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Abstract
The purpose of this paper is to introduce and analyze Mann’s type extragradient for
finding a common solution set � of the split feasibility problem and the set Fix(T ) of
fixed points of Lipschitz asymptotically quasi-nonexpansive mappings T in the setting
of infinite-dimensional Hilbert spaces. Consequently, we prove that the sequence
generated by the proposed algorithm converges weakly to an element of Fix(T )∩ �
under mild assumption. The result presented in the paper also improves and extends
some result of Xu (Inverse Probl. 26:105018, 2010; Inverse Probl. 22:2021-2034, 2006)
and some others.
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1 Introduction
The split feasibility problem (SFP) in finite dimensional spaces was first introduced by
Censor and Elfving [] for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction []. Recently, it has been found that the SFP can
also be used in various disciplines such as image restoration, computer tomograph and
radiation therapy treatment planning [–]. The split feasibility problem in an infinite-
dimensional Hilbert space can be found in [, , –] and references therein.
Throughout this paper, we always assume that H, H are real Hilbert spaces, ‘→’, ‘⇀’

denote strong and weak convergence, respectively, and F(T) is the fixed point set of a
mapping T .
Let C and Q be nonempty closed convex subsets of infinite-dimensional real Hilbert

spacesH andH, respectively, and let A ∈ B(H,H), where B(H,H) denotes the class of
all bounded linear operators from H to H. The split feasibility problem (SFP) is finding
a point x̂ with the property

x̂ ∈ C, Ax̂ ∈Q. (.)
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In the sequel, we use � to denote the set of solutions of SFP (.), i.e.,

� = {x̂ ∈ C : Ax̂ ∈Q}.

Assuming that the SFP is consistent (i.e., (.) has a solution), it is not hard to see that
x ∈ C solves (.) if and only if it solves the fixed-point equation

x = PC
(
I – γA∗(I – PQ)A

)
x, x ∈ C, (.)

where PC and PQ are the (orthogonal) projections onto C and Q, respectively, γ >  is any
positive constant, and A∗ denotes the adjoint of A.
To solve (.), Byrne [] proposed his CQ algorithm, which generates a sequence (xk) by

xk+ = PC
(
I – γA∗(I – PQ)A

)
xk , k ∈N, (.)

where γ ∈ (, /λ), and again λ is the spectral radius of the operator A∗A.
The CQ algorithm (.) is a special case of the Krasnonsel’skii-Mann (K-M) algorithm.

The K-M algorithm generates a sequence {xn} according to the recursive formula

xn+ = ( – αn)xn + αnTxn,

where {αn} is a sequence in the interval (, ) and the initial guess x ∈ C is chosen arbitrar-
ily. Due to the fixed point for formulation (.) of the SFP, we can apply the K-M algorithm
to the operator PC(I – γA∗(I – PQ)A) to obtain a sequence given by

xk+ = ( – αk)xk + αkPC
(
I – γA∗(I – PQ)A

)
xk , k ∈N, (.)

where γ ∈ (, /λ), and again λ is the spectral radius of the operator A∗A.
Then, as long as (xk) satisfies the condition

∑∞
k= αk( –αk) = +∞, we have weak conver-

gence of the sequence generated by (.).
Very recently, Xu [] gave a continuation of the study on the CQ algorithm and its con-

vergence.He appliedMann’s algorithm to the SFP andproposed an averagedCQ algorithm
which was proved to be weakly convergent to a solution of the SFP. He derived a weak con-
vergence result, which shows that for suitable choices of iterative parameters (including
the regularization), the sequence of iterative solutions can converge weakly to an exact
solution of the SFP. He also established the strong convergence result, which shows that
the minimum-norm solution can be obtained.
On the other hand, Korpelevich [] introduced an iterative method, the so-called ex-

tragradient method, for finding the solution of a saddle point problem. He proved that the
sequences generated by the proposed iterative algorithm converge to a solution of a saddle
point problem.
Motivated by the idea of an extragradient method in [], Ceng [] introduced and

analyzed an extragradient method with regularization for finding a common element of
the solution set � of the split feasibility problem and the set Fix(T) of a nonexpansive
mapping T in the setting of infinite-dimensional Hilbert spaces. Chang [] introduced
an algorithm for solving the split feasibility problems for total quasi-asymptotically non-
expansive mappings in infinite-dimensional Hilbert spaces.
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The purpose of this paper is to study and analyze aMann’s type extragradientmethod for
finding a common element of the solution set � of the SFP and the set Fix(T) of asymptot-
ically quasi-nonexpansive mappings and Lipshitz continuous mappings in a real Hilbert
space. We prove that the sequence generated by the proposed method converges weakly
to an element x̂ in Fix(T)∩ �.

2 Preliminaries
Wefirst recall somedefinitions, notations and conclusionswhichwill be needed in proving
our main results.
Let H be a real Hilbert space with the inner product 〈·, ·〉 and ‖ · ‖, and let C be a

nonempty closed and convex subset of H .
Let E be a Banach space. A mapping T : E → E is said to be demi-closed at origin if for

any sequence {xn} ⊂ E with xn ⇀ x∗ and ‖(I – T)xn‖ → , then x∗ = Tx∗.
A Banach space E is said to have theOpial property if for any sequence {xn}with xn ⇀ x∗,

then

lim inf
n→∞

∥∥xn – x∗∥∥ < lim inf
n→∞ ‖xn – y‖, ∀y ∈ E with y �= x∗.

Remark . It is well known that each Hilbert space possesses the Opial property.

Proposition . For given x ∈H and z ∈ C:
(i) z = PCx if and only if 〈x – z, y – z〉 ≤  for all y ∈ C.
(ii) z = PCx if and only if ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖ for all y ∈ C.
(iii) For all x, y ∈H , 〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖.

Definition . Let C be a nonempty, closed and convex subset of a real Hilbert space H .
We denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ C : x = Tx}. Then T is
said to be
() nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
() asymptotically nonexpansive if there exists a sequence kn ≥ , limn→∞ kn =  and

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖ (.)

for all x, y ∈ C and n≥ ;
() asymptotically quasi-nonexpansive if there exists a sequence kn ≥ , limn→∞ kn = 

and

∥∥Tnx – p
∥∥ ≤ kn‖x – p‖ (.)

for all x ∈ C, p ∈ F(T) and n≥ ;
() uniformly L-Lipschitzian if there exists a constant L >  such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖ (.)

for all x, y ∈ C and n≥ .

Remark . By the above definitions, it is clear that:

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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(i) a nonexpansive mapping is an asymptotically quasi-nonexpansive mapping;
(ii) a quasi-nonexpansive mapping is an asymptotically-quasi nonexpansive mapping;
(iii) an asymptotically nonexpansive mapping is an asymptotically quasi-nonexpansive

mapping.

Proposition . (see []) We have the following assertions.
() T is nonexpansive if and only if the complement I – T is 

 -ism.
() If T is ν-ism and γ > , then γT is ν

γ
-ism.

() T is averaged if and only if the complement I – T is ν-ism for some ν > 
 .

Indeed, for α ∈ (, ), T is α-averaged if and only if I – T is 
α -ism.

Proposition . (see [, ]) Let S,T ,V :H →H be given operators.We have the follow-
ing assertions.
() If T = ( – α)S + αV for some α ∈ (, ), S is averaged and V is nonexpansive, then T

is averaged.
() T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
() If T = ( – α)S + αV for some α ∈ (, ), S is firmly nonexpansive and V is

nonexpansive, then T is averaged.
() The composite of finite many averaged mappings is averaged. That is, if each of the

mappings {Ti}ni= is averaged, then so is the composite T ◦T ◦ · · · ◦TN . In particular,
if T is α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite
T ◦ T is α-averaged, where α = α + α – αα.

() If the mappings {Ti}ni= are averaged and have a common fixed point, then

n⋂
i=

Fix(Ti) = Fix(T · · ·TN ).

The notation Fix(T) denotes the set of all fixed points of the mapping T , that is, Fix(T) =
{x ∈H : Tx = x}.

Lemma . (see [], demiclosedness principle) Let C be a nonempty closed and con-
vex subset of a real Hilbert space H , and let T : C → C be a nonexpansive mapping with
Fix(S) �= ∅. If the sequence {xn} ⊆ C converges weakly to x and the sequence {(I – S)xn} con-
verges strongly to y, then (I – S)x = y; in particular, if y = , then x ∈ Fix(S).

Lemma . (see []) Let {an}∞n= and {bn}∞n= be two sequences of nonnegative numbers
satisfying the inequality

an+ ≤ an + bn, ∀n≥ ,

if
∑∞

n= bn converges, then limn→∞ an exists.

The following lemma gives some characterizations and useful properties of the metric
projection PC in a Hilbert space.
For every point x ∈ H , there exists a unique nearest point in C, denoted by PCx, such

that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C, (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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where PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C.

Lemma . (see []) Let C be a nonempty closed and convex subset of a real Hilbert space
H , and let PC be the metric projection from H onto C.Given x ∈H and z ∈ C, then z = PCx
if and only if the following holds:

〈x – z, y – z〉 ≤ , ∀y ∈ C. (.)

Lemma . (see []) Let C be a nonempty, closed and convex subset of a real Hilbert
space H , and let PC : H → C be the metric projection from H onto C. Then the following
inequality holds:

‖y – PCx‖ + ‖x – PCx‖ ≤ ‖x – y‖, ∀x ∈H ,∀y ∈ C. (.)

Lemma . (see []) Let H be a real Hilbert space. Then the following equations hold:
(i) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈H ;
(ii) ‖tx + ( – t)y‖ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ for all t ∈ [, ] and x, y ∈H .

Throughout this paper, we assume that the SFP is consistent, that is, the solution set
� of the SFP is nonempty. Let f : H → R be a continuous differentiable function. The
minimization problem

min
x∈C f (x) :=



‖Ax – PQAx‖ (.)

is ill-posed. Therefore (see []) consider the following Tikhonov regularized problem:

min
x∈C fα(x) :=



‖Ax – PQAx‖ + 


α‖x‖, (.)

where α >  is the regularization parameter.
We observe that the gradient

∇fα =∇f + αI = A∗(I – PQ)A + αI (.)

is (α + ‖A‖)-Lipschitz continuous and α-strongly monotone.
Let C be a nonempty closed convex subset of a real Hilbert space H , and let F : C → H

be a monotone mapping. The variational inequality problem (VIP) is to find x ∈ C such
that

〈Fx, y – x〉 ≥ , ∀y ∈ C.

The solution set of the VIP is denoted by VIP(C,F). It is well known that

x ∈ VI(C,F) ⇔ x = PC(x – λFx), ∀λ > .

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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A set-valuedmapping T :H → H is calledmonotone if for all x, y ∈H , f ∈ Tx and g ∈ Ty
imply

〈x – y, f – g〉 ≥ .

A monotone mapping T : H → H is called maximal if its graph G(T) is not properly
contained in the graph of any other monotone mapping. It is known that a monotone
mapping T is maximal if and only if, for (x, f ) ∈ H ×H , 〈x – y, f – g〉 ≥  for every (y, g) ∈
G(T) implies f ∈ Tx. Let F : C →H be a monotone and k-Lipschitz continuous mapping,
and let NCv be the normal cone to C at v ∈ C, that is,

NCv =
{
w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C

}
.

Define

Tv =

{
Fv +NCv if v ∈ C,
∅ if v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if v ∈ VI(C,F); see [] for more
details.
We can use fixed point algorithms to solve the SFP on the basis of the following obser-

vation.
Let λ >  and assume that x∗ ∈ �. Then Ax∗ ∈ Q, which implies that (I –PQ)Ax∗ = , and

thus λA∗(I–PQ)Ax∗ = .Hence, we have the fixed point equation (I–λA∗(I–PQ)A)x∗ = x∗.
Requiring that x∗ ∈ C, we consider the fixed point equation

PC(I – λ∇f )x∗ = PC
(
I – λA∗(I – PQ)A

)
x∗ = x∗. (.)

It is proved in [, Proposition .] that the solutions of fixed point equation (.) are
exactly the solutions of the SFP; namely, for given x∗ ∈ H, x∗ solves the SFP if and only if
x∗ solves fixed point equation (.).

Proposition . (see []) Given x∗ ∈H, the following statements are equivalent.
(i) x∗ solves the SFP;
(ii) x∗ solves fixed point equation (.);
(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C, (.)

where ∇f = A∗(I – PQ)A and A∗ is the adjoint of A.

Proof (i) ⇔ (ii). See the proof in ([], Proposition .).
(ii) ⇔ (iii). Observe that

PC
(
I – λA∗(I – PQ)A

)
x∗ = x∗

⇔ 〈(
I – λA∗(I – PQ)A

)
x∗ – x∗,x – x∗〉 ≤ , ∀x ∈ C

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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⇔ –λ
〈
A∗(I – PQ)Ax∗,x – x∗〉 ≤ , ∀x ∈ C

⇔ 〈∇f
(
x∗),x – x∗〉 ≥ , ∀x ∈ C,

where ∇f = A∗(I – PQ)A. �

Remark . It is clear from Proposition . that

� = Fix
(
PC(I – λ∇f )

)
= VI(C,∇f ),

for any λ > , where Fix(PC(I –λ∇f )) andVI(C,∇f ) denote the set of fixed points of PC(I –
λ∇f ) and the solution set of VIP.

Proposition . (see []) There hold the following statements:
(i) the gradient

∇fα =∇f + αI = A∗(I – PQ)A + αI

is (α + ‖A‖)-Lipschitz continuous and α-strongly monotone;
(ii) the mapping PC(I – λ∇fα) is a contraction with coefficient

√
 – λ

(
α – λ

(‖A‖ + α
))(≤ √

 – αλ ≤  –


αλ

)
,

where  < λ ≤ α

(‖A‖+α) ;
(iii) if the SFP is consistent, then the strong limα→ xα exists and is the minimum norm

solution of the SFP.

3 Main result
Theorem . Let C be a nonempty, closed and convex subset of a real Hilbert space H ,
and let T : C → C be an uniformly L-Lipschitzian and asymptotically quasi-nonexpansive
mapping with Fix(T) ∩ � �= ∅ and {kn} ⊂ [,∞) for all n ∈ N such that limn→∞ kn = . Let
{xn}, {yn} and {un} be the sequences in C generated by the following algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = PC(xn – λn∇fαnxn),
un = PC(xn – λn∇fαnyn),
xn+ = βnun + ( – βn)Tnun,

(.)

where ∇fαn = ∇f + αnI = A∗(I – PQ)A + αnI , and the sequences {αn}, {λn} and {βn} satisfy
the following conditions:

(i)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(ii) {λn} ∈ (, 

‖A‖ ) and
∑∞

n= λn < ∞,
(iii)

∑∞
n= αn < ∞.

Then the sequence {xn} converges weakly to an element x̂ ∈ Fix(T)∩ �.

Proof We first show that PC(I – λ∇fα) is ζ -averaged for each λn ∈ (, 
α+‖A‖ ), where

ζ =
 + λ(α + ‖A‖)


.

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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Indeed, it is easy to see that ∇f = A*(I – PQ)A is 
‖A‖ -ism, that is,

〈∇f (x) –∇f (y),x – y
〉 ≥ 

‖A‖
∥∥∇f (x) –∇f (y)

∥∥.

Observe that

(
α + ‖A‖)〈∇fα(x) –∇fα(y),x – y

〉
=

(
α + ‖A‖)[α‖x – y‖ + 〈∇f (x) –∇f (y),x – y

〉]
= α‖x – y‖ + α

〈∇f (x) –∇f (y),x – y
〉

+ α‖A‖‖x – y‖ + ‖A‖〈∇f (x) –∇f (y),x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) –∇f (y),x – y

〉
+

∥∥∇f (x) –∇f (y)
∥∥

=
∥∥α(x – y) +∇f (x) –∇f (y)

∥∥

=
∥∥∇f (x) –∇f (y)

∥∥.

Hence, it follows that ∇fα = αI +A*(I –PQ)A is 
α+‖A‖ -ism. Thus, λ∇fα is 

λ(α+‖A‖) -ism. By

Proposition .(iii) the composite (I – λ∇fα) is λ(α+‖A‖)
 -averaged. Therefore, noting that

PC is 
 -averaged and utilizing Proposition .(iv), we know that for each λ ∈ (, 

α+‖A‖ ),
PC(I – λ∇fα) is ζ -averaged with

ζ =


+

λ(α + ‖A‖)


–



· λ(α + ‖A‖)


=
 + λ(α + ‖A‖)


∈ (, ).

This shows that PC(I – λ∇fα) is nonexpansive. Furthermore, for {λn} ∈ [a,b] with a,b ∈
(, 

‖A‖ ), utilizing the fact that limn→∞ 
αn+‖A‖ =


‖A‖ , we may assume that

 < a≤ λn ≤ b <


‖A‖ = lim
n→∞


αn + ‖A‖ , ∀n≥ .

Without loss of generality, we may assume that

 < a≤ λn ≤ b <


αn + ‖A‖ , ∀n≥ .

Consequently, it follows that for each integer n≥ , PC(I – λn∇fαn ) is ζn-averaged with

ζn =


+

λn(αn + ‖A‖)


–



· λn(αn + ‖A‖)


=
 + λn(αn + ‖A‖)


∈ (, ).

This immediately implies that PC(I – λn∇fαn ) is nonexpansive for all n≥ .
We divide the remainder of the proof into several steps.
Step . We will prove that {xn} is bounded. Indeed, we take fixed p ∈ Fix(T) ∩ � arbi-

trarily. Then we get PC(I – λn∇f )p = p for λn ∈ (, 
‖A‖ ). Since PC and (I – λn∇fαn ) are

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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nonexpansive mappings, then we have

‖yn – p‖ =
∥∥PC(I – λn∇fαn )xn – PC(I – λn∇f )p

∥∥
≤ ∥∥PC(I – λn∇fαn )xn – PC(I – λn∇fαn )p

∥∥
+

∥∥PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥∥

≤ ‖xn – p‖ + ∥∥(I – λn∇fαn )p – (I – λn∇f )p
∥∥

= ‖xn – p‖ + ∥∥p – λn∇fαnp – (p – λn∇fp)
∥∥

= ‖xn – p‖ + ‖λn∇fp – λn∇fαnp‖
= ‖xn – p‖ + λn‖∇fp –∇fαnp‖
= ‖xn – p‖ + λn‖∇fp –∇fp – αnp‖
= ‖xn – p‖ + λnαn‖p‖ (.)

and

‖un – p‖ =
∥∥PC(xn – λn∇fαnyn) – p

∥∥
=

∥∥PC(xn – λn∇fαnyn) – PC(I – λn∇f )p
∥∥

≤ ∥∥(xn – λn∇fαnyn) – (p – λn∇f )p
∥∥

=
∥∥(xn – p) + (λn∇fp – λn∇fαnyn)

∥∥
=

∥∥(xn – p) + λn(∇fp –∇fαnyn)
∥∥

=
∥∥(xn – p) + λn(∇fp –∇fαnp +∇fαnp –∇fαnyn)

∥∥
=

∥∥(xn – p) + λn
(∇fp – (∇fp + αnp)

)
+ λn(∇fαnp –∇fαnyn)

∥∥
≤ ‖xn – p‖ + λnαn‖p‖ + λn

∥∥∇fαn (p) –∇fαn (yn)
∥∥

≤ ‖xn – p‖ + λnαn‖p‖ + λn
(
αn + ‖A‖)‖p – yn‖. (.)

Substituting (.) into (.) and simplifying, we have

‖un – p‖ ≤ ‖xn – p‖ + λnαn‖p‖ + λn
(
αn + ‖A‖)‖p – yn‖

= ‖xn – p‖ + λnαn‖p‖ + λn
(
αn + ‖A‖)[‖xn – p‖ + λnαn‖p‖

]
= ‖xn – p‖ + λnαn‖p‖ + λn

(
αn + ‖A‖)‖xn – p‖ + λ

nαn
(
αn + ‖A‖)‖p‖

= ‖xn – p‖ + λnαn‖p‖ + λnαn‖xn – p‖ + λn‖A‖‖xn – p‖ + λ
nα


n‖p‖

+ λ
nαn‖A‖‖p‖

=
(
 + λnαn + λn‖A‖)‖xn – p‖ + λnαn‖p‖

(
 + λnαn + λn‖A‖). (.)

Since un = PC(xn – λn∇fαnyn) for each n ≥ , then by Proposition .(ii) we have

‖un – p‖ ≤ ∥∥xn – λn∇fαn (yn) – p
∥∥ –

∥∥xn – λn∇fαn (yn) – un
∥∥

= ‖xn – p‖ – ‖xn – un‖ + λn
〈∇fαn (yn),p – un

〉

http://www.fixedpointtheoryandapplications.com/content/2013/1/349
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= ‖xn – p‖ – ‖xn – un‖ + λn
(〈∇fαn (yn) –∇fαn (p),p – yn

〉
+

〈∇fαn (p),p – yn
〉
+

〈∇fαn (yn), yn – un
〉)

≤ ‖xn – p‖ – ‖xn – un‖ + λn
(〈∇fαn (p),p – yn

〉
+

〈∇fαn (yn), yn – un
〉)

= ‖xn – p‖ – ‖xn – un‖ + λn
[〈
(αnI +∇f )p,p – yn

〉
+

〈∇fαn (yn), yn – un
〉]

≤ ‖xn – p‖ – ‖xn – un‖ + λn
[
αn〈p,p – un〉 +

〈∇fαn (yn), yn – un
〉]

= ‖xn – p‖ – ‖xn – yn + yn – un‖ + λn
[
αn〈p,p – un〉 +

〈∇fαn (yn), yn – un
〉]

= ‖xn – p‖ – ‖xn – yn‖ – 〈xn – yn, yn – un〉 – ‖yn – un‖

+ λn
[
αn〈p,p – un〉 +

〈∇fαn (yn), yn – un
〉]

= ‖xn – p‖ – ‖xn – yn‖ – ‖yn – un‖ + 
〈
xn – λn∇fαn (yn) – yn,un – yn

〉
+ λnαn〈p,p – un〉.

Furthermore, by Proposition .(i) we have

〈
xn – λn∇fαn (yn) – yn,un – yn

〉
=

〈
xn – λn∇fαn (xn) – yn,un – yn

〉
+

〈
λn∇fαn (xn) – λn∇fαn (yn),un – yn

〉
≤ 〈

λn∇fαn (xn) – λn∇fαn (yn),un – yn
〉

≤ λn
∥∥∇fαn (xn) –∇fαn (yn)

∥∥‖un – yn‖
≤ λn

(
αn + ‖A‖)‖xn – yn‖‖un – yn‖.

So, we obtain

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ – ‖yn – un‖ + λn
(
αn + ‖A‖)‖xn – yn‖‖un – yn‖

+ λnαn‖p‖‖p – un‖. (.)

Consider

[
λn

(
αn + ‖A‖)‖xn – yn‖ – ‖un – yn‖

]
= λ

n
(
αn + ‖A‖)‖xn – yn‖

– λn
(
αn + ‖A‖)‖xn – yn‖‖un – yn‖ + ‖un – yn‖,

it follows that

λn
(
αn + ‖A‖)‖xn – yn‖‖un – yn‖

= λ
n
(
αn + ‖A‖)‖xn – yn‖ + ‖un – yn‖

–
[
λn

(
αn + ‖A‖)‖xn – yn‖ – ‖un – yn‖

]
≤ λ

n
(
αn + ‖A‖)‖xn – yn‖ + ‖un – yn‖. (.)
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Substituting (.) into (.) and simplifying, we have

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – yn‖ – ‖yn – un‖ + λ
n
(
αn + ‖A‖)‖xn – yn‖

+ ‖un – yn‖ + λnαn‖p‖‖p – un‖
= ‖xn – p‖ – ‖xn – yn‖ + λ

n
(
αn + ‖A‖)‖xn – yn‖

+ λnαn‖p‖‖p – un‖
= ‖xn – p‖ + (

λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖ + λnαn‖p‖‖p – un‖. (.)

Substituting (.) into (.) and simplifying, we have

‖un – p‖ ≤ ‖xn – p‖ + (
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn‖p‖
[(
 + λnαn + λn‖A‖)‖xn – p‖

+ λnαn‖p‖
(
 + λnαn + λn‖A‖)]

= ‖xn – p‖ + (
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn‖p‖
(
 + λnαn + λn‖A‖)‖xn – p‖

+ λ
nα


n‖p‖

(
 + λnαn + λn‖A‖). (.)

Consequently, utilizing Lemma .(ii) and the last relations, we conclude that

‖xn+ – p‖ =
∥∥βnun + ( – βn)Tnun –

(
βn + ( – βn)

)
p
∥∥

=
∥∥βnun – βnp + ( – βn)Tnun – ( – βn)p

∥∥

=
∥∥βn(un – p) + ( – βn)

(
Tnun – p

)∥∥

= βn‖un – p‖ + ( – βn)
∥∥Tnun – p

∥∥ – βn( – βn)
∥∥un – Tnun

∥∥

≤ βn‖un – p‖ + ( – βn)kn‖un – p‖ – βn( – βn)
∥∥un – Tnun

∥∥

=
(
βn + ( – βn)kn

)‖un – p‖ – βn( – βn)
∥∥un – Tnun

∥∥

=
(
βn + ( – βn)kn

){‖xn – p‖ + (
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn‖p‖
(
 + λnαn + λn‖A‖)‖xn – p‖

+ λ
nα


n‖p‖

(
 + λnαn + λn‖A‖)} – βn( – βn)

∥∥un – Tnun
∥∥

=
(
βn + ( – βn)kn

)‖xn – p‖

+
(
βn + ( – βn)kn

)(
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn
(
βn + ( – βn)kn

)(
 + λnαn + αn‖A‖)‖p‖‖xn – p‖

+ 
(
βn + ( – βn)kn

)
λ
nα


n‖p‖

(
 + λnαn + λn‖A‖)

– βn( – βn)
∥∥un – Tnun

∥∥

=
(
kn – βn

(
kn – 

))‖xn – p‖

+
(
kn – βn

(
kn – 

))(
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn
(
kn – βn(kn – )

)(
 + λnαn + αn‖A‖)‖p‖‖xn – p‖
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+ 
(
kn – βn

(
kn – 

))
λ
nα


n‖p‖

(
 + λnαn + λn‖A‖)

– βn( – βn)
∥∥un – Tnun

∥∥. (.)

Since limn→∞ kn = , (i)-(iii) and by Corollary ., we deduce that

lim
n→∞‖xn – p‖ exists for each p ∈ Fix(T)∩ �, (.)

and the sequences {xn}, {un} and {yn} are bounded. It follows that
∥∥Tnxn – p

∥∥ ≤ kn‖xn – p‖.

Hence {Tnxn – p} is bounded.
Step . We will prove that

lim
n→∞‖un – Tun‖ = .

From (.) we have

‖xn+ – p‖ ≤ (
kn – βn

(
kn – 

))‖xn – p‖

+
(
kn – βn

(
kn – 

))(
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ λnαn
(
kn – βn(kn – )

)(
 + λnαn + αn‖A‖)‖p‖‖xn – p‖

+ 
(
kn – βn

(
kn – 

))
λ
nα


n‖p‖

(
 + λnαn + λn‖A‖)

– βn( – βn)
∥∥un – Tnun

∥∥

=
(
kn – βn

(
kn – 

))‖xn – p‖

+
(
kn – βn

(
kn – 

))(
λ
n
(
αn + ‖A‖) – 

)‖xn – yn‖

+ αn
(
kn – βn

(
kn – 

))
M + αn

(
kn – βn

(
kn – 

))
M

– βn( – βn)
∥∥un – Tnun

∥∥

=
(
kn – βn

(
kn – 

))‖xn – p‖

–
(
kn – βn

(
kn – 

))(
 – λ

n
(
αn + ‖A‖))‖xn – yn‖

+ αn
(
kn – βn

(
kn – 

))
(M +M) – βn( – βn)

∥∥un – Tnun
∥∥,

whereM = supn≥{λn( + λnαn + αn‖A‖)‖p‖‖xn – p‖} <∞ and

M = sup
n≥

{
λ

nαn‖p‖
(
 + λnαn + λn‖A‖)} < ∞.

So,

(
kn – βn

(
kn – 

))(
 – λ

n
(
αn + ‖A‖))‖xn – yn‖ + βn( – βn)

∥∥un – Tnun
∥∥

≤ (
kn – βn

(
kn – 

))‖xn – p‖ – ‖xn+ – p‖ + αn
(
kn – βn

(
kn – 

))
(M +M).
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Since limn→∞ kn = , αn → , (i) and from (.), we have

lim
n→

‖xn – yn‖ = lim
n→

∥∥un – Tnun
∥∥ = . (.)

Furthermore, we obtain

‖yn – un‖ =
∥∥PC

(
xn – λn∇fαn (xn)

)
– PC

(
xn – λn∇fαn (yn)

)∥∥
≤ ∥∥(

xn – λn∇fαn (xn)
)
–

(
xn – λn∇fαn (yn)

)∥∥
= λn

∥∥∇fαn (xn) –∇fαn (yn)
∥∥

≤ λn
(
αn + ‖A‖)‖xn – yn‖.

This together with (.) implies that

lim
n→

‖yn – un‖ = . (.)

Also,

‖xn – un‖ ≤ ‖xn – yn‖ + ‖yn – un‖

together with (.) and (.) implies that

lim
n→

‖xn – un‖ = . (.)

We can rewrite (.) from (.) by

lim
n→

∥∥xn – Tnun
∥∥ = . (.)

Consider

‖xn+ – xn‖ =
∥∥βnun + ( – βn)Tnun – xn

∥∥
≤ βn‖un – xn‖ + ( – βn)

∥∥Tnun – xn
∥∥.

From (.) and (.), we obtain

‖xn+ – xn‖ →  (as n→ ∞). (.)

Next, we will show that (.) implies that

lim
n→

‖un – Tun‖ = . (.)

We compute that

‖yn+ – yn‖ =
∥∥PC(xn+ – λn+∇fαn+xn+) – PC(xn – λn∇fαnxn)

∥∥
=

∥∥PC(I – λn+∇fαn+ )xn+ – PC(I – λn∇fαn )xn
∥∥
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≤ ∥∥PC(I – λn+∇fαn+ )xn+ – PC(I – λn+∇fαn+ )xn
∥∥

+
∥∥PC(I – λn+∇fαn+ )xn – PC(I – λn∇fαn )xn

∥∥
≤ ‖xn+ – xn‖ +

∥∥(I – λn+∇fαn+ )xn – (I – λn∇fαn )xn
∥∥

= ‖xn+ – xn‖ +
∥∥xn – λn+∇fαn+xn – (xn – λn∇fαnxn)

∥∥
= ‖xn+ – xn‖ +

∥∥λn∇fαnxn – λn+∇fαn+xn
∥∥

= ‖xn+ – xn‖ +
∥∥λn(∇f + αn)xn – λn+(∇f + αn+)xn

∥∥
= ‖xn+ – xn‖ +

∥∥λn∇fxn + λnαnxn – (λn+∇fxn + λn+αn+xn)
∥∥

= ‖xn+ – xn‖ +
∥∥(λn – λn+)∇fxn + λnαnxn – λn+αn+xn

∥∥
= ‖xn+ – xn‖ +

∥∥(λn – λn+)∇fxn + λnαnxn – λnαn+xn

+ λnαn+xn – λn+αn+xn
∥∥

= ‖xn+ – xn‖ +
∥∥(λn – λn+)∇fxn + λn(αn – αn+)xn + (λn – λn+)αn+xn

∥∥
≤ ‖xn+ – xn‖ + |λn – λn+|‖∇fxn‖ + λn|αn – αn+|‖xn‖

+ αn+|λn – λn+|‖xn‖.

From conditions (ii), (iii) and (.), we obtain that

‖yn+ – yn‖ →  (as n→ ∞) (.)

and

‖un+ – un‖ =
∥∥PC(xn+ – λn+∇fαn+yn+) – PC(xn – λn∇fαnyn)

∥∥
≤ ∥∥(xn+ – λn+∇fαn+yn+) – (xn – λn∇fαnyn)

∥∥
=

∥∥(xn+ – xn) + (λn∇fαnyn – λn+∇fαn+yn+)
∥∥

≤ ‖xn+ – xn‖ + ‖λn∇fαnyn – λn+∇fαn+yn+‖
= ‖xn+ – xn‖ +

∥∥λn(∇f + αn)yn – λn+(∇f + αn+)yn+
∥∥

= ‖xn+ – xn‖ +
∥∥λn∇fyn + λnαnyn – (λn+∇fyn+ + λn+αn+yn+)

∥∥
= ‖xn+ – xn‖ +

∥∥(λn∇fyn – λn+∇fyn+) + λnαnyn – λn+αn+yn+
∥∥

≤ ‖xn+ – xn‖ + ‖λn∇fyn – λn+∇fyn+‖ + ‖λnαnyn – λn+αn+yn+‖
= ‖xn+ – xn‖ +

∥∥(λn∇fyn – λn∇fyn+) + (λn∇fyn+ – λn+∇fyn+)
∥∥

+
∥∥(λnαnyn – λnαnyn+) + (λnαnyn+ – λn+αn+yn+)

∥∥
≤ ‖xn+ – xn‖ + λn‖∇fyn –∇fyn+‖ + |λn – λn+|‖∇fyn+‖

+ λnαn‖yn – yn+‖ + |λnαn – λn+αn+|‖yn+‖.

From conditions (ii), (iii), (.) and (.), we obtain that

‖un+ – un‖ →  (as n→ ∞). (.)
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Since T is uniformly L-Lipschitzian continuous, then

‖un – Tun‖ ≤ ‖un – un+‖ +
∥∥un+ – Tn+un+

∥∥ +
∥∥Tn+un+ – Tn+un

∥∥
+

∥∥Tn+un – Tun
∥∥

≤ ‖un – un+‖ +
∥∥un+ – Tn+un+

∥∥ + L‖un – un+‖ + L
∥∥Tnun – un

∥∥.
Since limn→∞ ‖un+ – un‖ =  and limn→∞ ‖un – Tnun‖ = , it follows that

lim
n→∞‖un – Tun‖ = . (.)

Step . We will show that x̂ ∈ Fix(T)∩ �.
We have from (.)

‖xn – yn‖ →  (as n→ ∞). (.)

Since ∇f = A∗(I – PQ)A is Lipschitz continuous and from (.), we have

lim
n→∞

∥∥∇f (xn) –∇f (yn)
∥∥ = .

Since {xn} is bounded, there is a subsequence {xni} of {xn} that converges weakly to some x̂.
First, we show that x̂ ∈ �. Since ‖xn – yn‖ → , it is known that yni ⇀ x̂.
Put

Aw =

{
∇fw +NCw if w ∈ C,
∅ if w /∈ C,

where NCw = {z ∈H : 〈w – v, z〉 ≥ ,∀v ∈ C}. Then A is maximal monotone and  ∈ Aw if
and only if w ∈ VI(C,∇f ); see [] for more details. Let (w, z) ∈G(A), we have

z ∈ Aw =∇fw +NCw,

and hence

z –∇fw ∈ NCw.

So, we have

〈w – v, z –∇fw〉 ≥ , ∀v ∈ C.

On the other hand, from

un = PC(xn – λn∇fαnyn) and w ∈ C,

we have

〈xn – λn∇fαnyn – un,un –w〉 ≥ ,
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and hence

〈
w – un,

un – xn
λn

+∇fαnyn
〉
≥ .

Therefore from z –∇fw ∈NCw and {uni} ∈ C it follows that

〈w – uni , z〉 ≥ 〈w – uni ,∇fw〉

≥ 〈w – uni ,∇fw〉 –
〈
w – uni ,

uni – xni
λni

+∇fαni yni

〉

= 〈w – uni ,∇fw〉 –
〈
w – uni ,

uni – xni
λni

+∇fyni

〉
– αni〈w – uni , yni〉

= 〈w – uni ,∇fw –∇funi〉 + 〈w – uni ,∇funi –∇fyni〉

–
〈
w – uni ,

uni – xni
λni

〉
– αni〈w – uni , yni〉

≤ 〈w – uni ,∇funi –∇fyni〉 –
〈
w – uni ,

uni – xni
λni

〉

– αni〈w – uni , yni〉.

Hence, we obtain

〈w – x̂, z〉 ≥  as i→ ∞.

Since A is maximal monotone, we have x̂ ∈ A–
 , and hence x̂ ∈ VI(C,∇f ). Thus it is clear

that x̂ ∈ �.
Next, we show that x̂ ∈ Fix(T). Indeed, since yni ⇀ x̂ and ‖uni –Tuni‖ → , by (.) and

Lemma ., we get x̂ ∈ Fix(T). Therefore, we have x̂ ∈ Fix(T)∩ �.
Now we prove that xn ⇀ x̂ and yn ⇀ x̂.
Suppose the contrary and let {xnk } be another subsequences of {xn} such that {xnk } ⇀ x∗.

Then x∗ ∈ Fix(T)∩ �. Let us show that x̂ = x∗. Assume that x̂ �= x∗. From the Opial condi-
tion [], we have

lim
n→∞‖xn – x̂‖ = lim

k→∞
inf‖xnk – x̂‖

< lim
k→∞

inf
∥∥xnk – x∗∥∥

= lim
n→∞

∥∥xn – x∗∥∥
= lim

k→∞
inf

∥∥xnk – x∗∥∥
< lim

k→∞
inf‖xnk – x̂‖

= lim
n→∞‖xn – x̂‖.

This is a contradiction. Thus, we have x̂ = x∗. This implies

xn ⇀ x̂ ∈ Fix(T)∩ �.
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Further, from ‖xn – yn‖ →  it follows that yn ⇀ x̂. This shows that both sequences {yn}
and {un} converge weakly to x̂ ∈ Fix(T)∩ �. This completes the proof. �

Utilising Theorem ., we have the following new results in the setting of real Hilbert
spaces.
Take Tn ≡ T in Theorem .. Therefore the conclusion follows.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H ,
and let T : C → C be an uniformly L-Lipschitzian and quasi-nonexpansive mapping with
Fix(T) ∩ � �= ∅. Let {xn}, {yn} and {un} be the sequences in C generated by the following
algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = PC(xn – λn∇fαnxn),
un = PC(xn – λn∇fαnyn),
xn+ = βnun + ( – βn)Tnun,

(.)

where ∇fαn = ∇f + αnI = A∗(I – PQ)A + αnI , and the sequences {αn}, {λn} and {βn} satisfy
the following conditions:

(i)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(ii) {λn} ∈ (, 

‖A‖ ) and
∑∞

n= λn < ∞,
(iii)

∑∞
n= αn < ∞.

Then the sequence {xn} converges weakly to an element x̂ ∈ Fix(T)∩ �.

Take Tn ≡ I (identity mappings) in Theorem .. Therefore the conclusion follows.

Corollary . Let C be a nonempty, closed and convex subset of a real Hilbert space H ,
and let T : C → C be an uniformly L-Lipschitzian with Fix(T) ∩ � �= ∅. Let {xn}, {yn} and
{un} be the sequences in C generated by the following algorithm:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x = x ∈ C chosen arbitrarily,
yn = PC(xn – λn∇fαnxn),
un = PC(xn – λn∇fαnyn),
xn+ = βnun + ( – βn)Tnun,

(.)

where ∇fαn = ∇f + αnI = A∗(I – PQ)A + αnI , and the sequences {αn}, {λn} and {βn} satisfy
the following conditions:

(i)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(ii) {λn} ∈ (, 

‖A‖ ),
(iii)

∑∞
n= αn < ∞.

Then the sequence {xn} converges weakly to an element x̂ ∈ Fix(T)∩ �.

Remark . Theorem . improves and extends [, Theorem .] in the following re-
spects:
(a) The iterative algorithm [, Theorem .] is extended for developing our Mann’s type

extragradient algorithm in Theorem ..
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(b) The technique of proving weak convergence in Theorem . is different from that in
[, Theorem .] because our technique uses asymptotically quasi-nonexpansive
mappings and the property of maximal monotone mappings.

(c) The problem of finding a common element of Fix(T)∩ � for asymptotically
quasi-nonexpansive mappings is more general than that for nonexpansive mappings
and the problem of finding a solution of the (SFP) in [, Theorem .].
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