] is employed. As discussed earlier, the
proximal operator varies according to the regularization term
R(𝑥). Hence we have the following proximal operator ℓ(𝑞(𝑡))
on the basis of (15):

𝑥(𝑡+1) = argmin
𝑥,𝑠,𝑟

󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑞(𝑡)󵄩󵄩󵄩󵄩󵄩222𝜎2 + 𝐻∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑢𝑖󵄩󵄩󵄩󵄩222𝜎2𝑢
+ 𝐺∑
𝑖=1

𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + 𝐻∑
𝑖=1

𝐾∑
𝑗=1

𝜀(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 ,
(17)

where 𝑞(𝑡) = 𝑥(𝑡) + 𝐴∗𝑧(𝑡) denotes a noisy image yielded
by back-projection and ℓ(𝑞(𝑡)) is a denoising operation. To
solve this composite regularization problem, that is, (17), we
decompose it into two simpler regularization subproblems
by using the composite splitting algorithm (CSA) [7], which
includes three steps: (1) splitting variable 𝑥 into two variables𝑥1 and 𝑥2, (2) performing operator splitting to minimize
the nonlocal regularization and the local regularization sub-
problems over 𝑥1 and 𝑥2, respectively, and (3) obtaining the
solution 𝑥 by linear combination of 𝑥1 and 𝑥2, that is, 𝑥 =𝜔1𝑥1 + 𝜔2𝑥2. Subproblems can be written as

𝑥(𝑡+1)1 = argmin
𝑥,𝑠

󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑞(𝑡)󵄩󵄩󵄩󵄩󵄩222𝜎2 + 𝐻∑
𝑖=1

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑢𝑖󵄩󵄩󵄩󵄩222𝜎2𝑢
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+ 𝐺∑
𝑖=1

𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨

= argmin
𝑥,𝑠

󵄩󵄩󵄩󵄩󵄩𝑥 − (𝑞(𝑡) + 𝜎2𝑢(𝑡)/𝜎2𝑢)󵄩󵄩󵄩󵄩󵄩222𝜎2
+ 𝐺∑
𝑖=1

𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 ,
(18)

𝑥(𝑡+1)2 = argmin
𝑥,𝑟

󵄩󵄩󵄩󵄩󵄩𝑥 − (𝑞(𝑡) + 𝜎2𝑢(𝑡)/𝜎2𝑢)󵄩󵄩󵄩󵄩󵄩222𝜎2
+ 𝐻∑
𝑖=1

𝐾∑
𝑗=1

𝜀(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 .
(19)

In order to solve (18), we transform the data from
spatial domain to SVD domain for the unity of variable
representation by (1) dividing the images into overlapped

patches; (2) building the low-rank matrices 𝑋𝑖 = 𝐶𝑖𝑥 and
𝑄(𝑡)𝑖 = 𝐶𝑖(𝑞(𝑡) + 𝜎2𝑢(𝑡)/𝜎2𝑢), and then we have ‖𝑥 − (𝑞(𝑡) +
𝜎2𝑢(𝑡)/𝜎2𝑢)‖22 = ∑𝐺𝑖=1 ‖𝑋𝑖 − 𝑄(𝑡)𝑖 ‖2𝐹/𝛼, where 𝛼 is a scale factor
for balancing the increasing energy caused by the repetitive
computation because of the overlap division and ‖ ⋅ ‖𝐹 is
the Frobenius norm [17]; (3) performing the singular value
decomposition on𝑋𝑖 and𝑄(𝑡)𝑖 to get the singular value vectors𝑠𝑖 = [𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑁] and 𝜌𝑖 = [𝜌𝑖,1, 𝜌𝑖,2, . . . , 𝜌𝑖,𝑁]. Based
on the von Neumann trace inequality [38], we know that
tr((𝑄(𝑡)𝑖 )𝑇𝑋𝑖) achieves its upper bound ∑𝑁𝑗=1 𝜌𝑗𝑠𝑗. Then we
have

󵄩󵄩󵄩󵄩󵄩𝑋𝑖 − 𝑄(𝑡)𝑖 󵄩󵄩󵄩󵄩󵄩2𝐹 = tr((𝑄(𝑡)𝑖 )𝑇𝑄(𝑡)𝑖 ) − 2tr((𝑄(𝑡)𝑖 )𝑇𝑋𝑖)
+ tr ((𝑋𝑖)𝑇𝑋𝑖)

≥ 𝑁∑
𝑗=1

𝜌2𝑗 − 2 𝑁∑
𝑗=1

𝜌𝑗𝑠𝑗 + 𝑁∑
𝑗=1

𝑠2𝑗 .
(20)

By incorporating (20) into (18), it yields

𝑠(𝑡+1) = argmin
𝑠

𝐺∑
𝑖=1

{{{
∑𝑁𝑗=1 𝜌2𝑖,𝑗 − 2 ∑𝑁𝑗=1 𝜌𝑖,𝑗𝑠𝑖,𝑗 + ∑𝑁𝑗=1 𝑠2𝑖,𝑗

2𝛼𝜎2 + 𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨
}}}

= argmin
𝑠

𝐺∑
𝑖=1

𝑁∑
𝑗=1

(𝑠𝑖,𝑗 − 𝜌𝑖,𝑗 + 𝛼𝜎2𝜏(𝑡+1)𝑖,𝑗 )2 . (21)

Taking a derivative with respect to 𝑠𝑖,𝑗, we have
𝑠(𝑡+1)𝑖,𝑗 = max (𝜌𝑖,𝑗 − 𝛼𝜎2𝜏(𝑡+1)𝑖,𝑗 , 0) , (22)

which is the global optimum of 𝑠𝑖,𝑗. The noise variance 𝜎2
is obtained by maximum likelihood estimation [39]; that is,
𝜎2 = ‖𝑧(𝑡)‖22/𝑚. Afterward, we obtain the matrix constructed
by similar patches, that is,𝑋(𝑡+1)𝑖 = 𝑈𝑖 diag(𝑠(𝑡+1)𝑖 )𝑉𝑇𝑖 , and then
recover 𝑥(𝑡+1)1 by averaging all reconstructed patches.

Similarly, we can derive the global optimum of another
subproblem by incorporating (20) into (19):

𝑟(𝑡+1)𝑖,𝑗 = max (𝜙𝑖,𝑗 − 𝜎2𝜋(𝑡+1)𝑖,𝑗 , 0) , (23)

where 𝜙𝑖 is the singular value vector of the 𝑖th patch. Then
𝑥(𝑡+1)2 can be recovered by aggregating all reconstructed
patches. Because 𝑟 is the singular value of the prediction error,
the reconstructed image solved by this subproblem is the
prediction error in fact. Thus, we add V to obtain the final
image 𝑥(𝑡+1)2 .

To apply the AMP algorithm, computing the Onsager
term 𝑧(𝑡)‖ℓ󸀠(𝑞(𝑡))‖1/𝑚, which involves computing the deriva-
tive ℓ󸀠(𝑞(𝑡)), is required. It is not easy to get ℓ󸀠(𝑞(𝑡)), since
ℓ(𝑞(𝑡)) do not have an explicit input-output relation. Thanks
to the Monte Carlo (MC) method [40], we can simulateℓ󸀠(𝑞(𝑡)) with random numbers.This method has been used to
estimate the derivative of BM3Ddenoiser in [18].More details
can be found in [18].

4.3. Content-Aware Strategy. In order to preserve fine details,
we distinguish irregular structures from regular structures
through the similarity of packed patches. The local regular-
ization and side information-aided term are only utilized for
irregular structures.They are adopted tomaintain differences
among packed patches.We use the normalizedmean squared
error (NMSE) as the similarity measure:

𝐸 = ∑
𝑗

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥𝑗󵄩󵄩󵄩󵄩󵄩22󵄩󵄩󵄩󵄩𝑥𝑖󵄩󵄩󵄩󵄩22 , (24)

where 𝑥𝑖 is an exemplar patch located at the 𝑖th position
and 𝑥𝑗 denotes the 𝑗th patch in the similar patch group. The
objective function (17) is then modified to

𝑥(𝑡+1) = argmin
𝑥,𝑠,𝑟

󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑞(𝑡)󵄩󵄩󵄩󵄩󵄩222𝜎2 + 𝐻∑
𝑖=1

𝑊𝑖 ⊙
󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑢𝑖󵄩󵄩󵄩󵄩222𝜎2𝑢

+ 𝐺∑
𝑖=1

𝑁∑
𝑗=1

𝜏(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + 𝐻∑
𝑖=1

𝐾∑
𝑗=1

𝑊𝑖 ⊙ 𝜀(𝑡+1)𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑟𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 ,
(25)

where 𝑊𝑖 and 𝑊𝑖 denote the weights that correspond to the
𝑖th patch and ⊙ is the Hadamard product. 𝑊𝑖 and 𝑊𝑖 are
determined by

𝑊𝑖 = {{{
0, if 𝐸 < TH1
1, otherwise,
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Input: 𝑦, 𝐴, 𝑇, 𝑎, 𝑏, 𝑐, 𝑑, 𝜔1, 𝜔2, TH1, TH2, 𝑥0 = 0, 𝑧0 = 𝑦.
for 𝑡 = 0 to 𝑇 − 1 do

(a) Approximate the Onsager correction term via MC.
(b) Update the residual 𝑧(𝑡) = 𝑦 − 𝐴𝑥(𝑡) + 𝑧(𝑡−1)‖ℓ󸀠(𝑞(𝑡−1))‖1/𝑚.
(c) Obtain the noisy image 𝑞(𝑡) = 𝑥(𝑡) + 𝐴∗𝑧(𝑡).
(d) Calculate the proximal operator ℓ(𝑞(𝑡)) (i.e., solve (25))
for 𝑖 = 1 to 𝐺 do

(I) Construct the low-rank matrix 𝑄(𝑡)𝑖 .
(II) Distinguish irregular structures from regular structures with the similarity measure 𝐸, and set𝑊𝑖 and 𝑊𝑖 via (26).
(III) Perform the SVD on 𝑄(𝑡)𝑖 to get the singular value vector [𝜌𝑖,1, 𝜌𝑖,2, . . . , 𝜌𝑖,𝑁].
(IV) Estimate the expectations of scale parameters 𝜏(𝑡+1)𝑖,𝑗 and 𝜀(𝑡+1)𝑖,𝑗 via (16), and the noise variance

𝜎2 = ‖𝑧(𝑡)‖22/𝑚.
(V) Compute the global optimums of coefficients 𝑠(𝑡+1)𝑖,𝑗 and 𝑟(𝑡+1)𝑖,𝑗 via (22) and (23).
(VI) If 𝑖 = 𝐺, recover the whole image 𝑥(𝑡+1) = 𝜔1𝑥(𝑡+1)1 + 𝜔2𝑥(𝑡+1)2 by aggregating all recovered pixels.

end for
end for

Algorithm 1: CS image recovery via SI-LSM-AMP.

𝑊𝑖 = {{{
1, if 𝐸 > TH2
0, otherwise,

(26)

where TH1 and TH2 (TH2 > TH1) are two threshold
parameters. First, if the patches are similar, that is, 𝐸 < 𝑇H1,
only the nonlocal regularization is utilized. Second, if the
packed patches are not so similar, that is, TH1 < 𝐸 < TH2,
the side information-aided term is added. At last, when the
patches have an obvious dissimilarity, that is, 𝐸 > TH2, the
local regularization is superadded.

In general, the proposed algorithm is summarized in
Algorithm 1, named as the AMP algorithm with side
information-aided LSM priors (SI-LSM-AMP). We also pro-
pose an algorithm as a by-product, named as the AMP
algorithm with nonlocal LSM prior (NL-LSM-AMP), which
is a special form of SI-LSM-AMP by setting 𝐸 < TH1 for all
image patches. By comparing SI-LSM-AMP with NL-LSM-
AMP in the experiments, one can validate the effectiveness of
our content-aware strategy.

5. Experiments

In this section, we report the experimental results of the
proposed CS recovery method SI-LSM-AMP.

5.1. Experiment Setup. We generate the CS measurements by
randomly sampling the Fourier transform coefficients of test
images; that is, 𝐴 is partial Fourier transform with 𝑚 rows
and 𝑛 columns.Thus, the sampling ratio is𝑚/𝑛.We follow the
sampling strategy of previousworks ([7, 12]), which randomly
choosemore Fourier coefficients from low frequency and less
on high frequency and set the sampling ratio near to 0.2, as
CS imaging is always interested in low sampling ratio cases.
All measurements are mixed with Gaussian white noise with

standard deviations 5 and 15, representing the environments
with low noise and high noise, respectively. Peak Signal-to-
Noise Ratio (PSNR) is used for quantitative evaluation.

We conduct experiments on 22 natural images, as shown
in Figure 4. Besides the NL-LSM-AMP algorithm, we com-
pare the SI-LSM-AMP algorithm with image reconstruction
algorithms, including the original AMP method [24], two
tree-based algorithms: WaTMRI [12] and Turbo-AMP [13],
and two nonlocal sparsity algorithms: NLR-CS [17] and
BM3D-AMP [19]. For fair comparisons, all codes are down-
loaded from the authors’ websites. All algorithms terminate
after 50 iterations, except 20 iterations for Turbo-AMP and
260 iterations for NLR-CS. For the WaTMRI algorithm, in
order to achieve the best result, the regularization parameters
are tuned to 0.8 and 0.35. The original AMP uses Daubechies
wavelet to decompose the images.Then thewavelet denoising
is applied with a threshold 0.8𝜎. For the rest of algorithms,
default settings in their codes are adopted. All experiments
are on a desktop with 3.80GHz AMD A10-5800K CPU.
Matlab version is R2014a.

The main parameters of the proposed algorithms are
set as follows: patch size is 6 × 6; a total of 36 similar
patches are selected for each exemplar patch. To reduce the
computational complexity, we extract exemplar image patch
in every 5 pixels along both horizontal and vertical directions.
For better CS recovery performance, some parameters are
tuned empirically, including (1) 𝜎2𝑢 = 3.3𝜎2, which implies
that the proportion between the data fidelity term and the
side information-aided term is 1 : 0.3; (2) 𝛼 = 5.2 in (22);(3) the parameters of Gamma distribution 𝑎 = 𝑐 = 0 and𝑏 = 𝑑 = 0.01 as suggested in [21]; (4) the combination
parameters 𝜔1 = 2/3 and 𝜔2 = 1/3. Recall that the noise level
should be a little higher (1.08 times in our experiments) than
the estimated one because the reference image introduces a
small amount of noise. The experimental results including
average PSNR, visual quality, and runtime are present.
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Figure 4: The 22 test images.
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Figure 5: Average PSNR at different sampling ratios with measurement noise with standard deviation 5. (a) Comparisons on 22 natural
images; (b) comparisons on Baboon image; (c) comparisons on Boat image.

5.2. Average PSNR Evaluation. To reduce the randomness,
we run each experiment 5 times for each image. The aver-
age PSNR results are shown in Figures 5 and 6. Figure 5
shows the PSNR results in the environment with low noise,

while Figure 6 shows the ones with high noise. From these
figures, one can draw the following four conclusions. First,
four nonlocal sparsity-based methods SI-LSM-AMP, NL-
LSM-AMP, BM3D-AMP, and NLR-CS perform better than
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Figure 6: Average PSNR at different sampling ratios with measurement noise with standard deviation 15. (a) Comparisons on 22 natural
images; (b) comparisons on Baboon image; (c) comparisons on Boat image.

others, which implies that the assumption of the nonlocal
sparsity structure is more appropriate for natural images
when compared to the tree structure and the standard
sparsity. Second, the highest PSNR results are achieved by
the proposed algorithm SI-LSM-AMP. In fact, the PSNR gain
of the SI-LSM-AMP algorithm over the next-best algorithm
NL-LSM-AMP can be as much as 0.25 dB on average. This
result validates the effectiveness of our content-aware strategy
that treats irregular and regular structures differently. Third,
through the use of the LSM prior model, the SI-LSM-AMP
algorithm and the NL-LSM-AMP algorithm outperform the
other nonlocal sparsity-based AMPmethod BM3D-AMP (in
fact, by 0.88 dB and 0.63 dB on average). Therefore, we can
conclude that the LSM prior model is more appropriate for
representing the nonlocal sparsity of natural images. At last,
the PSNR curves decline with the decrease in sampling ratio
or with the increase inmeasurement noise.The SI-LSM-AMP
algorithm always performs better with low sampling ratio
or strong measurement noise. For better quality perception,
experiments performed on Baboon and Boat images present
the similar results in Figures 5(b) and 5(c) and Figures
6(b) and 6(c), respectively. In a word, these results validate
the superiority of the proposed SI-LSM-AMP algorithm in
objective quality and the effectiveness of the LSM prior
model.

5.3. Visual Quality and Runtime Evaluation in Lower-Power
Noise Environment. Figures 7 and 8 show the visual compar-
isons of the reconstructed results on Baboon and Boat images
with 20% sampling by different methods with measurement

noise with standard deviation 5, while the corresponding iter-
ative curves are given in Figures 9 and 10, respectively. From
Figures 7 and 8, we can clearly see that four nonlocal sparsity-
based methods are still better than others. Among them,
the SI-LSM-AMP algorithm enjoys great advantages over
the NL-LSM-AMP algorithm in producing clearer image, for
example, on the area of hair (Figure 7) and beach (Figure 8).
It can not only perfectly reconstruct large-scale sharp edges
but also well recover small-scale fine structures. The images
reconstructed by the NL-LSM-AMP algorithm and the
BM3D-AMP algorithm are too smooth. These two methods
all have a strong assumption of the nonlocal self-similarity
structure. However,many images with irregular structures do
not strictly follow this assumption. We could find that the SI-
LSM-AMPalgorithmhas great superiority on the imageswith
irregular structures, because we combine local and global
sparsity, which soften and complement the nonlocal self-
similarity structure assumption for irregular structures. We
also compute the PSNR as well as the structural similarity
index (SSIM), which better reflects the visual quality of the
images. The SI-LSM-AMP algorithm achieves the highest
quantitative results. The superiority of the proposed SI-LSM-
AMP in visual quality could be demonstrated by these results.

The CPU time and PSNR are traced in each iteration
for each of the methods. Figures 9 and 10 present the
CPU time versus PSNR curves and iteration number versus
PSNR curves, respectively. We can see that the SI-LSM-
AMP algorithm achieves higher PSNR results after about
30 iterations in Figures 9(a) and 10(a) and after about 100
seconds in Figures 9(b) and 10(b). Note that, considering the
fact that it is hard to distinguish irregular structures from
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Figure 7: Visual comparisons on Baboon image at 20% sampling ratio with measurement noise with standard deviation 5. (a) The original
image; (b) AMP (PSNR= 25.44 dB, SSIM= 0.6968); (c) Turbo-AMP (PSNR= 23.82 dB, SSIM= 0.6103); (d)WaTMRI (PSNR= 26.37 dB, SSIM
= 0.7590); (e) NLR-CS (PSNR = 26.56 dB, SSIM = 0.7877); (f) BM3D-AMP (PSNR = 26.56 dB, SSIM = 0.7478); (g) NL-LSM-AMP (PSNR =
26.97 dB, SSIM = 0.7792); (h) SI-LSM-AMP (PSNR = 27.41 dB, SSIM = 0.8051).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Visual comparisons on Boat image at 20% sampling ratio withmeasurement noise with standard deviation 5. (a)The original image;
(b) AMP (PSNR = 26.00 dB, SSIM = 0.7702); (c) Turbo-AMP (PSNR = 23.89 dB, SSIM = 0.6748); (d) WaTMRI (PSNR = 27.39 dB, SSIM =
0.8192); (e) NLR-CS (PSNR = 28.81 dB, SSIM = 0.8687); (f) BM3D-AMP (PSNR = 29.09 dB, SSIM = 0.8755); (g) NL-LSM-AMP (PSNR =
29.42 dB, SSIM = 0.8861); (h) SI-LSM-AMP (PSNR = 29.67 dB, SSIM = 0.8927).
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Figure 9: Iterative curves on Baboon image at 20% sampling ratio with measurement noise with standard deviation 5. (a) Average PSNR to
iterations; (b) average PSNR to CPU time.
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Figure 10: Iterative curves on Boat image at 20% sampling ratio with measurement noise with standard deviation 5. (a) Average PSNR to
iterations; (b) average PSNR to CPU time.

regular structures at the beginning stage, we only use the
nonlocal sparsity constraint to obtain an initial reconstructed
image in the first 30 iterations of the SI-LSM-AMP algorithm.
Therefore, the PSNR results of the SI-LSM-AMP algorithm in
the first 30 iterations are identical to the ones of the NL-LSM-
AMP algorithm. The SI-LSM-AMP algorithm is relatively

slow. The main computational burdens are introduced by
iteratively applying SVD on each of the patch groups. The
computational time of our algorithm can be further reduced
through the use of the parallel computing method or C
language development. Besides, in the case of NLR-CS with
more iterations, its results are every five iterations presented
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Figure 11: Visual comparisons on Baboon image at 20% sampling ratio with measurement noise with standard deviation 15. (a) The original
image; (b) AMP (PSNR= 24.16 dB, SSIM= 0.6047); (c) Turbo-AMP (PSNR= 23.27 dB, SSIM= 0.5405); (d)WaTMRI (PSNR= 23.99 dB, SSIM
= 0.6342); (e) NLR-CS (PSNR = 25.33 dB, SSIM = 0.6972); (f) BM3D-AMP (PSNR = 25.32 dB, SSIM = 0.6755); (g) NL-LSM-AMP (PSNR =
25.55 dB, SSIM = 0.6962); (h) SI-LSM-AMP (PSNR = 25.82 dB, SSIM = 0.7159).

in Figures 9 and 10. These curves demonstrate that the SI-
LSM-AMP algorithm can converge to a good reconstructed
result in a reasonable amount of time.

5.4. Visual Quality and Runtime Evaluation in Higher-Power
Noise Environment. In this subsection, we conduct similar
experiments with noisy CS measurements subject to strong
measurement noise to demonstrate the robustness of the
proposed SI-LSM-AMP to noise. The standard derivation
of additive Gaussian noise is 15. The subjective quality
comparison results on Baboon image and Boat image are
shown in Figures 11 and 12, respectively. One can observe that(1) the quality of all reconstructed images degrades seriously
as measurement noise increases; (2) compared to the recon-
structed images in the presence of lower-powermeasurement
noise, the ones in higher-power noise environment tend to be
more noisy (e.g., AMP, Turbo-AMP, WaTMRI, and NLR-CS)
or smooth (e.g., BM3D-AMP and NL-LSM-AMP); however,
the SI-LSM-AMP algorithm can better remove the artifacts
and preserve important image structures more effectively
evenwhen themeasurement noise is high.The corresponding
PSNR and SSIM results of these algorithms are also provided,
from which we can see that the proposed algorithm achieves
the highest quantitative results. This indicates that the SI-
LSM-AMP algorithm is shown to be more robust to noise.

The corresponding CPU time versus PSNR curves and
iteration number versus PSNR curves are given in Figures
13 and 14. From these figures, we can see that all algorithms

converge to reconstructed results more quickly in higher-
power noise environment. Among them, the PSNR results
of the proposed SI-LSM-AMP algorithm are higher than all
other competing methods.

We could find that, compared to other nonlocal meth-
ods, the SI-LSM-AMP algorithm has great superiority in
higher-power noise environment. These results are reason-
able because the mismatching issue is worse when the mea-
surement noise is higher, leading to the difficulty in finding
similar patches. However, other nonlocal algorithms depend
on self-similarity structure only, which makes them hard to
performwell. In contrast, besides the self-similarity structure,
the SI-LSM-AMP algorithm also uses the local and global
sparse prior of natural images and thus has a soft assumption
of the self-similarity structure. As a result, one advantage of
the SI-LSM-AMP algorithm is that it is more appropriate
for compressive imaging under severe environment, where
compressive samples are subject to strong measurement
noise.

6. Conclusion

We have proposed an effective structured AMP algorithm
for CS image reconstruction. Our work has the following
contributions. First, guided by structure sparsity theories, we
introduce the Laplacian scale mixture distribution to model
the nonlocal sparsity for higher-order sparse representation
of natural images, and then it is used as a prior constraint for
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Figure 12: Visual comparisons on Boat image at 20% sampling ratio with measurement noise with standard deviation 15. (a) The original
image; (b) AMP (PSNR= 24.34 dB, SSIM= 0.6725); (c) Turbo-AMP (PSNR= 23.24 dB, SSIM= 0.6235); (d)WaTMRI (PSNR= 24.25 dB, SSIM
= 0.6793); (e) NLR-CS (PSNR = 26.00 dB, SSIM = 0.7398); (f) BM3D-AMP (PSNR = 26.17 dB, SSIM = 0.7682); (g) NL-LSM-AMP (PSNR =
26.58 dB, SSIM = 0.7895); (h) SI-LSM-AMP (PSNR = 26.84 dB, SSIM = 0.8021).
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Figure 13: Iterative curves on Baboon image at 20% sampling ratio with measurement noise with standard deviation 15. (a) Average PSNR
to iterations; (b) average PSNR to CPU time.
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Figure 14: Iterative curves on Boat image at 20% sampling ratio with measurement noise with standard deviation 15. (a) Average PSNR to
iterations; (b) average PSNR to CPU time.

CS problem. By taking the scale parameter as a random vari-
able, it makes the practical representationmuchmore feasible
for achieving a better spatial adaptation. Second, in order
to maintain differences between packed patches for irregular
structures, we combine local sparsity and global sparsity to
soften and complement the nonlocal self-similarity structure
assumption. It can substantially enhance the details of image.
Afterward, an effective algorithm based on the EM and AMP
frame is proposed in this paper to solve this model. The
derived inference procedures are efficient to estimate both
the sparse coefficients and the scale parameter. After learning
the prior parameters, the AMP algorithm is utilized to solve
the singular value minimization problem for achieving the
accurate image reconstruction. Finally, our simulations and
experiments on a variety of natural images demonstrate the
superiority of the proposed algorithm to the original AMP
algorithm and several tree-based and nonlocal sparsity-based
algorithms or solvers in CS image recovery.
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