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EDITORIAL Open Access

Advanced statistical tools for enhanced quality
digital imaging with realistic capture models
Aleksandra Pižurica1*, Javier Portilla2, Keigo Hirakawa3 and Karen Egiazarian4

Editorial
Getting closer to reality in modeling image capture
devices is crucial for the improvement of image quality
beyond the limits of image restoration algorithms as we
know them today. This calls for more accurate statistical
modeling of distortions and noise coming from real cap-
ture devices (Poisson noise, internal non-linearities, space
variant point spread functions due to nonideal optics,
chromatic aberrations, etc.). While these effects are often
not considered in the restoration algorithms, their impact
on the resulting image quality is huge in practice. For
example, different nonlinearities (both intrinsic to the
imaging device and induced ones, e.g., to make the noise
signal independent) can invalidate typically assumed noise
models and can also devastate deblurring. Joint modeling
of digital and nondigital components (like optics and sen-
sors) or various sources of image distortions (such as color
filter array, blur, and noise) will likely yield improvements
over the traditional approach to treat them separately.
Rapid progress in digital camera technology makes a huge
impact on computer vision, surveillance and security sys-
tems, production of portable electronic devices, such as
smart phones. Physical limits of the sensors are likely
to impose trade-offs on picture quality (e.g., in terms
of achievable resolution versus noise considerations) that
can be dealt with only by smart and device-aware sig-
nal processing. Moreover, new challenges arise from new
imaging technologies, like in three-dimensional (3D) dig-
ital cameras [1,2], and new acquisition modalities, such as
compressive sensing [3-7].
One of the central topics to this special issue is realistic

modeling of noise in digital cameras.With ongoingminia-
turization, sensor elements of the camera are becoming
increasingly sensitive to noise. In state-of-the-art image
sensors, the pixel size is approaching 1 μm. By shrink-
ing the pixel size towards the wavelengths of light that
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the camera captures, the amount of light received will
be further decreased by technical barriers (diffraction
effects) [8]. Hence, increasing further the sensor reso-
lution by itself will not necessarily lead to actual gains
in image quality. Also, recent improvements in sensor
sensitivity allow cameras to operate in very low lighting
conditions, but this boosts noise in the acquired images.
The negative effects of noise can be largely suppressed
by post-processing algorithms, but these require precise
knowledge of the noise characteristics to achieve optimal
performance. Due to the mismatch between the actual
noise characteristics and typically assumed, simplified
noise models, the noise level is typically over- or under-
estimated, affecting adversely the performance of noise
reduction.
Three papers in this special issue [9-11] address the

problem of camera noise modeling and different aspects
of noise reduction, ranging from post-processing steps
for hardware solutions to purely signal processing post-
production approaches. Available technologies for reduc-
ing noise in hardware include pixel binning [12,13], where
electrical charges of neighboring pixels are combined to
form a superpixel. The benefits are faster readout speeds
and improved signal-to-noise ratios albeit at the price of
spatial resolution loss. Binning in color images is par-
ticularly challenging due to the presence of color filter
array (CFA). To maintain color fidelity, the binning pro-
cess combines neighboring pixels with the same color
filter, such that the resulting superpixels form again a
CFA, typically the Bayer pattern. The full-color image
that is recovered from these subsampled sensor data by
means of classical demosaicking is not only of lower res-
olution (compared to the case without binning), but suf-
fers also from characteristic pixelization artifacts. Jin and
Hirakawa provide in [9] a comprehensive characterization
of pixel binning for color image sensors and propose post-
capture signal processing steps to eliminate the binning
artifacts. By a rigorous analysis, they prove that pixeliza-
tion arises due to the mismatch between binning and
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demosaicking and that it cannot be eliminated simply by
increasing the sensor resolution, but rather by a carefully
designed binning-aware demosaicking approach.
The contribution by Aiazzi et al. [10] revisits opto-

electronic noise model in view of recent advances in the
technology of modern CCD color cameras. The authors
present an original and robust method for estimating the
parameters of a mixed photon and electronic noise from
a single image. The main idea behind the method is to
decouple the power of the signal-dependent photon noise
from that of the signal-independent electronic noise in the
space defined by sample mean versus variance, such that
noise parameters can be estimated elegantly, by multivari-
ate linear regression. The paper gives a comprehensive
discussion on the range of validity of the optoelectronic
noise model, clipping considerations in actual cameras
and nonlinearities that dominate the camera response
function (CRF), which gives new interesting insights with
respect to related approaches like [14,15]. Motivated by
this analysis, the authors advocate noise estimation on
the CRF-corrected data, i.e., after compensating for the
nonlinearities introduced by the electronic chain, show-
ing that in this case potential problems with the range of
validity of the model are avoided.
Goossens et al. [11] take a different approach and

present a detailed model of the camera noise, related to
[16], which not only models a mixture of photon and elec-
tronic noise but also takes explicitly into account different
aspects, such as amplification (ISO sensitivity of the cam-
era), fixed pattern noise, clipping and quantization due to
A/D conversion, and different post-processing operations
through the CRF. This noise model is then applied to the
reconstruction of high dynamic range images from a small
set of low dynamic range acquisitions of a static scene. An
original contribution of this work is also a novel Bayesian
formulation of the weighting function for combining low
dynamic range components into a high dynamic range
image.
Another central and rapidly evolving field addressed

in this special issue is image restoration. No imaging
device has a perfect one-to-one correspondence of spatial
directions in the scene (those ideally producing a single
projection dot on the output image) and spatial locations
in the resulting image. Instead, each of these incoming
directions gives rise to a point spread function (PSF, a
small ‘cloud’), whose shape and size depends (besides the
incoming light wavelengths, in refraction-based optical
devices) on both the image location from where the ray
starts and on the imaging device itself (e.g., on its opti-
cal response, for devices capturing visible light). Other
practically important source of blur is relative movement
between the camera and objects in the scene. Such move-
ments produce dynamically evolving images, which are

temporally integrated by the sensor during the exposure
time interval. Whereas all of these image degradations
have been traditionally modeled in the image process-
ing literature as simple convolutions, this is only a crude
first approximation. In fact, the blur phenomenon is bet-
ter modeled as a 3D field of PSFs depending on the relative
coordinates (and movement) of the scene with respect to
the camera.
This type of degradation, to a certain extent, is unavoid-

able in real imaging devices, and, coupled with the also
omnipresent imaging noise, poses a formidable challenge
for image processing scientists and engineers. The chal-
lenge at stake consists of correctly modeling and com-
pensating for the various degradation sources, whereas
keeping computational complexity of the restoration rea-
sonably low.
In this special issue, we include four stimulating

papers addressing different problems in image restoration.
Santiago et al. [17] deal with the problem of bound-
ary handling in image restoration. Despite its prac-
tical impact, this problem is often ignored in the
restoration field, as evidenced by artificial boundary con-
ditions such as circular or mirror-like boundary con-
ditions used in typical simulation studies. Among the
published works really addressing this problem, the
model-based ones usually consider an output image with
a smaller spatial support than the input image. Whereas
this is a conceptually correct approach, it usually leads
to highly complex (and, thus, somehow unpractical in
most cases) restoration algorithms. Santiago et al. [17],
instead, propose here a novel practical approach based
on a multilayer perceptron (the classical neural network),
which learns the degradation model. More regular results
are produced in the total variation sense, without a priori
constraints on the structure of the image or the bound-
ary conditions. Compared to the previous methods, they
achieve robust and more visually plausible reconstruc-
tions of the image on the boundary affected areas.
Seo and Milanfar [18] consider the problem of com-

bining a short-exposure image obtained with flash and a
long-exposure image taken without flash. The second is
generally blurry due to the camera shake during expo-
sure and also noisy due to poor illumination. The goal
is to obtain the best of the two of them, i.e., the natu-
ral appearance (soft shadows, warm colors, etc.) of the
one without flash, and the good definition and low noise
of the one with flash. They propose a generalization of
the guided filter approach of He et al. [19]. The pro-
cess involves adjusting an unsupervised prediction model,
which has both nonlinear components (reaction-diffusion
driven) and a locally linear adaptive dependency. This
novel approach results in a significant visual improvement
with respect to previous methods.
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Miraut et al. present two papers [20,21] dealing with
spatially variant PSF characterization and its correspond-
ing image restoration. In both papers, the authors account
for the fact that the PSFs affecting images are not spatially
uniform for real imaging devices, but they rather change
from one location of the acquired image to another one.
In cases specified by the authors, when the PSF does not
experience an abrupt change, a smooth PSF field may be
used for globally characterizing the blur. In the first paper
[20], Miraut and Portilla propose a novel model for rep-
resenting smooth PSF fields, and for dealing with them
efficiently, by means of deformable filtering techniques.
A practical, but still model-based and general, method-
ology is developed on how to perform image restoration
on a given image affected by a known, given, smooth
PSF field. In the second paper [21], Miraut et al. address
the problem of estimating the PSF field from a single
observed image. This is done for the especially favorable
case of star field images, where the objects are dot-like.
Here, the assumption of a smooth PSF field is correct,
and in addition, local PSFs are easy to estimate from the
stars (almost ideal dot-like objects). Some real examples
using ground-based telescope images show the ability of
the proposed algorithm to effectively characterize the PSF
field.
We close this special issue by two papers [22,23] devoted

to the topic of rapidly emerging sparse reconstruction
and compressed sensing approaches. Puy et al. present
in [22] a ‘spread spectrum’ compressed sensing strat-
egy. The main idea behind this approach is to apply a
wide bandwidth pre-modulation (i.e., chirp modulation)
to the signal of interest before projecting it onto randomly
selected vectors of an orthonormal basis. Authors con-
sider the case of Fourier imaging, where pre-modulation
with a wide-band signal amounts to a convolution in the
Fourier domain, spreading the power spectrum of the
original signal, while preserving its norm. Consequently,
coherence between the sparsity and the sensing bases is
drastically reduced, leading to enhanced reconstruction
quality. Enhancement in the reconstruction quality stem-
ming from this approach is demonstrated in two concrete
applications: radio interferometric imaging and magnetic
resonance imaging.
Finally, Dadkhahi et al. [23] offer a different approach

to sparse representations: a reprojection of a signal rep-
resented in one basis onto another basis. In particular,
the authors concentrate on constructing the sparse repre-
sentation of piecewise smooth signals using the discrete
cosine transform (DCT) by deriving the inverse poly-
nomial reconstruction method for the DCT expansion.
They show that this approach enables recovering piece-
wise smooth signals from a relatively small number of
DCT coefficients with high accuracy. The paper demon-

strates benefits of this framework in applications of signal
and image denoising and approximation.
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