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Multicomponent sinusoidal frequency modulated (SFM) signals are widely used in radar, acoustics, and biomedicine. The
instantaneous frequency (IF) characterizes important physical parameters of the real applications. In this paper, a sinusoidal
frequencymodulation Fourier-Bessel (SFMFB) series is defined for IF estimation. It provides the signal decomposition on the Bessel
function basis with a finer resolution, which proposes an extension of the performance and the applicability of the classic Fourier-
Bessel transform (FBT). Based on the property analysis of the SFMFB series, an algorithm of IF estimation and signal separation
is introduced. Unlike the existing estimation methods which apply sliding windows to make an instantaneous approximation, the
proposed method uses the global data, which provides a longer period gain, therefore achieving a better estimation performance.
Moreover, considering that most estimation methods are invalid in multicomponent separation, the individual signals are well
separated by the proposed algorithm, which facilitates the further monocomponent analysis. A performance comparison between
the proposed method, the FBT, and another recently proposed sinusoidal frequency modulation Fourier transform (SFMFT) is
also provided. Simulation results indicate that the proposed method outperforms the existing methods in estimation precision and
computation load, and it is free of interference which exists in SFMFT.

1. Introduction

Multicomponent sinusoidal frequencymodulated (SFM) sig-
nals have been widely used in various real-life applications
such as radar target recognition, speech analysis, and biomed-
ical disease diagnosis [1–4]. One of the primary motivations
for studying multicomponent SFM signals is from micro-
Doppler parameter estimation of group targets. It is known
that the frequency modulation induced by mechanical rota-
tion or vibration of the group targets is time dependent and
is multisinusoid overlapped in the time-frequency plane. As
the spectral contents of the SFM signals vary with time,
the frequency at a particular time is well described by the
instantaneous frequency (IF).The IF characterizes important
physical parameters and provides significant information for
real applications. Therefore, it is desirable to have effective
methods for IF estimation of the multicomponent SFM
signals. Meanwhile, the individual signals separated from the
original multicomponent signals will facilitate the further
analysis of monocomponent if necessary.

For decades, IF estimation of the SFM signals has
remained one of the most popular topics, and numerous IF
estimation approaches have been proposed. Some of themost
popular estimators are time-frequency distribution (TFD)
based [5–7], polynomial based [8–10], cyclostationary based
[11, 12], or demodulation based [13]. Considering that the
SFM signal is one of the typical nonstationary signals, the
IF estimation approaches based on the TFD have been
widely used in the past few decades. Instead of constructing
parametric models or equations, the TFD based methods
analyze the time-frequency features of a signal first and
the IF is estimated by tracking their periodical features
[5–7]. In these methods, the length of the time window
is one of the most important parameters. To distinguish
the time-varying frequency, the time window should be
much less than the period of the SFM signals. At the
same time, in order to obtain accurate IF, the window
length should be enlarged to contain samples as many as
possible. As the SFM signal can be categorized into the
nonlinear polynomial frequency modulated (FM) signal, the
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IF estimation of the SFM signal can be realized based on the
discrete polynomial-phase transform (DPT) [8]. Combining
with the Wigner-Ville distribution (WVD), the polynomial
Wigner-Ville distribution (PWVD) [9] and its improvement
[10] are also proposed as the IF estimators for the SFM
signals. PWVD depicts the IF variance, and the frequency is
estimated according to the peak of PWVD. To avoid the loss
of the time-frequency resolution, the cyclostationary based
methods, such as the autocorrelation functions [11, 12], are
introduced into IF estimation. Because of their simplicity and
low computation burden, the cyclostationary based methods
are widely used in IF estimation of the SFM signals. However,
these methods are subjected to multiperiod errors because
of the peak periodicity. In [13], a method for SFM signal
demodulation is shown to be efficient in the IF estimation of
the monocomponent SFM signal as well.

However, the above IF estimators are most only valid for
the monocomponent signal.The correct IF estimation results
can hardly be obtained when dealing with multicomponent
SFM signals. For IF estimation of multicomponent, some
literature presented that the IF can be extracted by projecting
the phase term of the signals on some orthogonal function
basis, such as the sinusoidal function basis, referred to
as the sinusoidal frequency modulation Fourier transform
(SFMFT) [14]. However, interference terms occur in the
SFMFT spectrumwhen there aremore than two components,
and the estimation precision of SFMFT is bounded by
the sampling frequency. In nonstationary signal processing,
another function basis widely used in signal decomposition is
the Bessel function.TheBessel functions form the orthogonal
basis and decay over the time, so that the signals which do not
overlap in both the time and the frequency domain, including
single frequency signals and linear frequency modulated
(LFM) signals, can be represented well using the Fourier-
Bessel transform (FBT) or the Fourier-Bessel (FB) series
expansion [15–18]. Because of the one-to-one relationship
between the order of FB series and the frequency content of a
signal, FB series expansion performs well inmulticomponent
signal separation. However, as the frequency content of the
signal corresponds to a positive root of Bessel functions, the
frequency resolution of Bessel function basis is fixed and
imprecise, so that the estimation precision is bounded by the
Bessel functions. Moreover, the damping property of Bessel
functions causes that the projection of frequency content on
the adjacent orders of a Bessel function basis is not zero, so the
estimation error is enlarged periodically in some frequency
interval. The periodic estimation errors cannot be ignored in
the IF estimationwhen using Bessel based estimators because
of its damping property.

Considering the existing problems of the IF estimation
on the Bessel domain, this paper proposes an extension of
the estimation performance as well as the applicability of
the classic FBT and the FB series in IF estimation of multi-
component SFM signals. A sinusoidal frequency modulation
Fourier-Bessel (SFMFB) series is defined, the properties of
the SFMFB series are derived, and a novel IF estimation
and signal separation approach for multicomponent SFM
signals is introduced via the property analysis. The main
contributions of this paper are in the following four aspects:

(1) A metric 𝑘-resolution is introduced into the Bessel
function basis, by which the frequency resolution is refined.
A SFMFB series is newly defined, and the properties of the
SFMFB series are derived.(2) The IF estimation error by SFMFB series is analyzed.
An algorithm is proposed to reduce the periodic estimation
error, which exists in the Bessel based estimators. The
algorithm can be extended to use in other estimators whose
function basis has the damping property as well.(3) Some problems in IF estimation of the discrete signal
are discussed, including the phase shift ambiguity revision
and the maximal computation order of SFMFB series.(4) A comparison of the IF estimation performance
between the proposedmethod, the FB-basedmethod, and the
SFMFT-based method is provided.

The reminder of this paper is organized as follows. In
Section 2, the definition of SFMFB series is given, and
the properties related to the IF estimation are derived. In
Section 3, the periodic estimation error in the Bessel based
estimators is analyzed, and an SFMFB expansion based
algorithm of multicomponent SFM signal IF estimation and
signal separation is proposed. In Section 4, simulation results
are discussed. Section 5 concludes the paper.

2. Definitions and Basic Properties

2.1. SFMFB Series

2.1.1. The Continuous Signal. The conventional FB series
decomposes a signal into a set of Bessel functions 𝐽𝛼(𝜆𝑚𝑡/𝑇)
[15]. With the metric 𝑘-resolution introduced into the Bessel
functions, over the finite time interval (0, 𝑇), the phase term
of a continuous signal 𝑠(𝑡) can be expressed as aweighted sum
of a finite number of Bessel functions:

𝑠 (𝑡) = exp[𝑗 𝑀∑
𝑚=1

𝐿𝑚𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡)] , 𝑡 ∈ [0, 𝑇] , (1)

where 𝐿𝑚 is the 𝑚th SFMFB coefficient, 𝐽𝛼(⋅) is the 𝛼th
Bessel function, 𝜆𝑚 is the 𝑚th positive root of the 𝛼th Bessel
function in ascending order, and 𝑘 is the resolution of Bessel
function basis. The SFMFB series with the 𝑘-resolution is
called the 𝑘-SFMFB series for simplicity. The 𝑚th positive
root 𝜆𝑚 of the 𝛼th Bessel function can be computed by the
Newton-Raphsonmethod [19], which is added inAppendixA
of the paper.

Similar to the calculation of FB coefficients, considering
the phase term of the signal 𝑠(𝑡), the𝑚th 𝑘-SFMFB coefficient𝐿𝑚 of the signal over the interval (0, 𝑇) is computed as
the projection on the Bessel functions with 𝑘-resolution𝐽𝛼(𝜆𝑚𝑡/𝑘𝑇):

𝐿𝑚 = 2
[𝑘𝑇𝐽𝛼+1 (𝜆𝑚)]2 ∫𝑇

0
𝑗𝑡 ln [𝑠 (𝑡)] 𝐽𝛼 (𝜆𝑚𝑡𝑘𝑇 ) d𝑡. (2)

2.1.2. The Discrete Signal. Suppose that a sequence 𝑠(𝑛) is
sampled with the frequency 𝑓𝑠 and its length is 𝑁. Similar
to the modifications in FB series for continuous signals, with
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the metric 𝑘-resolution introduced into the Bessel function,
the discrete signal 𝑠(𝑛) can be expanded by SFMFB series as

𝑠 (𝑛) = exp[𝑗 𝑀∑
𝑚=1

𝐿𝑚𝐽𝛼 ( 𝜆𝑚𝑘𝑁𝑛)] , 𝑛 = 1, 2, . . . , 𝑁, (3)

where the 𝑚th SFMFB coefficient 𝐿𝑚 is computed as

𝐿𝑚 = 𝑗2𝑓2𝑠[𝑘𝑁𝐽𝛼+1 (𝜆𝑚)]2
𝑁∑
𝑛=1

𝑛 ln [𝑠 (𝑛)] 𝐽𝛼 ( 𝜆𝑚𝑘𝑁𝑛) . (4)

2.2. Property Analysis

2.2.1. Orthogonality. The orthogonality of a set of function
basis guarantees the high efficiency of the signal decompo-
sition. According to the definition of the 𝑘-SFMFB series, the
inner product of the𝑚th and the 𝑛th function basis 𝐽𝛼(𝜆𝑚𝑡/𝑘)
and 𝐽𝛼(𝜆𝑛𝑡/𝑘) is computed as

⟨𝐽𝛼 (𝜆𝑚𝑘 𝑡) , 𝐽𝛼 (𝜆𝑛𝑘 𝑡)⟩ = 𝑘2𝜆𝑚 𝛿 (𝜆𝑚 − 𝜆𝑛) , (5)

where 𝛿(⋅) is the Dirac delta function. Only when 𝑚 = 𝑛, the
inner product equals zero. The orthogonality of the function
basis is proved as follows.

Proof. Note the equation in the handbook [20]

∫∞
0

𝑡𝐽𝛼 (𝜆𝑚𝑡) 𝐽𝛼 (𝜆𝑛𝑡) d𝑡 = 1𝜆𝑚 𝛿 (𝜆𝑚 − 𝜆𝑛) . (6)

Let 𝜏 = 𝑡/𝑘; then
⟨𝐽𝛼 (𝜆𝑚𝑘 𝑡) , 𝐽𝛼 (𝜆𝑛𝑘 𝑡)⟩

= 𝑘2 ∫∞
0

𝜏𝐽𝛼 (𝜆𝑚𝜏) 𝐽𝛼 (𝜆𝑛𝜏) d𝜏 = 𝑘2𝜆𝑚 𝛿 (𝜆𝑚 − 𝜆𝑛) .
(7)

It is proved that the function basis 𝐽𝛼(𝜆𝑚𝑡/𝑘) is orthogo-
nal with 𝐽𝛼(𝜆𝑛𝑡/𝑘) with the power function 𝑡.
2.2.2. Quasi-Periodicity. The quasi-periodicity of the 𝑚th
positive root 𝜆𝑚 of the 𝛼th Bessel function presents as

𝜆𝑚+𝑖 − 𝜆𝑚 ≈ 𝑖𝜋, 𝑚 ≥ 1, (8)

where 𝑖 = 0, 1, . . .. Based on Bessel function’s property in [21],
when 𝑚 → ∞, the difference between the two consecutive
positive roots tends to 𝜋:

lim
𝑚→∞

(𝜆𝑚+1 − 𝜆𝑚) = 𝜋. (9)

When 𝑚 ≥ 7, the two consecutive roots satisfy |(𝜆𝑚+1 −𝜆𝑚) − 𝜋| < 10−3. Namely, the difference between the two
consecutive positive roots of 𝐽𝛼(𝑡) = 0 is extremely close
to 𝜋, where the bias is smaller than 10−3. It should also
be emphasized that the bias approaches zero rapidly as the
order 𝑚 ascends. Moreover, the quasi-periodicity can help to
compute the 𝑚 + 𝑖th positive root of 𝛼th Bessel function by
the 𝑚th one.

2.2.3. Magnitude Property. The relationship between the IF,𝑘-resolution, and the order of SFMFB series is reflected on
the magnitude of the series, which is called the magnitude
property. Assume that a SFM signal presents as

𝑠 (𝑡) = 𝑅 exp {𝑗 [𝑎 sin (2𝜋𝑓𝑡) + 𝑏 cos (2𝜋𝑓𝑡)]} , (10)

where 𝑅 is the amplitude, 𝑓 is the IF, and 𝑎 and 𝑏 are
modulation indexes of the sine term and the cosine term,
respectively. The relationship between the IF, 𝑘-resolution,
and the SFMFB coefficient presents as follows:

𝑓 = 𝜆𝑚max2𝜋𝑘𝑇, (11)

where𝑚max = argmax𝑚{|Re(𝐿𝑚)|} is the order of the SFMFB
coefficient with the maximal magnitude of the real part.

Proof. Substitute the SFM signal 𝑠(𝑡) in (10) into the SFMFB
series in (2) and consider that 𝜔 = 2𝜋𝑓, so the SFMFB series
of signal 𝑠(𝑡) is given as

𝐿𝑚 = 𝐿0 − 2 (𝑎𝐿1 + 𝑏𝐿2)𝑘2𝑇2𝐽2𝛼+1 (𝜆𝑚) , (12)

where

𝐿0 = 𝑗 2 ln𝑅𝑘2𝑇2𝐽2𝛼+1 (𝜆𝑚) ∫𝑇
0

𝑡𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) d𝑡
= 𝑗 2 ln𝑅𝜆𝑚𝐽𝛼+1 (𝜆𝑚) ,

(13)

𝐿1 = ∫𝑇
0

𝑡 sin (𝜔𝑡) 𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) d𝑡, (14)

𝐿2 = ∫𝑇
0

𝑡 cos (𝜔𝑡) 𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) d𝑡. (15)

Based on the indefinite integral with the Bessel function in
[20]

∫ 𝑡𝐽𝛼 (𝑡) d𝑡 = 𝑡𝐽𝛼+1 (𝑡) , (16)

𝐿1 in (14) is derived as

𝐿1 = 𝑘𝑇𝜆𝑚 ∫𝑇
0
sin (𝜔𝑡) d𝑡𝐽𝛼+1 (𝜆𝑚𝑘𝑇 𝑡)

= 𝑘2𝑇2𝜆𝑚 sin (𝑘𝑇𝜔) 𝐽𝛼+1 (𝜆𝑚)
− 𝑘𝑇𝜔𝜆𝑚 ∫𝑇

0
𝑡𝐽𝛼+1 (𝜆𝑚𝑘𝑇 𝑡) cos (𝜔𝑡) d𝑡.

(17)

Considering another indefinite integral with the Bessel
function in [20]

∫ 𝐽𝛼+1 (𝑡) d𝑡 = −𝐽𝛼 (𝑡) , (18)
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𝐿1 in (17) is further derived as

𝐿1 = 𝑘2𝑇2𝜆𝑚 sin (𝑘𝑇𝜔) 𝐽𝛼 (𝜆𝑚) + 𝑘2𝑇2𝜔𝜆2𝑚 𝐿1
− 𝑘2𝑇2𝜔𝜆𝑚 ∫𝑇

0
𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) cos (𝜔𝑡) d𝑡.

(19)

Then 𝐿1 is simplified as

𝐿1 = 𝑘2𝑇2𝜆2𝑚 − 𝑘2𝑇2𝜔2 ⋅ [𝜆𝑚 sin (𝑘𝑇𝜔) 𝐽𝛼+1 (𝜆𝑚)
− 𝜔 ∫𝑇
0

𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) cos (𝜔𝑡) d𝑡] .
(20)

In the same way, 𝐿2 is obtained as

𝐿2 = 𝑘2𝑇2𝜆2𝑚 − 𝑘2𝑇2𝜔2 ⋅ [𝜆𝑚 cos (𝑘𝑇𝜔) 𝐽𝛼+1 (𝜆𝑚)
+ 𝜔 ∫𝑇
0

𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) sin (𝜔𝑡) d𝑡] .
(21)

Consider the equation in [18]

∫𝑇
0

𝐽𝛼 (𝜆𝑚𝑇 𝑡) exp (𝑗𝜔𝑡) d𝑡 = 𝑇𝐽𝛼+1 (𝜆𝑚) exp (𝑗𝑇𝜔)
(𝜆2𝑚 − 𝑇2𝜔2)2 + 𝑗𝑇𝜔 . (22)

Bring the parameter 𝑘 into (22); the real part and the
imaginary part of (22) can be obtained as

∫𝑇
0

𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) cos (𝜔𝑡) d𝑡
= 𝑘𝑇𝜆𝑚𝐽𝛼+1 (𝜆𝑚)(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

⋅ [𝑘𝑇𝜔 sin (𝑘𝑇𝜔) + (𝜆2𝑚 − 𝑘2𝑇2𝜔2) cos (𝑘𝑇𝜔)] ,
(23)

∫𝑇
0

𝐽𝛼 (𝜆𝑚𝑘𝑇 𝑡) sin (𝜔𝑡) d𝑡
= 𝑘𝑇𝜆𝑚𝐽𝛼+1 (𝜆𝑚)(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

⋅ [(𝜆2𝑚 − 𝑘2𝑇2𝜔2) sin (𝑘𝑇𝜔) − 𝑘𝑇𝜔 cos (𝑘𝑇𝜔)] .
(24)

Substitute (23) into (20), and substitute (24) into (21); 𝐿1 and𝐿2 are, respectively, derived as

𝐿1 = 𝑘2𝑇2𝜆𝑚𝐽𝛼+1 (𝜆𝑚)(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2
⋅ [sin (𝑘𝑇𝜔) (𝜆2𝑚 − 𝑘2𝑇2𝜔2) − cos (𝑘𝑇𝜔) 𝑘𝑇𝜔] ,

𝐿2 = 𝑘2𝑇2𝜆𝑚𝐽𝛼+1 (𝜆𝑚)(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2
⋅ [cos (𝑘𝑇𝜔) (𝜆2𝑚 − 𝑘2𝑇2𝜔2) + sin (𝑘𝑇𝜔) 𝑘𝑇𝜔] .

(25)

Substitute (25) into (12); the SFMFB series of the signal 𝑠(𝑡) is
obtained as

𝐿𝑚
= 𝐿0

− −2√𝑎2 + 𝑏2𝜆𝑚𝐽𝛼+1 (𝜆𝑚)
sin (𝑘𝑇𝜔 − 𝜑𝑚 − 𝜙)

√(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2 ,
(26)

where 𝐿0 is imaginary, tan𝜑𝑚 = (𝜆2𝑚 − 𝑘2𝑇2𝜔2)/𝑘𝑇𝜔, and
tan𝜙 = 𝑏/𝑎. Since the frequency 𝑓 and the time interval 𝑇
are both constant, the magnitude of the SFMFB coefficient
varies with the order 𝑚. When 𝜔 → 𝜆𝑚/𝑘𝑇, the absolute
value of the real part of the SFMFB series |Re(𝐿𝑚)| presents
as a maximal coefficient. Therefore, the magnitude property
in (11) is proved.

2.2.4. Frequency Resolution. We suppose that the operator≺ is slightly less than. Considering (8) in quasi-periodicity
and (11) in magnitude property, the difference of the two
consecutive theoretical frequencies of the 𝑘-SFMFB series is
calculated as

Δ𝑓𝑘 = 𝜆𝑚+12𝜋𝑘𝑇 − 𝜆𝑚2𝜋𝑘𝑇 ≺ 12𝑘𝑇 . (27)

In the analysis of magnitude property, the relationship
between the IF with the 𝑘-resolution, the signal interval, and
the order of 𝑘-SFMFB series is derived. As (11) stated, when𝜆𝑚 → 2𝜋𝑘𝑇𝑓, the magnitude of the real part of the 𝑘-SFMFB
coefficient reaches themaximum,where𝑓 corresponds to the
IF of the signal.Thus, the IF can be estimated according to the
maximal 𝑘-SFMFB coefficient

𝑓𝑚max
= 𝜆𝑚max2𝜋𝑘𝑇, (28)

where 𝑚max = argmax{|Re(𝜆𝑚)|}. Suppose the estimation
error equals the absolute value of the difference between the
estimated IF and the real IF:

𝑓𝑒 = 󵄨󵄨󵄨󵄨󵄨𝑓𝑚max
− 𝑓󵄨󵄨󵄨󵄨󵄨 , (29)

where 𝑓𝑚max
is the estimated IF and 𝑓 is the real IF. Thereby,

the maximal estimation error of the 𝑘-SFMFB series is
bounded by the frequency resolution Δ𝑓𝑘, which satisfies
max𝑓𝑒 ≺ 1/2𝑘𝑇. With 𝑘 increasing, the frequency resolution
is refined, and the estimation error can be reduced. However,
only when the signal interval is large enough will the
resolution capability be improved.

3. Parameter Estimation and
Separation Algorithm

As stated in Section 2, the IF estimation can be obtained
by the SFMFB coefficient with the maximal real part. In
this section, the estimation error is analyzed in detail. Based
on the analysis, an approach is introduced to reduce the
estimation error and to separate multicomponent signals.
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3.1. Central Estimation Error. In Fourier transform, the
estimation error is bounded by half of the bin size.Therefore,
the maximal estimation error equals half of the frequency
resolution (or the bin size) of two adjacent function bases,
when the real frequency equals the mean value of the two
sinusoidal basis. In this case, the frequency content only
projects on a single order of series or a single spectral line
of a spectrum, such as the FFT spectrum. Different from
the FFT spectrum, in SFMFB series, a single frequency
content projects on several adjacent orders. In other words,
the theoretical frequency 𝑓𝑚 reaches the maximum at the
order 𝑚, while the projections of the frequency 𝑓𝑚 on several
adjacent orders are not zero.

In SFMFB series, 𝜆𝑚/2𝜋𝑘𝑇 and 𝜆𝑚+1/2𝜋𝑘𝑇 correspond
to two adjacent orders 𝑚 and 𝑚 + 1, respectively. We suppose
that the absolute value of the real part of the 𝑚th SFMFB
coefficient 𝐿𝑚 is equivalent to that of the 𝑚 + 1th coefficient𝐿𝑚+1: 󵄨󵄨󵄨󵄨Re (𝐿𝑚)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨Re (𝐿𝑚+1)󵄨󵄨󵄨󵄨 . (30)

With some approximation, (30) is derived as (see
Appendix A)

1
√(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

= 1
√(𝜆2𝑚+1 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2 .

(31)

Based on the basic inequality, the real IF 𝑓 satisfies

𝑓 = √ 𝜆2𝑚 + 𝜆2𝑚+12 × (2𝜋𝑘𝑇)2 > 12 ( 𝜆𝑚2𝜋𝑘𝑇 + 𝜆𝑚+12𝜋𝑘𝑇)
= 12 (𝑓𝑚 + 𝑓𝑚+1) ,

(32)

where 𝜆𝑚 ̸= 𝜆𝑚+1. When |Re(𝐿𝑚)| equals |Re(𝐿𝑚+1)|, the real
IF will bemore than the average of the theoretical frequencies
of the two adjacent orders. Namely, the IF estimated by
the SFMFB coefficient of the maximal real part is smaller
than the real IF. On the one hand, the estimation error is
bounded by the frequency resolution; on the other hand,
unlike the Fourier transform, whose maximal estimation
error is bounded by half of the frequency resolution, the
maximal estimation error of SFMFB series is larger than half
of the frequency resolution:

Δ𝑓𝑘 > max {󵄨󵄨󵄨󵄨𝑓𝑒󵄨󵄨󵄨󵄨} > 12Δ𝑓𝑘. (33)

Therefore, a solution is introduced to reduce the maximal
estimation error below Δ𝑓𝑘/2. An effective way is to calculate
the center estimation error𝑓cen and take the revised estimated
IF as the difference between the original estimated IF and𝑓cen. The center estimation error is defined as the mean value
of the maximal estimation error and the minimal estimation
error. Because of the quasi-periodicity of the Bessel function
basis, 𝑓cen varies slightly with different order of series. The
estimated IF revision process is summarized in Algorithm 1.

3.2. Discussion. The phase shift ambiguity occurs when the
total phase shift of the discrete signal is beyond 2𝜋. Consid-
ering that the phase shift ambiguity exists in discrete signal
sampling generally, the phase shift ambiguity is discussed and
revised in this subsection. Moreover, to avoid the superfluous
computation amount in the calculation of the SFMFB series,
the maximal order of the SFMFB coefficients of the discrete
signal is also discussed.

3.2.1. Phase Shift Ambiguity. As the phase measurements are
only possible in (−𝜋, 𝜋), when the modulation index and the
signal sequence are large, the phase shift ambiguity occurs
when the total phase shift is more than 2𝜋 when sampling,
which may lead to wrong estimation result of the IF. Assume
that the total phase shift is the integer times of 2𝜋, where
the integer is called the number of phase shift ambiguities.
The phase shift ambiguity can be revised by comparing the
adjacent samples. A solution of the phase revising function is

phar (𝑛)

=
{{{{{{{{{

pha (𝑛) − 2𝜋, pha (𝑛) − pha (𝑛 − 1) > 𝜋,
pha (𝑛) + 2𝜋, pha (𝑛 − 1) − pha (𝑛) > 𝜋,
pha (𝑛) , 󵄨󵄨󵄨󵄨pha (𝑛) − pha (𝑛 − 1)󵄨󵄨󵄨󵄨 < 𝜋,

(34)

where pha(𝑛) = Im[ln 𝑠(𝑛)] and phar(𝑛) is the difference
between the phase shift and the measurements. However, the
phase can be revised when the maximal phase shift between
two adjacent samples is smaller than 𝜋.
3.2.2. Maximal Order of Series. For discrete signal, the
Nyquist sampling theory limits that the maximal frequency
presented by sampling is half of the sampling frequency.
Meanwhile, as (11) states, there is a one-to-one relationship
between the frequency content and the order of series.There-
fore, the maximal order 𝑀 of SFMFB series is limited by the
Nyquist sampling theory as well.Themaximal order depends
on two factors, that is, the length of sampling sequence and
the 𝑘-resolution, which is derived as (see Appendix B)

𝑀 = 𝑘𝑁 − 𝜆1𝜋 + 1. (35)

Specially, the maximal order is 𝑀 ≈ 𝑘𝑁 approximately
when the 𝑘-SFMFB series take the zeroth Bessel functions as
the function basis.

3.3. The Proposed Algorithm. We adopt the CLEAN algo-
rithm in the signal separation. We suppose that there does
not exist any signal component when the energy is below a
threshold 𝜀. Since there is a linear relationship between the
frequency content of a signal and the order of the series, the
energy of a signal can be represented by the square of its
corresponding order of coefficients. The IF estimation and
the multicomponent separation algorithm of SFM signals is
illustrated in Algorithm 2.
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Input: The 𝑘-SFMFB series 𝐿𝑚.
Procedure:(1) Find 𝑚max = argmax |Re(𝐿𝑚)| according to 𝐿𝑚;(2) Compute Δ𝑓𝑘 according to (27);(3) Compute 𝑓𝑚max

= 𝜆𝑚max
/2𝜋𝑘𝑇 according to (28);(4) Discretize the frequency content into 𝑃 discrete

value 𝑓(𝑖) ∈ {𝑓(1), . . . , 𝑓(𝑝), . . . , 𝑓(𝑃)}, where𝑓(1) = 𝑓𝑚 − Δ𝑓𝑘/2 and 𝑓(𝑃) = 𝑓𝑚 + Δ𝑓𝑘/2;(5) Compute the center estimation error
𝑓cen = 12 [max {𝑓(𝑖) − 𝑓𝑚max

} + min {𝑓(𝑖) − 𝑓𝑚max
}];

(6) Obtain the revised estimated IF 𝑓 = 𝑓𝑚max
− 𝑓cen.

Output:The revised estimated IF 𝑓.
Algorithm 1: The estimated IF revision algorithm.

Input: 𝑠(𝑡) (or 𝑠(𝑛)) and the threshold 𝜀.
Procedure:(1) Initialize the number of signal components 𝐾 = 0.
Select a proper 𝑘-resolution which meets the
requirement of estimation precision;(2) Compute 𝐿𝑚(𝑚 = 1, 2, . . . , 𝑀) of the signal 𝑠(𝑡)
(or 𝑠(𝑛)) according to (2) (or (4));(3) do Find 𝑚𝐾+1 = argmax |Re(𝐿𝑚)| and compute
the original estimated IF 𝑓𝑚𝐾+1 = 𝜆𝑚𝐾+1/2𝜋𝑘𝑇;(4) Compute 𝑓cen and the revised estimated IF 𝑓𝐾+1
according to the Algorithm 1;(5) Reconstruct the signals by the several adjacent
coefficients 𝐿𝑚𝑖 ∈ {𝐿𝑚𝐾+1 − 𝑚0, . . . , 𝐿𝑚𝐾+1 + 𝑚0}
according to (3) (or (5));(6) Compute the ratio ∑𝑖(𝐿𝑚𝑖 )2/ ∑𝑀𝑚=1(𝐿𝑚)2;(7) Remove the coefficients 𝐿𝑚𝑖 ;(8) Set 𝐾 = 𝐾 + 1;(9) While ∑𝑖(𝐿𝑚𝑖 )2/ ∑𝑀𝑚=1(𝐿𝑚)2 > 𝜀.
Output:The number of signal components 𝐾, estimated
IFs 𝑓𝑖 and separated individual components 𝑠𝑖(𝑡)
(or 𝑠𝑖(𝑛)), where 𝑖 = 1, . . . , 𝐾.

Algorithm 2: IF estimation and signal separation algorithm.

4. Simulation Results

In this section, the estimation performance of the proposed
method is simulated and discussed. Moreover, the estimation
performance of the proposed method, the SFMFT-based
method, and the FB-based IF estimation method is also
compared.

4.1. Estimation Performance Analysis

4.1.1. Comparison of the Estimation Precision before and
after Revision. The simulation is conducted to analyze and
compare the estimation precision before and after revision
with different 𝑘-resolution in this part. Considering the
quasi-periodicity, the IF in a quasi-period range is simulated
to illustrate the estimation performance. The IF of the SFM

signal is discretized into a series 𝑓(𝑖) ∈ [9.8753, 10.3753]Hz
with the step Δ𝑓(𝑖) = 0.02Hz between each IF content. A
metric to evaluate the estimation performance is the absolute
estimation error 𝑓(𝑖)𝑒 = |𝑓(𝑖) − 𝑓(𝑖)|, which equals the absolute
difference between the estimated IF 𝑓(𝑖) and the real IF𝑓(𝑖). The estimation error 𝑓(𝑖)𝑒 before and after revision with
different 𝑘-resolution is shown in Figure 1.

By comparing Figures 1(a) and 1(b), it shows that the
estimation precision is improved distinctly by the revision
algorithm. In both Figures 1(a) and 1(b), the estimation error
takes positive proportion to the 𝑘-resolution. The more the𝑘 values, the smaller the estimation error. The estimation
precision is improved with the 𝑘-resolution increasing when
the signal length is large enough, which coincides with the
analysis in (27). The 𝑘-resolution decides the resolution unit.
However, the resolution capability depends on both the signal
length and the 𝑘-resolution.
4.1.2. Estimation Performance with DifferentWindow Size. To
present the effect of the window size 𝑇 for the estimation
performance, the estimation error before and after revision
with different window size and the same 𝑘-resolution is
simulated. The simulation results are shown in Figure 2.

As shown in Figure 2, with the same 𝑘-resolution, the
estimation error takes inverse proportion to the window size𝑇 of the signal, which agrees with the conclusion in [22] as
well.

4.1.3. Robustness under Different SNR Conditions. In order
to present the robustness of the IF estimation approach
under different signal-to-noise ratio (SNR) conditions, white
Gaussian noise is added to the simulations. 200 times of
Monte Carlo simulations are conducted under SNR = 8 dB
to −4 dB with different 𝑘-resolution. Simulation results are
shown in Figure 3.

FromFigures 3(a) to 3(d) we can grasp that the estimation
error is smaller than 0.1Hzwhen SNR > 0 dB.Moreover, with
the 𝑘-resolution increasing under the same SNR condition,
the estimation precision as well as the robustness is improved.
However, the quasi-periodicity of the estimation error is
contaminated and the performance decays distinctly when
SNR = −4 dB. Because the magnitude of the several SFMFB
coefficients adjacent to themaximal one is relatively large, the
maximal coefficient is submerged by the adjacent coefficients
in strong noise.

4.1.4. Estimation Performance with Different Modulation
Index. As (26) denotes, with the modulation index increas-
ing, the maximal SFMFB coefficient is increasingly distinct.
Hence, the more the modulation index is, the more robust
the estimation performance is. To analyze the estimation
performance with different modulation index, 200 times of
Monte Carlo simulations are conducted under different SNR
conditions. One metric to evaluate the estimation perfor-
mance is the normalized root-mean-square error (NRMSE).
NRMSE values the normalized Euclidean distance between
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Figure 1: Estimation error before and after revision with different 𝑘-resolution: (a) before revision and (b) after revision.
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Figure 2: Estimation error with different window size before and
after revision.

the estimated IF𝑓 and the real one𝑓, where the IF is𝑓 = 4Hz
in the simulation. NRMSE is defined as

NRMSE =
󵄩󵄩󵄩󵄩󵄩𝑓 − 𝑓󵄩󵄩󵄩󵄩󵄩𝑓 , (36)

where ‖ ⋅ ‖ denotes the 𝑙2-norm operator. The NRMSE curves
under the conditions where SNR = 8 dB to −4 dB are shown
in Figure 4.

As shown in Figure 4, the modulation index of the signal
affects the robustness of the estimation approach based on
the SFMFB series. With the modulation index increasing in
a certain range, the NRMSE of the estimated IF decreases,

and the estimation performance and the robustness of the
proposed approach improve under the same SNR condition.
Nevertheless, the robustness cannot be ideal for the signal
whose modulation index is small.

4.2. Comparison of the Methods. In this subsection, the
proposed method and the SFMFT-based method are simu-
lated on the same signal model. Additionally, the estimation
performance of the IF by the proposed method is compared
with the FB-based method in single frequency estimation.

4.2.1. The Proposed Method. The multicomponent SFM sig-
nals are modeled as (10), which consist of three components.
The signal length is 𝑁 = 256; the sampling length is 𝑓𝑠 =256Hz and 𝑘 = 10. The amplitude 𝑅𝑖, the modulation index𝑎𝑖, and the IF 𝑓𝑖 of the three components are set as follows,
respectively: signal 1: 𝑅1 = 3, 𝑎1 = 𝑏1 = 2, and 𝑓1 = 5.19Hz;
signal 2: 𝑅2 = 3, 𝑎2 = 𝑏2 = 1, and 𝑓2 = 19.64Hz; signal
3: 𝑅3 = 2, 𝑎3 = 𝑏3 = 1, and 𝑓3 = 34.38Hz. The SFMFB
coefficients are calculated and the SFMFB spectrum is shown
in Figure 5.

In Figure 5, there are three distinct IF components. The
estimated IFs and absolute errors of the multicomponent
signals are listed in Table 1. The absolute estimation errors
are within the maximal estimation error when 𝑘 = 10. The
multicomponent SFM signal is shown in Figure 6(a), and
the monocomponent signals after separation are shown in
Figures 6(b)–6(d), respectively.

From Figure 6 we can see that the TFD of the multicom-
ponent SFM signal can hardly illustrate the IF of the signal.
For the separated individual components, except for a little
instability on the edges of the TF images, the TFD of an
individual component can reflect the signal well.
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Figure 3: Estimation errors under different SNR conditions with different k-resolution, where (a) SNR = 8 dB, (b) SNR = 4 dB, (c) SNR =0 dB, and (d) SNR= −4 dB.

Table 1: Estimated results of the proposed method.

Signal 1 Signal 2 Signal 3
𝑚𝑖 104 392 688
Real IF (Hz) 5.19 19.64 34.39
Estimated IF (Hz) 5.1875 19.6425 34.3925
Absolute error (Hz) 0.0025 0.0025 0.0025

4.2.2. The FB-Based Method. The classic FBT and the FB
series is an IF estimator of the single frequency signal,
but the frequency resolution of FB-based method is fixed
and imprecise. In SFMFB series, the frequency resolution is
dependent on both the signal length 𝑁 and the 𝑘-resolution.
To guarantee the comparability of estimation performance of
these two estimators, the FB-based and the proposedmethod

is simulated on the signal with the same length 𝑁 = 256.
The estimation errors of these two conditions are shown in
Figure 7.

In a period of the frequency content, the maximal
estimation error of the FB-based estimator is about 0.5Hz,
which is much larger than that of the proposed method.
However, the estimation error decreases distinctly when the𝑘-resolution of the proposed method ascends.

4.2.3. The SFMFT-Based Method. The essential of the pro-
posed method and the SFMFT-based method [14] is to
decompose the IF of the signals on some function basis, while
the former one is the Bessel functions, and the latter one is the
sinusoidal functions. The SFMFT is a parametric approach
for the SFM signal estimation proposed in recent years. It
provides the spectrum of multicomponent SFM signals. In
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Figure 5: SFMFB spectrum of the multicomponent SFM signals.

this part, we compare estimation performance of the SFMFT-
based method with the proposed method. As stated in [14],
the key parameter that affects the estimation performance of
SFMFT is the signals length 𝑁. Hence, the IF of the SFM
signals with different length (i.e., 𝑁 = 128, 𝑁 = 256, 𝑁 =512, and𝑁 = 1024) are estimated by the SFMFT, respectively.
The spectra of the signals with different length calculated by
SFMFT are shown in Figure 8.

From Figure 8, we can grasp that when 𝑁 = 128 the bin
size of the spectrum is 1Hz, when 𝑁 = 256, the bin size is
refined to 0.5Hz, and when 𝑁 = 1024 the bin size is further
refined to 0.125Hz.The estimation precision becomes finer as
the signal length increases. However, Figure 8(d) shows that
except the 5.25Hz, 19.63Hz, and 34.38Hz, there are many
interference terms in the spectra.

The frequency resolution of the function basis is an
important metric that affects the estimation performance.
When the SFMFT and the proposed method are of the same

Table 2: Major subject of the three IF estimation methods.

The proposed
method

The FB-based
method

The
SFMFT-based

method
Analyzing
subject Phase track Frequency

content Phase track

Key
parameter

𝑘-resolution,
signal length 𝑁 Signal length 𝑁 Signal length 𝑁

Key
parameter
selection

𝑁: as large as
possible,𝑘 ≤ 𝑁/2𝑓𝑠 𝑁 ≥ 2𝑓𝑠 As large as

possible

Resolution
limit

No theoretical
limit

(𝜆𝑚+1 − 𝜆𝑚)/2𝜋,
roughly 0.5Hz

No theoretical
limit

Acceptable
SNR Roughly 0 dB Roughly 0 dB Roughly 8 dB

frequency resolution, the computation time of 1000 times
simulation of these two methods is shown in Figure 9.

As shown in Figure 9, in conditions where the frequency
resolution is less than 0.25Hz, the proposed method obtains
the less computation amount, in contrast with the SFMFT-
based method. When finer estimation precision is required,
the computation amount of the proposedmethod ismuch less
than the SFMFT-based method. However, the computation
amount of the proposed method increases exponentially
with 𝑘-resolution arising, so the SFMFB series with large 𝑘-
resolution may not meet the requirement of real-time signal
processing conditions.

From the theoretical analysis and the above simulations,
the major subjects that contribute to the IF estimation
performance of the proposed method, the FB-based method,
and the SFMFT-based method are shown in Table 2.

5. Conclusion and Discussion

In this paper, an approach to the IF estimation of the mul-
ticomponent SFM signal and signal separation is developed.
A newly defined SFMFB series is introduced to illustrate the
complex modulation directly, which provides an accurate IF
estimation of the multicomponent SFM signals. Based on
the property analysis of the series and its function basis, an
algorithm is proposed to reduce the periodic estimation error,
which exists in the Bessel based estimators. The algorithm
can be extended to use in other estimators whose function
basis has the damping property as well. In addition, the phase
shift ambiguity revision and the maximal computation order
of SFMFB series in IF estimation of the discrete signal are
considered.

The advantages and the limitations of themodifications in
SFMFB series are listed as follows.The advantages are that (1)
the metric 𝑘-resolution reduces the frequency resolution of
the Bessel function basis less than 1/2𝑇Hz. In conventional
Fourier-Bessel series expansion, the frequency resolution of
the Bessel function basis (1/2𝑇Hz) is fixed and imprecise. By
introducing themetric 𝑘-resolution, the frequency resolution
is refined as 1/2𝑘𝑇Hz. (2) The estimation revision reduces
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Figure 6: TFDs of the signal: (a) multicomponent SFM signals, (b) signal 1 after separation, (c) signal 2 after separation, and (d) signal 3 after
separation.
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Figure 8: SFMFT spectrum of the multicomponent SFM signals with different signal length, where (a) 𝑁 = 128, (b) 𝑁 = 256, (c) 𝑁 = 512,
and (d) 𝑁 = 1024.
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the maximal estimation error to half of the frequency reso-
lution Δ𝑓𝑘/2. Considering that the projection of frequency
content on the adjacent orders of a Bessel function basis is
nonzero, the estimation error is periodically enlarged more
thanhalf of the frequency resolutionΔ𝑓𝑘/2 in some frequency
interval. By a frequency estimation revision method, the
maximal estimation error is reduced toΔ𝑓𝑘/2. (3) For discrete
signals, the maximal order of series 𝑀 is certified, and the
extra futile computation of series is avoided. Moreover, the
phase shift ambiguity problem is considered. The limitations
are as follows. (1) The estimation precision is bounded by
both the window size 𝑇 of the signal and the 𝑘-resolution.
When the window size of the signal is certain, the estimation
precision of the SFMFB series cannot be improved bound-
lessly. (2) The modulation index of the signal affects the
robustness of the estimation approach.The robustness cannot
be ideal for the signal whose modulation index is small. (3)
The computation amount increases with 𝑘-resolution arising.

Theproposed approach can be applied in the field of radar
target micro-Doppler feature extraction, speech analysis,
biomedical disease diagnosis, and seismic survey, where the
typical signals are the SFM form. For example, the returned
signals from the micro-Doppler radar targets are mostly the
SFM signals. By the IF estimation, the rotation, vibration, and
precession frequency of the target can be extracted, which
provides significant information for target recognition and
classification. Moreover, most of the existing approaches for
radar target micro-Doppler feature extraction only consider
the single target, which are invalid for group targets. The
returned signals of the group targets can be well separated
by the SFMFB series, which may further facilitate the mono-
component signal analysis and target discrimination.

Appendix

A. Newton-Raphson Method for the Roots
Computation of Bessel Functions [20]

To find the roots of the function 𝐽𝛼(𝑥), the Newton-Raphson
method is adopted. The Newton-Raphson method is derived
from the Tayler series expansion [19]. Consider the simplified
Tayler series

𝐽𝛼 (𝑥) = 𝐽𝛼 (𝑥𝑗) + (𝑥 − 𝑥𝑗) d𝐽𝛼 (𝑥𝑗)
d𝑥 . (A.1)

Solve 𝑥𝑗+1 by the relation 𝐽𝛼(𝑥𝑗+1) ≪ 𝐽𝛼(𝑥𝑗); then
𝑥𝑗+1 = 𝑥𝑗 − 𝐽𝛼 (𝑥)

d𝐽𝛼 (𝑥𝑗) /d𝑥 . (A.2)

Combining with (18), (A.2) can be derived as

𝑥𝑗+1 = 𝑥𝑗 + 𝐽𝛼 (𝑥𝑗)
𝐽𝛼+1 (𝑥𝑗) . (A.3)

The computation of the roots of the Bessel functions can
be categorized into two stages, with the first being the coarse

computation by (8). Secondly, the accurate computation can
be determined by the Newton-Raphsonmethod in successive
iteration. The iteration is stopped when the root does not
change its value significantly any more. In addition, the
machine computation method can be referred to [21, 22].

B. The Derivation Process of (31)

When |Re(𝐿𝑚)| = |Re(𝐿𝑚+1)|, therefore,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2√𝑎2 + 𝑏2𝜆𝑚𝐽𝛼+1 (𝜆𝑚)

sin (𝑘𝑇𝜔 − 𝜑𝑚 − 𝜙)
√(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−2√𝑎2 + 𝑏2𝜆𝑚+1𝐽𝛼+1 (𝜆𝑚+1)

⋅ sin (𝑘𝑇𝜔 − 𝜑𝑚+1 − 𝜙)
√(𝜆2𝑚+1 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

(B.1)

where

tan𝜑𝑚 = (𝜆2𝑚 − 𝑘2𝑇2𝜔2)
𝑘𝑇𝜔 . (B.2)

Note that the absolute value of the real part of the 𝑚th
SFMFB coefficient equals the 𝑚 + 1th SFMFB coefficient.
At the same time, with contrast to the denominator term in
(B.1), the sine term varies with order 𝑚 slightly, so that 𝜔 is
substituted for 𝜆𝑚/𝑘𝑇 or 𝜆𝑚+1/𝑘𝑇 approximately. Therefore,𝜑𝑚 is calculated as

𝜑𝑚 = arc tan
𝜆2𝑚 − 𝑘2𝑇2𝜔2

𝑘𝑇𝜔 = 0. (B.3)

Then we get

sin (𝑘𝑇𝜔 − 𝜑𝑚 − 𝜙) = sin (𝜆𝑚 − 𝜙) ,
sin (𝑘𝑇𝜔 − 𝜑𝑚+1 − 𝜙) = sin (𝜆𝑚+1 − 𝜙) . (B.4)

Hence, with the same part on the left hand and the right
hand divided, (B.1) is derived as󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑚 sin (𝜆𝑚 − 𝜙)
𝐽𝛼+1 (𝜆𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
1

√(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜆𝑚+1 sin (𝜆𝑚+1 − 𝜙)
𝐽𝛼+1 (𝜆𝑚+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ 1

√(𝜆2𝑚+1 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2 .
(B.5)

Let the ratio 𝛾𝑚 be
𝛾𝑚 = 𝜆𝑚+1 sin (𝜆𝑚+1 − 𝜙) /𝐽𝛼+1 (𝜆𝑚+1)𝜆𝑚 sin (𝜆𝑚 − 𝜙) /𝐽𝛼+1 (𝜆𝑚) . (B.6)

The simulation results of the ratio 𝛾𝑚 are shown in Figure 10.
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Figure 10: The ratio 𝛾𝑚 varying with order 𝑚.

From Figure 10 we can see that when 𝑚 > 8, the ratio
is less than 1.2, and when 𝑚 → ∞, the ratio approaches
1. So when 𝑚 → ∞, 𝛾𝑚 ≈ −1. Hence, (B.5) is obtained
approximately as

1
√(𝜆2𝑚 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2

= 1
√(𝜆2𝑚+1 − 𝑘2𝑇2𝜔2)2 + 𝑘2𝑇2𝜔2 .

(B.7)

C. The Calculation of the Maximal Order of
Series in Section 3.2

Suppose the sampling frequency is 𝑓𝑠, the maximal order
corresponding to half of the sampling frequency is 𝑀, and
the sampling length is 𝑁. Therefore,

𝑓𝑀 = 12𝑓𝑠, (C.1)

where 𝑓𝑀 can be calculated by the theoretical frequency of
the first order 𝑓1 and the frequency resolution Δ𝑓𝑘,

𝑓𝑀 = 𝑓1 + (𝑀 − 1) Δ𝑓𝑘 = 𝜆1𝑓𝑠2𝜋𝑘𝑁 + (𝑀 − 1) 𝑓𝑠2𝑘𝑁. (C.2)

Hence, the order 𝑀 is obtained as

𝑀 = (12𝑓𝑠 − 𝜆1𝑓𝑠2𝜋𝑘𝑁) 2𝑘𝑁𝑓𝑠 = 𝑘𝑁 − 𝜆1𝜋 + 1. (C.3)

Specifically, 𝜆1 ≈ 2.4048 when taking 𝜆1 as the first root
of the zeroth Bessel function. Hence, the maximal order is
derived approximately as

𝑀 ≈ 𝑘𝑁. (C.4)
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