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Distributed discrete-time coordinated tracking control problem is investigated formultiagent systems in the ideal case, where agents
with a fixed graph combine with a leader-following group, aiming to expand the function of the traditional one in some scenes.The
modified union switching topology is derived from a set of Markov chains to the edges by introducing a novel mapping. The issue
on how to guarantee all the agents tracking the leader is solved through a PD-like consensus algorithm. The available sampling
period and the feasible control gain are calculated in terms of the trigonometric function theory, and the mean-square bound of
tracking errors is provided finally. Simulation example is presented to demonstrate the validity of the theoretical results.

1. Introduction

Inspired by the potential applications in engineering, such
as networked autonomous vehicles, sensor networks [1], and
formation control [2], distributed coordination of multiagent
systems has attracted much attention from researchers [3,
4]. Very recently, consensus problems have been studied
extensively as well as references therein [5, 6]. Manymethods
have been developed to deal with the consensus problem
like linear system theory [7], impulsive control [8], convex
optimization method [9], and so on. Due to the complexity
of network, the control problem of multiagent systems will
be very challenging and difficult.Therefore, how to design the
consensus control protocol for multiagent systems becomes a
significant research focus.

Inmost cases, the connectivity of graphmight be unfixed;
it may deteriorate the system performance and even cause
instability. Therefore, some of the existing results concen-
trate on the ideal case where multiagent systems can be
described as the dynamic topology [10, 11]. Researching
among those works, some main results and progress on
distributed coordination control were given and the system
under a dynamic topology was addressed through various
methods [12, 13]. For example, distributed consensus problem
was studied for discrete-time multiagent systems with the

switching graphs, where each agent’s velocity was constrained
to lie in a nonconvex set [14]. Moreover, two consensus
problems were solved under a switching topology, which was
assumed to be uniformly connected only [15]. Otherwise,
the aforementioned works not only focused on first-order
and second-order systems [16], but also focused on Euler-
Lagrange models [17, 18] and even took the time delay and
noises into account [19, 20].

Due to the random link failures, variation meeting
the need and sudden environmental disturbances, some
dynamical systems could be modeled as Markovian switch-
ing systems, which are starting with a rapid development
[21–23]. Leader-following consensus problem was studied
for data-sampled multiagent systems under the Markovian
switching topologies [24] and a more interesting case with
multiple dynamic leaders was considered in [25]. In [26],
under a switching topology governed by Markov chains, the
consensus seeking problem was solved through a guaranteed
cost control method. It was unnecessary for the Markov
chain to be ergodic, since each topology had a spanning
tree. In addition, it is difficult to obtain all the elements
of the transition rate matrix, or some of the elements are
not necessary to guarantee the system stability. Markovian
switching model with partially unknown transition rates was
considered in [27], and any knowledge of the unknown
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elements was needed in the design procedure of finite time
synchronization controller.

However, many practical systems can be addressed as a
dynamic model, such as replacing the broken agents in the
group and expanding the function on the basis of traditional
one. The time varying reference can be tracked firmly in
the original system, whether the union system could achieve
consensus in case of combining some followers with a fixed
graph. Besides, as far as we know, the usual case, in which
Markov chain used in, is the modes of the topologies, since
all of the subgraphs and the transition rate matrix should
be known or partly known clearly. In contrast with that,
Markov chains are applied to the edges of graph in this
paper, so that the union system could be discovered through
introducing a novel mapping, together with the distributed
tracking problem for the union system; it is a valuable topic
to be researched.

Themain purpose of this paper is to establish the Marko-
vian switching topologies for the union system with two
subgraphs. Through a novel mapping, Markovian switching
topologies are governed by a set ofMarkov chains to the edges
of the graph. Hence, distributed coordinated tracking control
problem is solved via a PD-like consensus algorithm adopted
from [16]. Different from [16], a sufficient condition on the
system stability is obtained based on trigonometric function
theory. As shown in the forward reference, the tracking errors
are ultimately bounded, which is partly determined by the
bounded changing rate and the number of agents. Simulation
result can more fully prove the effectiveness of the strategy.

The rest of this paper is organized as follows. In Section 2,
graph theory based on a novel Markov process is given and
PD-like consensus algorithm is adopted. In Section 3, stability
analysis and some results are provided. Simulation example
is presented in Section 4 and this paper is concluded in
Section 5.

2. Preliminaries

2.1. Graph Theory. Define a directed leader-following graph𝐺 ≜ (𝑉, 𝜀) with one leader labeled as node 0 and 𝑛 followers.𝑉 = {V0, . . . , V𝑛} is a nonempty finite set of nodes and 𝜀 ⊆𝑉 × 𝑉 is a set of edges. For an edge (V𝑖, V𝑗) ∈ 𝜀, if the
node V𝑗 can obtain information from V𝑖, V𝑖 is a neighbor of
node V𝑗. A directed path is a sequence of edges in the form
of (V1, V2), (V2, V3), (V3, V𝑘), . . ., where V𝑘 ∈ 𝑉. The adjacency
matrix 𝐴 = [𝑎𝑖𝑗] ∈ R(𝑛+1)×(𝑛+1) is associated with 𝐺, where𝑎𝑖𝑗 > 0 if agent V𝑖 can obtain information from agent V𝑗 and𝑎𝑖𝑗 = 0 otherwise. Assume 𝑎𝑖𝑖 = 0 and the leader does not
receive information from the followers. Thus, the adjacency
matrix of 𝐺 is denoted by

𝐴 = [
[

0 01×𝑛
𝐴01 𝐴1

]
]

, (1)

where 𝐴1 = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 and 𝐴01 = [𝑎𝑖0] ∈ R𝑛×1. Let𝐺2 ≜ (𝑉2, 𝜀2) be a fixed and directed graph with 𝑚 agents.
The adjacency matrix of 𝐺2 is given by 𝐴2 = [𝑎𝑖𝑗] ∈ R𝑚×𝑚.

The union graph is denoted by 𝐺𝑢 = 𝐺 ∪ 𝐺2 with the node set𝑉𝑢 = 𝑉 ∪ 𝑉2 and the edge set 𝜀𝑢 = 𝜀 ∪ 𝜀2. Hence

𝐴𝑢 = [[[[[
[

0 01×𝑛 01×𝑚
𝐴01 𝐴1 𝑆𝜃(𝑘)21
𝑆𝜃(𝑘)02 𝑆𝜃(𝑘)12 𝐴2

]]]]]
]

, (2)

𝐴𝜃(𝑘) = [
[

𝐴1 𝑆𝜃(𝑘)21
𝑆𝜃(𝑘)12 𝐴2

]
]

, (3)

where𝐴𝑢 = [𝑎𝜃(𝑘)𝑖𝑗 ] ∈ R(𝑛+1+𝑚)×(𝑛+1+𝑚) is the adjacencymatrix
of 𝐺𝑢, 𝑆𝜃(𝑘)02 ∈ R𝑚×1, 𝑆𝜃(𝑘)12 ∈ R𝑚×𝑛, and 𝑆𝜃(𝑘)21 ∈ R𝑛×𝑚 are parts
of the switching matrices among the nodes of 𝐺 and 𝐺2, 𝜃(𝑘)
(for brevity, denoted by 𝜃𝑘) is a finite homogeneous Markov
process, and it will be detailed in the following section.

2.2. Markov Chains. Define a finite setΔ = {1, . . . , 𝛾}, 𝛾 ∈ 𝑍+,
and a set of matrices 𝑆𝜃𝑘 ∈ R𝑒×𝑓, 𝑒, 𝑓 ∈ 𝑍+ with the elements𝑠𝜃𝑘𝑖𝑗 , 𝑖 ∈ [1, 𝑒], 𝑗 ∈ [1, 𝑓]. There are two sets Γ𝑒𝑓 = Γ ⊕ Γ ⊕
⋅ ⋅ ⋅ ⊕ Γ and Γ𝑒𝑓 = {1, 2, . . . , 𝛾𝑒𝑓}, where ⊕ represents a novel
operation mark among matrices, Γ is a set corresponding to𝑆𝜃𝑘 . Meanwhile, introduce the mapping Ξ: Γ𝑒𝑓 → Γ𝑒𝑓 with

Ξ (𝑆𝜃𝑘) = 𝑠𝜃𝑘11 + (𝑠𝜃𝑘12 − 1) 𝛾 + ⋅ ⋅ ⋅ + (𝑠𝜃𝑘
𝑒(𝑓−1)

− 1) 𝛾𝑒𝑓−1

+ (𝑠𝜃𝑘
𝑒𝑓

− 1) 𝛾𝑒𝑓.
(4)

Then, the mapping Ξ(⋅) is a bijection from Γ𝑒𝑓 to Γ𝑒𝑓.

Remark 1. Based on the bijection in (4), the transition
probability Θ(𝜃𝑘) = Pr[𝜃𝑘 | 𝜃𝑘−1] could be derived as follows.

Firstly, for the matrix 𝑆𝜃𝑘12 ∈ R𝑚×𝑛, each 𝜃𝑘 ∈ Γ𝑚𝑛 is
corresponding to the only matrix in the set Γ𝑚𝑛. In themodes𝜃𝑘 and 𝜃𝑘−1, the following is yielded:

𝑆𝜃𝑘12 = Ξ−1 (𝜃𝑘) =
[[[[[[[[[[[
[

𝑠𝜃𝑘11 𝑠𝜃𝑘12 ⋅ ⋅ ⋅ 𝑠𝜃𝑘1𝑛
𝑠𝜃𝑘21 𝑠𝜃𝑘22 ⋅ ⋅ ⋅ 𝑠𝜃𝑘2𝑛
... ... d

...
𝑠𝜃𝑘𝑚1 𝑠𝜃𝑘𝑚2 ⋅ ⋅ ⋅ 𝑠𝜃𝑘𝑚𝑛

]]]]]]]]]]]
]

,

𝑆𝜃𝑘−112 = Ξ−1 (𝜃𝑘−1) =
[[[[[[[[[[[
[

𝑠𝜃𝑘−111 𝑠𝜃𝑘−112 ⋅ ⋅ ⋅ 𝑠𝜃𝑘−11𝑛
𝑠𝜃𝑘−121 𝑠𝜃𝑘−122 ⋅ ⋅ ⋅ 𝑠𝜃𝑘−12𝑛

... ... d
...

𝑠𝜃𝑘−1𝑚1 𝑠𝜃𝑘−1𝑚2 ⋅ ⋅ ⋅ 𝑠𝜃𝑘−1𝑚𝑛

]]]]]]]]]]]
]

.

(5)
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Assume that each edge of 𝐺𝑢 takes value in the set Δ with
an unequal probability. The transition rate matrix is given by

𝛿 =
[[[[[[[
[

𝛿11 𝛿12 ⋅ ⋅ ⋅ 𝛿1𝛾
𝛿21 𝛿22 ⋅ ⋅ ⋅ 𝛿2𝛾

... ... ⋅ ⋅ ⋅ ...
𝛿𝛾1 𝛿𝛾2 ⋅ ⋅ ⋅ 𝛿𝛾𝛾

]]]]]]]
]

, (6)

where

𝛿𝑥𝑦 ≥ 0 𝑥, 𝑦 ∈ Δ,
∑
𝑦∈Δ

𝛿𝑥𝑦 = 1 𝑥 ∈ Δ. (7)

In addition, Markov chain is ergodic throughout this
paper. It is obvious that

Pr [𝜃𝑘 | 𝜃𝑘−1] = Pr [Ξ−1 (𝜃𝑘) | Ξ−1 (𝜃𝑘−1)]
= Pr [𝑆𝜃𝑘12 | 𝑆𝜃𝑘−112 ]

= Pr

[[[[[[[[
[

𝛿 (𝑠𝜃𝑘11 | 𝑠𝜃𝑘−111 ) 𝛿 (𝑠𝜃𝑘12 | 𝑠𝜃𝑘−112 ) ⋅ ⋅ ⋅ 𝛿 (𝑠𝜃𝑘1𝑛 | 𝑠𝜃𝑘−11𝑛 )
𝛿 (𝑠𝜃𝑘21 | 𝑠𝜃𝑘−121 ) 𝛿 (𝑠𝜃𝑘22 | 𝑠𝜃𝑘−122 ) ⋅ ⋅ ⋅ 𝛿 (𝑠𝜃𝑘2𝑛 | 𝑠𝜃𝑘−12𝑛 )

... ... d
...

𝛿 (𝑠𝜃𝑘𝑚1 | 𝑠𝜃𝑘−1𝑚1 ) 𝛿 (𝑠𝜃𝑘𝑚2 | 𝑠𝜃𝑘−1𝑚2 ) ⋅ ⋅ ⋅ (𝛿𝑠𝜃𝑘𝑚𝑛 | 𝑠𝜃𝑘−1𝑚𝑛 )

]]]]]]]]
]

= 𝑚∏
𝑖=1

𝑛∏
𝑗=1

𝛿 (𝑠𝜃𝑘𝑖𝑗 | 𝑠𝜃𝑘−1𝑖𝑗 ) ,

(8)

where 𝛿(⋅ | ⋅) represents the transition probability from one
mode to another. Let the transition probability be 𝛿𝑥𝑦𝑖𝑗 while
𝑠𝜃𝑘−1𝑖𝑗 = 𝑥, and 𝑠𝜃𝑘𝑖𝑗 = 𝑦; then

Pr [𝜃𝑘 | 𝜃𝑘−1] = 𝑚∏
𝑖=1

𝑛∏
𝑗=1

𝛿𝑥𝑦𝑖𝑗 . (9)

The same work is done to the matrices 𝑆𝜃𝑘02 ∈ R𝑚×1 and𝑆𝜃𝑘21 ∈ R𝑛×𝑚. Overall consideration, for brevity, denotes the
total probability as

1𝜔 = 𝑚∏
𝑖=1

𝑛∏
𝑗=1

𝛿𝑥𝑦𝑖𝑗 + 𝑛∏
𝑖=1

𝑚∏
𝑗=1

𝛿𝑥𝑦𝑖𝑗 + 𝑚∏
𝑖=1

1∏
𝑗=1

𝛿𝑥𝑦𝑖𝑗 . (10)

Finally, the total number of system modes is 𝜂 = 𝛾2𝑚𝑛+𝑚,
and the transition rate matrix is

Π = 1𝜔1𝜂1
𝑇
𝜂 . (11)

2.3. PD-Like Consensus Algorithm. Suppose the discrete
dynamic of the 𝑖th follower is

𝜉𝑖 (𝑘 + 1) = 𝜉𝑖 (𝑘) + 𝑇𝑢𝑖 (𝑘) , (12)

where 𝜉𝑖(𝑘) is the state at 𝑡 = 𝑘𝑇, where 𝑘 is the discrete-time
index,𝑇 is the sampling period, and 𝑢𝑖(𝑘) is the control input.

Let the reference state be 𝜉0(𝑘) = 𝜉𝑟(𝑘). Consider the
discrete-time coordinated tracking algorithm adopted from
[16], together with the Markovian parameter 𝜃𝑘; consensus
algorithm (13) will be applied to the agents in graph 𝐺𝑢:

𝑢𝑖 (𝑘) = 1
∑𝑛+𝑚𝑗=0 𝑎𝜃𝑘𝑖𝑗

⋅ 𝑛+𝑚∑
𝑗=1

𝑎𝜃𝑘𝑖𝑗 [ 𝜉𝑗 (𝑘) − 𝜉𝑗 (𝑘 − 1)
𝑇 − 𝑞 (𝜉𝑖 (𝑘) − 𝜉𝑗 (𝑘))]

+ 1
∑𝑛+𝑚𝑗=0 𝑎𝜃𝑘𝑖𝑗

⋅ 𝑎𝜃𝑘𝑖0 [ 𝜉𝑟 (𝑘) − 𝜉𝑟 (𝑘 − 1)𝑇 − 𝑞 (𝜉𝑖 (𝑘) − 𝜉𝑟 (𝑘))] ,

(13)

where 𝑎𝜃𝑘𝑖𝑗 , 𝑖 = 1, . . . , 𝑛+𝑚, 𝑗 = 0, . . . , 𝑛+𝑚, is the (𝑖, 𝑗)th entry
of 𝐴𝑢, and 𝑞 is a positive constant. Suppose that each follower
has at least one neighbor, thus ∑𝑛+𝑚𝑗=1 𝑎𝜃𝑘𝑖𝑗 ̸= 0, 𝑖 = 0, . . . , 𝑛 + 𝑚.
Appling (12) and (13) yields

𝜉𝑖 (𝑘 + 1) = 𝜉𝑖 (𝑘) + 𝑇
∑𝑛+𝑚𝑗=0 𝑎𝜃𝑘𝑖𝑗

⋅ 𝑛+𝑚∑
𝑗=1

𝑎𝜃𝑘𝑖𝑗 [ 𝜉𝑗 (𝑘) − 𝜉𝑗 (𝑘 − 1)
𝑇 − 𝑞 (𝜉𝑖 (𝑘) − 𝜉𝑗 (𝑘))]

+ 𝑇
∑𝑛+𝑚𝑗=0 𝑎𝜃𝑘𝑖𝑗

⋅ 𝑎𝜃𝑘𝑖0 [ 𝜉𝑟 (𝑘) − 𝜉𝑟 (𝑘 − 1)𝑇 − 𝑞 (𝜉𝑖 (𝑘) − 𝜉𝑟 (𝑘))] .

(14)

Define 𝑒𝑖(𝑘) = 𝜉𝑖(𝑘) − 𝜉𝑟(𝑘); let 𝐸(𝑘) = [𝑒1(𝑘), . . . , 𝑒𝑚+𝑛(𝑘)]𝑇
and 𝜎(𝑘) = [𝐸𝑇(𝑘 + 1), 𝐸𝑇(𝑘)]𝑇; it follows that

𝜎 (𝑘 + 1) = 𝑀𝜃𝑘𝜎 (𝑘) + 𝑁𝑋𝑟 (𝑘) , (15)

where

𝑀𝜃𝑘
= [(1 − 𝑇𝑞) 𝐼𝑛+𝑚 + (1 + 𝑇𝑞) 𝐷−𝜃𝑘𝐴𝜃𝑘 −𝐷−𝜃𝑘𝐴𝜃𝑘

𝐼𝑛+𝑚 0(𝑛+𝑚)×(𝑛+𝑚)] ,

𝐷𝜃𝑘 = diag
{{{
𝑛+𝑚∑
𝑗=0

𝑎𝜃𝑘1𝑗 , . . . , 𝑛+𝑚∑
𝑗=0

𝑎𝜃𝑘
(𝑛+𝑚)𝑗

}}}
,

𝑁 = [ 𝐼𝑛+𝑚0(𝑛+𝑚)×(𝑛+𝑚)] ,
𝑋𝑟 (𝑘) = 1𝑛+𝑚 (2𝜉𝑟 (𝑘) − 𝜉𝑟 (𝑘 + 1) − 𝜉𝑟 (𝑘 − 1)) .

(16)

{𝜎(𝑘), 𝑘 ∈ 𝑍+} is not a Markov process, but the joint
process {𝜎(𝑘), 𝜃𝑘} is. Assume that the reference trajectory is a
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deterministic signal instead of a random one.The initial state
of the joint process is denoted as {𝜎0, 𝜃0}. It follows that the
solution of (15) is

𝜎 (𝑘) = 𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃0𝜎0 + 𝑁𝑋𝑟 (𝑘 − 1)
+ 𝑘−2∑
𝑙=0

𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃𝑙+1𝑁𝑋𝑟 (𝑙)
= 𝑀̂1𝜎0 + 𝑁𝑋𝑟 (𝑘 − 1) + 𝑀̂2𝑁𝑋𝑟 (𝑙) .

(17)

Note that the eigenvalues of 𝑀̂1 play an important role in the
determining of 𝜎(𝑘) as 𝑘 → ∞.

3. Convergence Analysis

Theorem 2. Suppose that the leader has directed paths to all
followers 1 to 𝑛 + 𝑚 in 𝐺𝑢, then

1𝜔
𝜂∑
𝑖=1

𝐷−𝜃𝑘𝐴𝜃𝑘 (18)

has all eigenvalues within the unit circle, where 𝐷−𝜃𝑘 is denoted
as the inverse of 𝐷𝜃𝑘 .
Proof. There exists𝐷𝜃𝑘12 (resp.,𝐷𝜃𝑘21) which is corresponding to𝑆𝜃𝑘12 (resp., 𝑆𝜃𝑘21) as denoted in (16), it follows from (3) that

𝐷𝜃𝑘 = [
[

𝐷1 + 𝐷𝜃𝑘21 0𝑛×𝑚
0𝑚×𝑛 𝐷𝜃𝑘12 + 𝐷2

]
]

. (19)

Then, it is obvious that

𝐷−𝜃𝑘𝐴𝜃𝑘 = [
[

(𝐷1 + 𝐷𝜃𝑘21)−1 𝐴1 (𝐷1 + 𝐷𝜃𝑘21)−1 𝑆𝜃𝑘21
(𝐷𝜃𝑘12 + 𝐷2)−1 𝑆𝜃𝑘12 (𝐷𝜃𝑘12 + 𝐷2)−1 𝐴2

]
]

. (20)

All the elements of (𝐷1 + 𝐷𝜃𝑘21)−1𝐴1, (𝐷1 + 𝐷𝜃𝑘21)−1𝑆𝜃𝑘21, (𝐷𝜃𝑘12 +𝐷2)−1𝑆𝜃𝑘12, and (𝐷𝜃𝑘12+𝐷2)−1𝐴2 are less than 1. Based on Lemma
3.1 in [5], (18) has all eigenvalues within the unit circle.

Lemma 3 ([28], Proposition 3.6). Let 𝐿 = (Π𝑇 ⊗𝐼4𝑛2) diag{𝑀1 ⊗ 𝑀1, . . . , 𝑀𝜂 ⊗ 𝑀𝜂} and 𝐿̂ = (Π𝑇 ⊗𝐼2𝑛) diag{𝑀1, . . . , 𝑀𝜂}, where 𝑀𝑖, 𝑖 ∈ [1, 𝜂], is defined in (16);
let ⊗ represent the Kronecker product of matrices. If 𝜌(𝐿) < 1,
then 𝜌(𝐿̂) < 1, where 𝜌(⋅) denotes the matrix spectral radius.

Theorem 4. Suppose that the leader has directed paths to all
nodes in the union graph 𝐺𝑢, while 𝜏1𝑖 , 𝜏2𝑖 > 0 holds obviously.
If the positive scalars 𝑇 > 0 and 𝑞 > 0 satisfy

𝑇𝑞 < min
𝑖=1,...,𝑛+𝑚

(𝜏1𝑖 , 𝜏2𝑖 ) , (21)

where

𝜏1𝑖 = 1 − (2 cos2 (𝜙) − 1) 𝑟2 − √2 [−6 cos2 (𝜙) 𝑟2 + 3𝑟2 + 2𝑟3cos3 (𝜙) − 𝑟3 cos (𝜙) − 3𝑟 cos (𝜙) − 1]
(2 cos2 (𝜙) − 1) 𝑟2 − 2𝑟 cos (𝜙) + 1 ,

𝜏2𝑖 = 1 − (2 cos2 (𝜙) − 1) 𝑟2 + √2 [(2 cos2 (𝜙) − 1) 𝑟2 − 1] (𝑟 cos (𝜙) − 1)
(2 cos2 (𝜙) − 1) 𝑟2 − 2𝑟 cos (𝜙) + 1 ,

(22)

then 𝐿̂ has all eigenvalues within the unit circle.

Proof.

Step 1. The matrix 𝐴𝑢 has 𝜂 modes based on the analysis in
the Section 2. If the leader has directed paths to all followers,
it follows fromTheorem 2 that (18) has all eigenvalues within
the unit circle. It will be shown that 𝜌(𝐿̂) < 1 through the
method of perturbation arguments. Hence 𝐿̂ can be written
as

𝐿̂ = (Π𝑇 ⊗ 𝐼2𝑛) diag (𝑀1, . . . , 𝑀𝜂)

= 1𝜔
[[[[[[[
[

𝑀1 𝑀2 ⋅ ⋅ ⋅ 𝑀𝜂
𝑀1 𝑀2 ⋅ ⋅ ⋅ 𝑀𝜂

... ... d
...

𝑀1 𝑀2 ⋅ ⋅ ⋅ 𝑀𝜂

]]]]]]]
]

. (23)

Denote the elementary transformation block matrix 𝑃1 ∈
R2𝜂(𝑚+𝑛)

2×2𝜂(𝑚+𝑛)2 as

𝑃1 =
[[[[[[[[
[

𝐼4(𝑛+𝑚)2 02(𝑛+𝑚)×2(𝑛+𝑚) ⋅ ⋅ ⋅ 𝐼4(𝑛+𝑚)2
02(𝑛+𝑚)×2(𝑛+𝑚) 𝐼4(𝑛+𝑚)2 ⋅ ⋅ ⋅ 𝐼4(𝑛+𝑚)2

... ... d
...

02(𝑛+𝑚)×2(𝑛+𝑚) 02(𝑛+𝑚)×2(𝑛+𝑚) ⋅ ⋅ ⋅ 𝐼4(𝑛+𝑚)2

]]]]]]]]
]

. (24)

The equation can be calculated as

󵄨󵄨󵄨󵄨󵄨𝜆𝐼4𝜔(𝑛+𝑚)2 − 𝐿̂󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑃−11 (𝜆𝐼4𝜂(𝑛+𝑚)2 − 𝐿̂) 𝑃1󵄨󵄨󵄨󵄨󵄨
= 𝜆4(𝜂−1)(𝑛+𝑚)2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜆𝐼4(𝑛+𝑚)2 − 1𝜔

𝜂∑
𝑖=1

𝑀𝑖󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (25)
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The issue will be converted to find the conditions to make
sure all eigenvalues of 𝑀𝑖 are within the unit circle.

Step 2. The characteristic polynomial of 𝑀𝑖 is given by

det 󵄨󵄨󵄨󵄨󵄨𝜆𝐼2(𝑛+𝑚) − 𝑀𝑖󵄨󵄨󵄨󵄨󵄨
= det([𝜆𝐼𝑛+𝑚 − [(1 − 𝑇𝑞) 𝐼𝑛+𝑚 + (1 + 𝑇𝑞) 𝐷−𝑖𝐴𝑖] 𝐷−𝑖𝐴𝑖

−𝐼𝑛+𝑚 𝜆𝐼𝑛+𝑚])
= det ([𝜆2 + (𝑇𝑞 − 1) 𝜆] 𝐼𝑛+𝑚 + [1 − (1 + 𝑇𝑞) 𝜆] 𝐷−𝑖𝐴𝑖) .

(26)

Note that 𝑠𝑖ℎ is the ℎth eigenvalue of 𝐷−𝑖𝐴𝑖, which is in the
unit circle. Define 𝑠𝑖ℎ = 𝑟 cos(𝜙) + 𝑟 sin(𝜙)𝑗, where 𝑟 ∈ [0, 1]
is the length of 𝑠𝑖ℎ, 𝜙 ∈ [0, 2𝜋], and 𝑗 is the imaginary parts
signal. Therefore, the roots satisfy

𝜆2 + [𝑇𝑞 − 1 − (1 + 𝑇𝑞) 𝑠𝑖ℎ] 𝜆 + 𝑠𝑖ℎ = 0. (27)

It can be noted that

𝜆1 + 𝜆2 = − [𝑇𝑞 − 1 − (1 + 𝑇𝑞) 𝑟 cos (𝜙)]
+ (1 + 𝑇𝑞) 𝑟 sin (𝜙) 𝑗,

𝜆1𝜆2 = 𝑟 cos (𝜙) + 𝑟 sin (𝜙) 𝑗.
(28)

Let 𝜆1 = 𝑙1 cos(𝛼) + 𝑙1 sin(𝛼)𝑗 and 𝜆2 = 𝑙2 cos(𝛽) + 𝑙2 sin(𝛽)𝑗.
Based on (28), thus

sin (𝜙) = sin (𝛼 + 𝛽) ,
cos (𝜙) = cos (𝛼 + 𝛽) ,
𝑟 = 𝑙1𝑙2,

(29)

𝑙1 cos (𝛼) + 𝑙2 cos (𝛽)
= − [𝑇𝑞 − 1 − (1 + 𝑇𝑞) 𝑟 cos (𝜙)] ,

𝑙1 sin (𝛼) + 𝑙2 sin (𝛽) = (1 + 𝑇𝑞) 𝑟 sin (𝜙) .
(30)

It follows from (30) that

(𝑙1 cos (𝛼) + 𝑙2 cos (𝛽))2 − (𝑙1 sin (𝛼) + 𝑙2 sin (𝛽))2
= [𝑇𝑞 − 1 − (1 + 𝑇𝑞) 𝑟 cos (𝜙)]2

− [(1 + 𝑇𝑞) 𝑟 sin (𝜙)]2 .
(31)

Using (29) and (31), after some manipulation, (31) can be
rewritten as

2𝑙21cos2 (𝛼) + 2𝑙22cos2 (𝛽) − (𝑙21 + 𝑙22)
= (1 + 𝑇𝑞)2 𝑟2 (cos2 (𝜙) − sin2 (𝜙))

− 2 (𝑇𝑞)2 𝑟 cos (𝜙) + (𝑇𝑞 − 1)2 .
(32)

Aimed to prove that 𝜆1 and 𝜆2 are within the unit circle, with𝑙1 ≤ 1, 𝑙2 ≤ 1, it follows that
−2 < 2𝑙21cos2 (𝛼) + 2𝑙22cos2 (𝛽) − (𝑙21 + 𝑙22) < 2. (33)

Then, the following holds:

(1 + 𝑇𝑞)2 𝑟2 (cos2 (𝜙) − sin2 (𝜙)) − 2 (𝑇𝑞)2 𝑟 cos (𝜙)
+ (𝑇𝑞 − 1)2 + 2 > 0,

(1 + 𝑇𝑞)2 𝑟2 (cos2 (𝜙) − sin2 (𝜙)) − 2 (𝑇𝑞)2 𝑟 cos (𝜙)
+ (𝑇𝑞 − 1)2 − 2 < 0.

(34)

To get the condition of 𝑇𝑞, the transition of (34) is made:

𝑔1 (𝑇𝑞) = [(2 cos2 (𝜙) − 1) 𝑟2 − 2𝑟 cos (𝜙) + 1] (𝑇𝑞)2
+ 2 [(2 cos2 (𝜙) − 1) 𝑟2 − 1] 𝑇𝑞
+ (2 cos2 (𝜙) − 1) 𝑟2 + 3 > 0,

𝑔2 (𝑇𝑞) = [(2 cos2 (𝜙) − 1) 𝑟2 − 2𝑟 cos (𝜙) + 1] (𝑇𝑞)2
+ 2 [(2 cos2 (𝜙) − 1) 𝑟2 − 1] 𝑇𝑞
+ (2 cos2 (𝜙) − 1) 𝑟2 − 1 < 0.

(35)

With the limit conditions of 𝑟, 𝜙, and (35), the range of𝑇𝑞 can
be obtained.

Firstly, as is well-known, in the analysis of 𝑔1(𝑇𝑞), let
𝑎 = 2 cos2 (𝜙) 𝑟2 − 𝑟2 − 2𝑟 cos (𝜙) + 1,
𝑏 = 2 [(2 cos2 (𝜙) − 1) 𝑟2 − 1] < 0,
𝑐 = (2 cos2 (𝜙) − 1) 𝑟2 + 3;

(36)

then

𝑔1 (0) = (2 cos2 (𝜙) − 1) 𝑟2 + 3 > 0,
Δ 1 = 𝑏2 − 4𝑎𝑐 = 8 [−6 cos2 (𝜙) 𝑟2 + 3𝑟2

+ 2𝑟3cos3 (𝜙) − 𝑟3 cos (𝜙) − 3𝑟 cos (𝜙) − 1] .
(37)

After some manipulation, this yields

𝑇𝑞 ∈ [0, 𝜏1𝑖 ] , (38)

where 𝜏1𝑖 satisfies (22) with Δ 1 > 0.
Then, for the condition of 𝑔2(𝑇𝑞), the same as 𝑔1(𝑇𝑞), it

can be obtained that

𝑔2 (0) = (2 cos2 (𝜙) − 1) 𝑟2 − 1 < 0,
Δ 2 = 𝑏2 − 4𝑎𝑐

= 8 [(2 cos2 (𝜙) − 1) 𝑟2 − 1] [𝑟 cos (𝜙) − 1]
> 0.

(39)

Similarly, we have

𝑇𝑞 ∈ [0, 𝜏2𝑖 ] , (40)

where 𝜏2𝑖 satisfies (22) with 𝑎 > 0.
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Finally, sufficient condition (21) can be exactly proved.
It follows from Lemma 3.1 in [5] that (∑𝜂𝑖=1𝑀𝑖)/𝜔 has all
eigenvalues within the unit circle. Thus, based on (21), the
system tracking errors can be convergent stably.

Remark 5. Markov chains are required to be ergodic; there-
fore it can be ensured that the leader has directed paths to
all followers in 𝐺𝑢. Certainly, the results can be expanded
to the case where all the links are governed by Markov
chains; through the mapping in (4), Markovian switching
topologies will be addressed finally. From this, large numbers
of system modes can be described, and the traditional
Markovian switching topologies can be recovered through
the adjustment of the links modes and the transition rate
matrix. However, it will magnify the calculation load and the
unknown or partly unknown transition probability in some
scenes will be considered in the future.

Lemma 6 ([16], Lemma 3.5). Let 𝐿 be defined in Lemma 3.
For small enough 𝑇𝑞, 𝜌(𝐿) < 1, if and only if the leader has
directed paths to all followers in the union graph rather than
the subgraphs.

Theorem 7. Assume that 𝜉𝑟(𝑘) satisfies the fact that the
changing rate is bounded; thus

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜉𝑟 (𝑘) − 𝜉𝑟 (𝑘 − 1)𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜉; (41)

the leader has directed paths to all followers 1 to 𝑛 + 𝑚 in the
union graph. When Theorem 4 holds, using algorithm (13), if
there exist 0 < 𝜇 < 1 and ] ≥ 1, the tracking errors of the
agents are ultimately mean-square bounded as follows:

2 (𝑚 + 𝑛) 𝑇𝜉 ]1 − 𝜇 . (42)

Proof. It follows from (15) that

‖𝜎 (𝑘)‖𝐸 = 󵄩󵄩󵄩󵄩󵄩𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃0𝜎0󵄩󵄩󵄩󵄩󵄩𝐸
+ 󵄩󵄩󵄩󵄩𝑁𝑋𝑟 (𝑘 − 1)󵄩󵄩󵄩󵄩𝐸
+ 𝑘−2∑
𝑙=0

󵄩󵄩󵄩󵄩󵄩𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃𝑙+1𝑁𝑋𝑟 (𝑙)󵄩󵄩󵄩󵄩󵄩𝐸 .
(43)

Noting that 𝑁𝑋𝑟(𝑘 − 1) is deterministic, based on (41), thus

󵄩󵄩󵄩󵄩𝑁𝑋𝑟 (𝑘 − 1)󵄩󵄩󵄩󵄩𝐸 ≤ 2√𝑚 + 𝑛𝑇𝜉. (44)

Based on Lemmas 3.4 and 3.5 andTheorem 3.9 in [28], there
exist 0 < 𝜇 < 1 and ] ≥ 1, yielding

󵄩󵄩󵄩󵄩󵄩𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃0𝜎0󵄩󵄩󵄩󵄩󵄩𝐸 ≤ √(𝑚 + 𝑛) 𝜇2𝑘]2 󵄩󵄩󵄩󵄩𝜎0󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩󵄩𝑀𝜃𝑘−1𝑀𝜃𝑘−2 ⋅ ⋅ ⋅ 𝑀𝜃𝑙+1𝑁𝑋𝑟 (𝑙)󵄩󵄩󵄩󵄩󵄩𝐸
≤ 2 (𝑚 + 𝑛) 𝑇𝜉√𝜇2𝑘−2𝑙−2]2.

(45)
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Figure 1: Two fixed subgraphs.
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Figure 2: Modes of the edges generated by Markov chains.

Noting that 2√𝑚 + 𝑛𝑇𝜉 ≤ 2(𝑚 + 𝑛)𝑇𝜉], after some manipu-
lation, thus it follows that

‖𝜎 (𝑘)‖𝐸 ≤ (𝑚 + 𝑛) 𝜇𝑘] 󵄩󵄩󵄩󵄩𝜎0󵄩󵄩󵄩󵄩2 + 2 (𝑚 + 𝑛) 𝑇𝜉]1 − 𝜇𝑘1 − 𝜇 . (46)

Therefore, as 𝑘 → ∞, it can be obtained that ‖𝜎(𝑘)‖𝐸 ≤ 2(𝑚+𝑛)𝑇𝜉]/(1 − 𝜇). The same as Theorem 3.2 in [16], the tracking
errors will go to zero ultimately as 𝑇 → 0. But for the original
interaction topology 𝐺, the ultimate mean-square bound is
given by 2𝑛𝑇𝜉]/(1 − 𝜇) through the same method, which is
smaller than the union system.

4. Simulation Results

In this section, a simulation example is given to verify the
effectiveness of the theoretical results. For brevity, let 𝑎𝜃𝑘𝑖𝑗 = 1
if (V𝑗, V𝑖) ∈ 𝜀𝑢, 𝑖 ∈ [1, 𝑛+𝑚], and 𝑗 ∈ [0, 𝑛+𝑚].The subgraphs𝐺 and 𝐺2 are shown in Figure 1.

It follows from𝐺𝑢 that eachMarkov chain has twomodes,
which means 𝛾 = 2 and 𝜂 = 23×5+3×4 = 227, and the transition
rate matrices are considered as in Table 1.

As an example, some modes of the edges are shown in
Figure 2.

For the PD-like discrete-time consensus algorithm,
the initial states of the agents in 𝐺 and 𝐺2 are[𝜎1(0) 𝜎2(0) 𝜎3(0) 𝜎4(0)] = [3 1 0 2.5] and[𝜎5 𝜎6 𝜎7] = [−2 −3 −2.5]. Furthermore,[𝜎1(−1) 𝜎2(−1) 𝜎3(−1) 𝜎4(−1)] = [3 1 0 2.5] also
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Table 1: Transition rate matrices for Markov chains.

Edges (V1, V5); (V2, V7); (V6, V3);(V4, V5); (V2, V6); (V1, V6); (V2, V7); (V3, V6);(V5, V4); (V7, V4); (V1, V7); (V2, V5); (V3, V5);(V4, V6); (V7, V3);
Transition
rate matrices 𝛿 = [

[
0.3 0.7
0.4 0.6]

]
𝛿 = [

[
0.2 0.8
0.4 0.6]

]
𝛿 = [

[
0.5 0.5
0.8 0.2]

]
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Figure 3: Simulation results in Case 1.
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Figure 4: Simulation results in Case 2.

should be defined at the initial time, and let 𝜉𝑟(𝑘) = cos(𝑘𝑇).
Distributed controller (13) is implemented with the
parameters in the following four cases.

Case 1. 𝑇 = 0.1, 𝑞 = 4.
Case 2. 𝑇 = 0.05, 𝑞 = 4.

Case 3. 𝑇 = 0.05, 𝑞 = 2.
Case 4. 𝑇 = 0.4, 𝑞 = 2.

Simulation results are shown in Figures 3–6.
Figure 3 shows the plots of the system states and tracking

errors with a time varying reference when 𝑇 = 0.1, 𝑞 = 4.
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Figure 5: Simulation results in Case 3.
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Figure 6: Simulation results in Case 4.

Once the two fixed groups are combined at half of the time, all
the followers can track the reference finally. More specifically,
the system states and tracking errors curves are smooth in
the first half of time, but in the rest of time as shown in the
partial enlarged details, there are lots of burrs on the plots for
all agents obviously, since the links between agents in 𝐺 and𝐺2 are governed by the randomMarkov chains.

Under the same reference, compared with Figure 3, the
system states can track more effectively and the tracking
errors are smaller while 𝑇 = 0.05, 𝑞 = 4. Furthermore,
as shown in Figures 4 and 5, there is a quick response and
smaller tracking errors ultimately, along with a bigger control
gain 𝑞 and the same 𝑇. But for Figure 6, when 𝑇 = 0.4, 𝑞 = 2
in Case 4, the situation is unpredictable, because 𝑇𝑞 does not

meet the condition of Theorem 4. It can be noted that the
tracking errors become unbounded in this case. What should
be stressedmore is that, based onTheorem4, the largest value
of𝑇𝑞 is approximately equal to 0.44.Otherwise, a quantitative
comparison among the four cases is given in Table 2, which
shows themean and standard deviation of the tracking errors
in the second half of the time. The comparison results show
that the tracking errors depend on 𝑇 and 𝑞 obviously.

5. Conclusion

In this paper, distributed discrete-time coordinated track-
ing control for multiagent systems is investigated to solve
the issue on the union graph with Markov chains. Based
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Table 2: Comparison results of the tracking errors among the four
cases.

Cases Mean Standard deviation
Case 1 0.0305 0.1718
Case 2 −0.0163 0.1483
Case 3 −0.0788 0.2349
Case 4 −4.4958 × 105 2.5529 × 107

on a novel mapping, Markovian switching topologies are
redesigned through using the Markov chains to the edge set.
The PD-like discrete-time consensus algorithm is applied to
deal with the time varying reference. A sufficient condition of
the match sampling period and a feasible control gain to the
time varying reference is obtained in terms of trigonometric
function with multiple-term formula. Both the theoretical
and simulation results show that the ultimate tracking errors
are related to the sampling period. Although we focus
on studying the discrete-time multiagent systems with an
ideal communication network, an extended analysis may
be considered for the case with time delays, which will be
addressed in our future work.
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