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Influence of Landau level mixing on the
properties of elementary excitations in graphene
in strong magnetic field
Yurii E Lozovik1,2* and Alexey A Sokolik1

Abstract

Massless Dirac electrons in graphene fill Landau levels with energies scaled as square roots of their numbers.
Coulomb interaction between electrons leads to mixing of different Landau levels. The relative strength of this
interaction depends only on dielectric susceptibility of surrounding medium and can be large in suspended
graphene. We consider influence of Landau level mixing on the properties of magnetoexcitons and
magnetoplasmons—elementary electron-hole excitations in graphene in quantizing magnetic field. We show that,
at small enough background dielectric screening, the mixing leads to very essential change of magnetoexciton
and magnetoplasmon dispersion laws in comparison with the lowest Landau level approximation.
PACS: 73.22.Pr; 71.35.Ji; 73.43.Mp; 71.70.Gm.

1 Introduction
Two-dimensional systems in strong magnetic field are stu-
died intensively since the discovery of integer and frac-
tional quantum Hall effects [1-3]. For a long time, such
systems were represented by gallium arsenide heterostruc-
tures with 2D electron motion within each subband [4].
New and very interesting realization of 2D electron sys-

tem appeared when graphene, a monoatomic layer of car-
bon, was successfully isolated [5,6]. The most spectacular
property of graphene is the fact that its electrons behave
as massless chiral particles, obeying Dirac equation. Inten-
sive experimental and theoretical studies of this material
over several recent years yielded a plethora of interesting
results [7-9]. In particular, graphene demonstrates unusual
half-integer quantum Hall effect [6], which can be
observed even at room temperature [10].
In external perpendicular magnetic field, the motion of

electrons along cyclotron orbits acquires zero-dimensional
character and, as a result, electrons fill discrete Landau
levels [11]. In semiconductor quantum wells, Landau
levels are equidistant and separation between them is
determined by the cyclotron frequency ωc = eH/mc. In
graphene, due to massless nature of electrons, “ultra-

relativistic” Landau levels appear, which are non-equidi-
stant and located symmetrically astride the Dirac
point [12,13]. Energies of these levels are

En = sign(n)
√
2 |n|vF/lH , where n = 0, ±1, ±2,..., vF ≈106

m/s is the Fermi velocity of electrons and lH =
√
c/eH is

magnetic length, or radius of the cyclotron orbit (here and
below we assume ħ = 1).
In the case of integer filling, when several Landau

levels are completely filled by electrons and all higher
levels are empty, elementary excitations in the system
are caused by electron transitions from one of the filled
Landau levels to one of the empty levels [14]. Such tran-
sitions can be observed in cyclotron resonance or
Raman scattering experiments as absorption peaks at
certain energies. With neglect of Coulomb interaction,
energy of the excited electron-hole pair is just a distance
between Landau levels of electron and hole. Coulomb
interaction leads to mixing of transitions between differ-
ent pairs of Landau levels, changing the resulting ener-
gies of elementary excitations.
Characteristic energy of Coulomb interaction in mag-

netic field is e2/εlH, where ε is a dielectric permittivity of
surrounding medium. The relative strength of Coulomb
interaction can be estimated as ratio of its characteristic
value to a characteristic distance between Landau levels.
For massive electrons in semiconductor quantum wells,
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this ratio is proportional to H-1/2, thus in asymptotically
strong magnetic field the Coulomb interaction becomes a
weak perturbation [15,16]. In this case, the lowest Landau
level approximation, neglecting Landau level mixing, is
often used. It was shown that Bose-condensate of nonin-
teracting magnetoexcitons in the lowest Landau level is
an exact ground state in semiconductor quantum well in
strong magnetic field [17].
A different situation arises in graphene. The relative

strength of Coulomb interaction in this system can be
expressed as rs = e2/εvF and does not depend on mag-
netic field [18]. The only parameter which can influence
it is the dielectric permittivity of surrounding medium ε.
At small enough ε, mixing between different Landau
levels can significantly change properties of elementary
excitations in graphene.
Coulomb interaction leads to appearance of two types

of elementary excitations from the filled Landau levels.
From summation of “ladder” diagrams we get magne-
toexcitons, which can be imagined as bound states of
electron and hole in magnetic field [14,16,19]. Properties
of magnetoexcitons in graphene were considered in sev-
eral works, mainly in the lowest Landau level approxi-
mation [20-24]. At ε ≈ 3, Landau level mixing was
shown to be weak in the works [20,25].
Note that influence of Landau level mixing on proper-

ties of an insulating ground state of neutral graphene
was considered in [26] by means of tight-binding Har-
tree-Fock approximation. It was shown that Landau
level mixing favors formation of insulating charge-den-
sity wave state instead of ferromagnetic and spin-density
wave states in suspended graphene, i.e., at weak enough
background dielectric screening.
From the experimental point of view, the most inter-

esting are magnetoexcitons with zero total momentum,
which are only able to couple with electromagnetic
radiation due to very small photon momentum. For
usual non-relativistic electrons, magnetoexciton energy
at zero momentum is protected against corrections due
to electron interactions by the Kohn theorem [27].
However, for electrons with linear dispersion in gra-
phene the Kohn theorem is not applicable [21,24,28-32].
Thus, observable energies of excitonic spectral lines can
be seriously renormalized relatively to the bare values,
calculated without taking into account Coulomb
interaction.
The other type of excitations can be derived using the

random phase approximation, corresponding to summa-
tion of “bubble” diagrams. These excitations, called mag-
netoplasmons, are analog of plasmons and have been
studied both in 2D electron gas [14,33] and graphene
[18,20,21,24,34-39] (both with and without taking into
account Landau level mixing).

In the present article, we consider magnetoexcitons
and magnetoplasmons with taking into account Landau
level mixing and show how the properties of these exci-
tations change in comparison with the lowest Landau
level approximation. For magnetoexcitons, we take into
account the mixing of asymptotically large number of
Landau levels and find the limiting values of cyclotron
resonance energies.
For simplicity and in order to stress the role of virtual

transitions between different pairs of electron and hole
Landau levels (i.e., the role of two-particle processes),
here we do not take into account renormalization of
single-particle energies via exchange with the filled
levels. This issue have been considered in several theo-
retical studies [20,21,24,30,40]. Correction of Landau
level energies can be treated as renormalization of the
Fermi velocity, dependent on the ultraviolet cutoff for a
number of the filled Landau levels taken into account in
exchange processes.
The rest of this article is organized as follows. In Sec-

tion 2, we present a formalism for description of magne-
toexcitons in graphene, which is applied in Section 3 to
study influence of Coulomb interaction and Landau
level mixing on their properties. In Section 4, we study
magnetoplasmons in graphene in the random phase
approximation and in Section 5 we formulate the
conclusions.

2 Magnetoexcitons
Electrons in graphene populate vicinities of two none-
quivalent Dirac points in the Brillouin zone, or two val-
leys K and K’. We do not consider intervalley scattering
and neglect valley splitting, thus it is sufficient to con-
sider electrons in only one valley and treat existence of
the other valley as additional twofold degeneracy of elec-
tron states.
We consider magnetoexciton as an electron-hole pair,

and we will denote all electron and hole variables by the
indices 1 and 2 respectively. In the valley K, Hamilto-
nian of free electrons in graphene in the basis {A1,B1} of
sublattices takes a form [7]:

H(0)
1 = vF

√
2

(
0 p1−
p1+ 0

)
, (1)

where p1± =
(
p1x ± ip1y

)
/
√
2 are the cyclic compo-

nents of electron momentum and vF ≈ 106m/s is the
Fermi velocity of electrons.
For external magnetic field H, parallel to the z axis, we

take the symmetrical gauge, when A(r) =
1
2

[H × r] .

Introducing the magnetic field as substitution of the
momentum p1 ® p1 + (e/c)A(r1) in (1) (we treat the
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electron charge as -e), we get the Hamiltonian of the
form:

H1 =
vF

√
2

lH

(
0 a1
a+1 0

)
. (2)

Here the operators a1 = lHP1− − ir1−/2lH and

a+1 = lHP1+ + ir1+/2lH (where r1± = (x1 ± iy1)/
√
2) obey

bosonic commutation relation [a1, a+1] = 1 .
Using this relation, by means of successive action of

the raising operator a+1 we can construct Landau levels
for electron [18] with energies

ELn = sn
√
2 |n| vF

lH
(3)

and wave functions

ψnk(r) =
(√

2
)δn0−1

(
snφ|n|−1,k(r)

φ|n|k(r)

)
. (4)

Here k = 0,1, 2,... is the index of guiding center, which
enumerates electron states on the nth Landau level (n =
-∞,...,+∞), having macroscopically large degeneracy
Nφ = S/2π l2H , equal to a number of magnetic flux

quanta penetrating the system of the area S. Eigenfunc-
tions jnk(r) of a 2D harmonic oscillator have the explicit
form:

φnk(r) =
i|n−k|

√
2π lH

√
min(n, k)!
max(n, k)!

e−r2/4l2H

×
(
x + isn−ky√

2lH

)|n−k|
L|n−k|
min(n,k)

(
r2

2l2H

)
,

(5)

sn = sign(n) and Lα
n(x) are associated Laguerre

polynomials.
Consider now the hole states. A hole wave function is

a complex conjugated electron wave function, and the
hole charge is +e. Thus, we can obtain Hamiltonian of
the hole in magnetic field from the electron Hamilto-
nian (2) by complex conjugation and reversal of the sign
of the vector potential A(r2). In the representation of
sublattices {A2,B2} it is

H2 =
vF

√
2

lH

(
0 a2
a+2 0

)
, (6)

where the operators a2 = lHP2+ − ir2+/2lH and
a+2 = lHP2− + ir2−/2lH commute with a1, a+1 and obey the

commutation relation [a2, a+2] = 1 . Energies of the hole
Landau levels are the same as these of electron Landau
levels (3), but have an opposite sign.
Hamiltonian of electron-hole pair without taking into

account Landau level mixing is just the sum of (2) and

(6), and can be represented in the combined basis of
electron and hole sublattices {A1A2,A1B2,B1A2,B1B2} as

H0 = H1 +H2 =
vF

√
2

lH

⎛
⎜⎜⎝

0 a2 a1 0
a+2 0 0 a1
a+1 0 0 a2
0 a+1 a+2 0

⎞
⎟⎟⎠ . (7)

It is known [41] that for electron-hole pair in mag-
netic field there exists a conserving 2D vector of mag-
netic momentum, equal in our gauge to

P = p1 + p2 − e
2c

[H × (r1 − r2)] (8)

and playing the role of a center-of-mass momentum.
The magnetic momentum is a generator of simulta-
neous translation in space and gauge transformation,
preserving invariance of Hamiltonian of charged parti-
cles in magnetic field [42].
The magnetic momentum commutes with both the

noninteracting Hamiltonian (7) and electron-hole Cou-
lomb interaction V(r1-r2). Therefore, we can find a wave
function of magnetoexciton as an eigenfunction of (8):

�Pn1n2 (r1, r2) =
1
2π

exp
{
iR

(
P +

[ez × r]
2l2H

)}
×�n1n2 (r − r0) .

(9)

Here R = (r1 + r2)/2, r = r1 - r2, ez is a unit vector in
the direction of the z axis. The wave function of relative
motion of electron and hole �n1n2 (r − r0) is shifted on

the vector r0 = l2H[ez × P] . This shift can be attributed

to electric field, appearing in the moving reference
frame of magnetoexciton and pulling apart electron and
hole.
Transformation (9) from Ψ to F can be considered as a

unitary transformation F = UΨ, corresponding to a switch-
ing from the laboratory reference frame to the magnetoex-
citon rest frame. Accordingly, we should transform
operators as A ® UAU+. Transforming the operators in
(7), we get: Ua1U+ = b1,Ua+1U

+ = b+1,Ua2U+ = −b2,Ub+2U
+ = −b+2 .

Here the operators b1 = lHP− − ir−/2lH, b+1 = lHP+ + ir+/2lH, b2 = lHP+ − ir+/2lH, b+2 = lHP− + ir−/2lH

contain only the relative electron-hole coordinate and
momentum and obey commutation relations
[b1, b+1] = 1, [b2, b+2] = 1 (all other commutators vanish).
Thus, the Hamiltonian (7) of electron-hole pair in its

center-of-mass reference frame takes the form

H′
0 =

vF
√
2

lH

⎛
⎜⎜⎝

0 −b2 b1 0
−b+2 0 0 b1
b+1 0 0 −b2
0 b+1 −b+2 0

⎞
⎟⎟⎠ . (10)
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A four-component wave function of electron-hole
relative motion �n1n2 , being an eigenfunction of (10),
can be constructed by successive action of the raising
operators b+1 and b+2 (see also [20,21]):

�n1n2 (r) =
(√

2
)δn1,0+δn2,0−2

×

⎛
⎜⎜⎝
sn1 sn2φ|n1|−1,|n2|−1(r)

sn1φ|n1|−1,|n2|(r)
sn2φ|n1|,|n2|−1(r)

φ|n1||n2|(r)

⎞
⎟⎟⎠ .

(11)

The bare energy of magnetoexciton in this state is a
difference between energies (3) of electron and hole
Landau levels:

E(0)n1n2 = ELn1 − ELn2 . (12)

Here we label the state of relative motion by numbers
of Landau levels n 1 and n2 of electron and hole, respec-
tively. The whole wave function of magnetoexciton (9)
is additionally labeled by the magnetic momentum P. In
the case of integer filling, when all Landau levels up to
νth one are completely filled by electrons and all upper
levels are empty, magnetoexciton states with n1 >ν, n2 ≤
ν are possible. For simplicity, we neglect Zeeman and
valley splittings of electron states, leading to appearance
of additional spin-flip and intervalley excitations
[20,21,24].

3 Influence of Coulomb interaction
Now we take into account the Coulomb interaction
between electron and hole V(r) = -e2/εr, screened by
surrounding dielectric medium with permittivity ε.
Upon switching into the electron-hole center-of-mass
reference frame, it is transformed as V’(r) = V(r + r0).
To obtain magnetoexciton energies with taking into
account Coulomb interaction, we should find eigenva-
lues of the full Hamiltonian of relative motion
H′ = H′

0 + V ′ in the basis of the bare magnetoexcitonic
states (11). As discussed in the Introduction, a relative
strength of the Coulomb interaction is described by the
dimensionless parameter

rs =
e2

εvF
≈ 2.2

ε
. (13)

When ε >> 1, rs << 1 and we can treat Coulomb inter-
action as a weak perturbation and calculate magnetoex-
citon energy in the first order in the interaction as:

E(1)n1n2 (P) = E(0)n1n2 +
〈
�n1n2

∣∣V ′∣∣ �n1n2

〉
. (14)

Due to spinor nature of electron wave functions in gra-
phene, the correction (14) to the bare magnetoexciton

energy (12) is a sum of four terms, each of them having a
form of correction to magnetoexciton energy in usual 2D
electron gas [20-22]. Dependence of magnetoexciton
energy on magnetic momentum P can be attributed to
Coulomb interaction between electron and hole, sepa-
rated by the average distance r0 ~ P.
Calculations of magnetoexciton dispersions in the first

order in Coulomb interaction (14) have been performed
in several studies [20-24]. However, such calculations
are well-justified only at small enough rs, i.e., at large ε.
When ε ~ 1 (this is achievable in experiments with sus-
pended graphene [43-46]), the role of virtual electron
transitions between different Landau levels can be
significant.
To take into account Landau level mixing, we should

perform diagonalization of full Hamiltonian of Coulomb
interacting electrons in some basis of magnetoexcitonic
states �Pn1n2 , where electron Landau levels n1 >ν are
unoccupied and hole Landau levels n2 ≤ ν are occupied.
To obtain eigenvalues of the Hamiltonian, we need to
solve the equation:

det
∥∥∥δn′

1n1δn
′
2n2(E

(0)
n1n2 − E) +

〈
�Pn′

1n
′
2
|V|�Pn′

1n
′
2

〉∥∥∥ = 0.(15)

We can constrain our basis to N2 terms, involving N
Landau levels for electron (n1 = ν + 1,..., ν + N) and N
Landau levels for a hole (n2 = ν,..., ν - N + 1). Since the
Hamiltonian commutes with magnetic momentum P,
the procedure of diagonalization can be performed inde-
pendently at different values of P, resulting in disper-

sions E(N)
n1n2(P) of magnetoexcitons, affected by a mixing

between N electron and N hole Landau levels.
We present in Figure 1 dispersion relations for 5 lowest

magnetoexciton states, calculated with and without tak-
ing into account the mixing between 16 lowest-energy
states. The results are shown for Landau level fillings ν =
0 and ν = 1, and for different values of rs. Close to P = 0,
magnetoexciton can be described as a composite particle
with parabolic dispersion, characterized by some effective
mass Mn1,n2 = [d2En1,n2 (P)/dP

2]−1|P=0 . At large P, the
Coulomb interaction weakens and the dispersions tend
to the energies of one-particle excitations (12). However,
the dispersion can have rather complicated structure
with several minima and maxima at intermediate

momenta P ∼ l−1
H .

We see that the mixing at small rs has a weak effect
on the dispersions (solid and dotted lines are very close
in Figure 1a,d). However, at rs ~ 1 the mixing changes
the dispersions significantly. We can observe avoided
crossings between dispersions of different magnetoexci-
tons, and even reversal of a sign of magnetoexciton
effective masses (see Figure 1b,c,e,f). Also we see that
the high levels are more strongly mixed than the low-
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lying ones. Similar results were presented in [20] for rs =
0.73 with conclusion that the mixing is weak.
As we see, at large rs the mixing of several Landau

levels already strongly changes magnetoexciton disper-
sions. Important question arises here: how many Landau
levels should we take into account to achieve conver-
gency of results? To answer this question, we perform
diagonalization of the type (15), increasing step-by-step
a quantity N of electron and hole Landau levels. For
simplicity, we perform these calculations at P = 0 only.
Energies of magnetoexcitons at rest, renormalized by

electron interactions due to breakdown of the Kohn the-
orem, are the most suitable to be observed in optical
experiments.

The results of such calculations of E(N)
n1n2 (P = 0) as

functions of N are shown in Figure 2 by cross points. We
found semi-analytically that eigenvalues of the Hamilto-
nian under consideration should approach a dependence

E(N)
n1n2 ≈ E(∞)

n1n2 +
Cn1n2√

N
(16)

HPl HPl HPl

HPl HPl HPl

H

nn
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E
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Figure 1 Magnetoexciton dispersions. Magnetoexciton dispersions En1n2(P) , calculated in the first order in Coulomb interaction (dotted

lines) and with taking into account mixing between 16 low-lying magnetoexciton states (solid lines). The dispersions are calculated at different
filling factors ν and different rs: (a) ν = 0, rs = 0.5, (b) ν = 0, rs = 1, (c) ν = 0, rs = 2, (d) ν = 1, rs = 0.5, (e) ν = 1, rs = 1, (f) ν = 1, rs = 2.
Dispersions of 5 lowest-lying magnetoexciton states n2 ® n1 indicated near the corresponding curves, are shown.

Lozovik and Sokolik Nanoscale Research Letters 2012, 7:134
http://www.nanoscalereslett.com/content/7/1/134

Page 5 of 10



at large N. We fitted the numerical results by this
dependence and thus were able to find the limiting

values E(∞)
n1n2

of magnetoexciton energies with infinite

number of Landau levels taken into account.
We see in Figure 2 that the differences between magne-

toexciton energies calculated in the first order in Cou-
lomb interaction (the crosses at N = 1) and the energies
calculated with taking into account mixing between all
Landau levels (dotted lines) are very small at rs = 0.5 (Fig-
ure 2a,b), moderate at rs = 1 (Figure 2b,e) and very large
at rs = 2 (Figure 2c,f). Since convergency of the inverse-

square-root function is very slow, even the mixing of
rather large (of the order of tens) number of Landau
levels is not sufficient to obtain reliable results for mag-
netoexciton energies, as clearly seen in the Figure 2.
Note that the mixing increases magnetoexciton bind-

ing energies, similarly to results on magnetoexcitons in
semiconductor quantum wells [47,48].

4 Magnetoplasmons
Magnetoplasmons are collective excitations of electron
gas in magnetic field, occurring as poles of density-to-
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Figure 2 Magnetoexciton energies with Landau level mixing. Magnetoexciton energies at rest E(N)
n1n2 (P = 0) , calculated with taking into

account N electron and N hole Landau levels, with stepwise increasing N (crosses). The fits to these energies with inverse-square-root function

(solid lines) and limiting values of E(N)
n1n2 (P = 0) at N ® ∞ (dotted lines) are also shown. The results are presented for different filling factors ν

and different rs: (a) ν = 0, rs = 0.5, (b) ν = 0, rs = 1, (c) ν = 0, rs = 2, (d) ν = 1, rs = 0.5, (e) ν = 1, rs = 1, (f) ν = 1, rs = 2.
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density response function. In the random phase approxi-
mation, dispersion of magnetoplasmon is determined as
a root of the equation

1 − V(q)
(q,ω) = 0, (17)

where V(q) = 2πe2/εq is the 2D Fourier transform of
Coulomb interaction and Π(q,ω) is a polarization opera-
tor (or polarizability). Polarization operator for graphene
in magnetic field can be expressed using magnetoexci-
ton wave functions (11) and energies (12) (see also,
[18,32,34-38]):


(q,ω) = g
∑
n1n2

fn2 − fn1

ω − E(0)n1n2 − iδ
Fn1n2(q), (18)

Fn1n2(q) = �+
n1n2(ql

2
H)

×

⎛
⎜⎜⎝
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞
⎟⎟⎠�n1n2 (ql

2
H),

(19)

where g = 4 is the degeneracy factor and fn is the
occupation number for the nth Landau level, i.e., fn = 1
at n ≤ ν and fn = 0 at n >ν (we neglect temperature
effects since typical separation between Landau levels in
graphene in quantizing magnetic field is of the order of
room temperature [10]). The matrix between magne-
toexcitonic wave functions in (19) ensures that electron
and hole belong to the same sublattice, that is needed
for Coulomb interaction in exchange channel treated as
annihilation of electron and hole in one point of space
and subsequent creation of electron-hole pair in another
point.
Unlike electron gas without magnetic field, having a

single plasmon branch, Equations (17)-(19) give an infi-
nite number of solutions ω = �n1n2 (q) , each of them
can be attributed to specific inter-Landau level transi-
tion n2 ® n1 affected by Coulomb interaction
[18,37,38]. Note that at q ® 0, when Coulomb interac-
tion V(q) becomes weak, dispersion of each magneto-
plasmon branch �n1n2(q) tends to the corresponding

single-particle excitation energy E(0)n1n2
.

At rs << 1, we can suppose that magnetoplasmon
energy �n1n2(q) does not differ significantly from the

single-particle energy E(0)n1n2
. In this case a dominant

contribution to the sum in (18) comes from the term
with the given n1 and n2. Neglecting all other terms, we
can write (18) as


(q,ω) ≈ g
Fn1n2 (q)

ω − E(0)n1n2 − iδ
, (20)

and from (17) we obtain an approximation to plasmon
dispersion in the first order in the Coulomb interaction:

�n1n2(q) ≈ E(0)n1n2 + gV(q)Fn1n2 (q). (21)

Magnetoplasmons in graphene were considered with-
out taking into account Landau level mixing in a man-
ner of Equation (21) in the studies [20,39]. Other
authors [21,24,34] took into account several Landau
levels, and the others [35-38] performed full summation
in the framework of the random phase approximation
(17)-(19) to calculate magnetoplasmon dispersions.
Here we state the question: how many Landau levels

one should take into account to calculate magnetoplas-
mon spectrum with sufficient accuracy? To answer it,
we performed calculations with successive taking into
account increasing number of Landau levels at different
ν and rs. In Figure 3, dispersions of magnetoplasmons in
graphene calculated numerically are shown. Results
obtained without taking into account Landau level mix-
ing, with taking into account a mixing of two or three
lowest Landau levels and with taking into account all
Landau levels are plotted with different line styles.
As we see, even taking into account the mixing

between two Landau levels changes the dispersions con-
siderably (see the differences between solid and short
dash lines in Figure 3). However, the calculations with
mixing between three Landau levels (long dash lines)
are already close to the exact results (dotted lines),
except for the high-lying magnetoplasmon modes. It is
also seen, that the mixing considerably changes the dis-
persions even at moderate rs (see, e.g., Figure 3d at rs =
0.5). Note that the mixing usually decreases magneto-
plasmon energies and does not affect the long-wave-
length linear asymptotics of their dispersions.
Therefore, we conclude here that convergence of mag-

netoplasmon dispersions in rather fast upon increasing a
number of Landau levels taken into account. Several
lowest Landau levels are sufficient to obtain rather accu-
rate results. On the other hand, calculations in the low-
est Landau level approximation, i.e., without taking into
account the mixing, can give inaccurate results, espe-

cially in a region of intermediate momenta q ∼ l−1
H .

5 Conclusions
We studied influence of Landau level mixing in gra-
phene in quantizing magnetic field on properties of ele-
mentary excitations—magnetoexcitons and
magnetoplasmons—in this system. Virtual transitions
between Landau levels, caused by Coulomb interaction,
can change dispersions of the excitations in comparison
with the lowest Landau level approximation.
Strength of Coulomb interaction and thus a degree of

Landau level mixing can be characterized by
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dimensionless parameter rs, dependent in the case of
graphene only on dielectric permittivity of surrounding
medium. By embedding graphene in different environ-
ments, one can change rs from small values to rs ≈ 2
[49].
We calculated dispersions of magnetoexcitons in gra-

phene and showed that the mixing even between few
Landau levels can change the dispersion curves signifi-
cantly at rs > 1. However, at small rs the role of the

mixing is negligible, in agreement with the other works
[20,25]. Then the question about convergency of such
calculations upon increasing a number of involved
Landau levels have been raised.
We performed calculations of magnetoexciton ener-

gies at rest with taking into account stepwise increasing
number of Landau levels and found their inverse-
square-root asymptotics. By evaluating limiting values of
these asymptotics, we calculated magnetoexciton
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energies with infinite number of Landau levels taken
into account. We demonstrated that influence of remote
Landau levels of magnetoexciton energies is strong,
especially at large rs. Also it was found that calculations
with taking into account even several Landau levels pro-
vide results, rather far from exact ones.
Also dispersion relations of magnetoplasmons in gra-

phene were calculated in the random phase approxima-
tion with taking into account different numbers of
Landau levels. We showed that even few Landau levels
for electron and hole are sufficient do obtain accurate
results, however the lowest Landau level approximation
(i.e., calculations without taking into account the mix-
ing) provide inaccurate results, especially for intermedi-
ate momenta and high-lying magnetoplasmon modes.
In our article, we focused on the role of Coulomb

interaction only in the electron-hole channel. Another
many-body mechanism, affecting observed magnetoexci-
ton energies, is renormalization of single-particle ener-
gies due to exchange with filled Landau levels in the
valence band of graphene, which was considered else-
where [20,21,24,30,40]. An important result of our study
is that breakdown of the Kohn theorem in graphene
leads to strong corrections of magnetoexciton energies
not only due to exchange self-energies, but also due to
virtual transitions caused by Coulomb interaction
between electron and hole. One can distinguish these
two contributions in experiments by measuring full dis-
persion dependencies (at nonzero momenta) of spatially
indirect magnetoexcitons formed by electrons and holes
in parallel graphene layers by means of registration of
luminescent photons in additional parallel magnetic
field (similarly to the experiments with semiconductor
quantum wells [50]).
We considered magnetoexcitons in the ladder approxi-

mation and magnetoplasmons in the random phase
approximations without taking into account vertex correc-
tions and screening. Estimating the role of these factors,
especially in the strong-interacting regime at large rs, is a
difficult task and will be postponed for future studies.
The results obtained in our study should be relevant

for magneto-optical spectroscopy of graphene
[28,29,31,51-53] and for the problem of Bose-condensa-
tion of magnetoexcitons [54-56]. Excitonic lines in opti-
cal absorption or Raman spectra of graphene can give
experimental information about energies of elementary
excitations. Magnetoexcitons and magnetoplasmons can
be observed also as constituents of various hybrid
modes—polaritons [57], trions [58], Bernstein modes
[59] or magnetophonon resonances [60].
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