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Due to the inherent characteristics of the flight mission of a space launch vehicle (SLV), which is required to fly over very large
distances and have very high fault tolerances, in general, SLV tracking systems (TSs) comprise multiple heterogeneous sensors such
as radars, GPS, INS, and electrooptical targeting systems installed over widespread areas. To track an SLV without interruption and
to hand over the measurement coverage between TSs properly, the mission control system (MCS) transfers slaving data to each
TS through mission networks. When serious network delays occur, however, the slaving data from the MCS can lead to the failure
of the TS. To address this problem, in this paper, we propose multiple model-based synchronization (MMS) approaches, which
take advantage of the multiple motionmodels of an SLV. Cubic spline extrapolation, prediction through an 𝛼-𝛽-𝛾 filter, and a single
model Kalman filter are presented as benchmark approaches.We demonstrate the synchronization accuracy and effectiveness of the
proposed MMS approaches using the Monte Carlo simulation with the nominal trajectory data of Korea Space Launch Vehicle-I.

1. Introduction

The range safety system (RSS) [1] for the flight mission of a
space launch vehicle (SLV) consists ofmultiple heterogeneous
tracking systems (TSs) with mission control systems (MCSs).
Critical launch mission details such as time-space-position
information (TSPI), launch mission status data, that is, quick
look message (QLM), and flight safety information can
be acquired from the RSS. Tracking an extensive mission
trajectory of an SLV requires widespread multiple TSs so that
the RSS covers the entire trajectory of the SLV flight mission.
Generally, multiple TSs are spread out over different sites and
they automatically hand over observation coverage according
to the flight of the SLV. In this circumstance, one of the most
important roles of the RSS is to distribute slaving data to each
TS for continuous tracking of the SLV. If a critical network
delay results in time delayed slaving data to be sent to the
TSs, the MCS will not receive accurate SLV tracking data.
This problem can lead to significant difficulties for the SLV
mission progress and analysis. Therefore, the motivation of

this research is to enhance slaving data accuracy by compen-
sating for possible network time delays. The basic solution to
this problem is simple (linear or nonlinear) extrapolation of
the filtered data. In this case, extrapolation methods simply
propagate the TSPI data without regard to the system dynam-
ics of the SLV. On the other hand, a Kalman filter (KF) and its
prediction capability [2, 3] can reflect the system dynamics of
the SLV,which results in better synchronization performance.
However, since a KF only utilizes a single dynamic model, in
general, the tracking performance of a KF for a maneuvering
target is inferior tomultiplemodel estimators [4]. In addition,
due to stage separation, the flight phase of an SLV is separated
into two parts, the propelled flight phase (PFP) and the coast-
ing flight phase (CFP). Hence, the dynamic model of an SLV
can be described using multiple models so that the multiple
flight phases are properly accounted for. To adaptively select
one of the multiple dynamic models according to the flight
phase of the SLV, multiple model estimators (MME) such
as an interacting multiple model (IMM) [5] and a multiple
model adaptive estimator (MMAE) [6] could significantly
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improve SLV trackingwhen anetwork delay results in delayed
slaving data transmission.

In the past several decades, considerable research has
been undertaken in the field of launch vehicle tracking based
onmultiple dynamicmodels; researchers have shown interest
in various applications such as the tracking of reentry vehi-
cles, short-range projectiles, and sounding rockets [7–13]. A
reentry vehicle tracking problem known as highly nonlinear
dynamics was conducted using a modified IMM, with a
different algorithm cycle compared with an ordinary IMM
with multiple modes of diverse ballistic coefficients [7].
Short-range ballistic munitions or projectiles with multiple
models such as spin-stabilized and fin-stabilizedmodels were
implemented using an IMM [8, 9]. Both research alternatives
can be applied in the impact point prediction of projectiles.
Tactical ballistic missile tracking was carried out using an
IMM estimator with three modes [10]. The first mode was
a constant axial force model for the boosting and reentry
phases. The second mode was a ballistic acceleration model
that incorporated the gravitational, Coriolis, and centripetal
forces for the exoatmospheric phase. The final mode was
a standard autocorrelated acceleration Singer’s model for
malfunction motions of missiles such as reentry tumbling. A
multiple IMM algorithm with an unbiased mixing approach
for multiple modes of thrusting or for ballistic projectiles was
presented [11, 12]. A sounding rocket with multiple modes of
propelled flight or free fall flight was tracked using a multiple
model adaptive estimation approach [14].

In this paper, multiple model-based synchronization
(MMS) approaches are proposed to synchronize the time
delayed slaving data of the RSS.The proposed approaches can
be expressed via two distinct multiple models, a nonlinear
model and a linear model. The nonlinear model considers
comprehensive factors such as thrust, gravity, drag coeffi-
cient, Mach number, and air density [10–13]. Although the
nonlinear model precisely describes the motion of the SLV,
it requires complex information concerning the SLV specifi-
cations to be collected in advance. In contrast, in the case of
the linear dynamic model, a simple constant velocity (CV) or
constant acceleration (CA) model with multiple hypotheses,
which takes advantage of Singer’s model [16, 17], can be
utilized [14]. To describe the motion of the SLV, the motion
modes of both models are separated into two parts, PFP and
CFP. We propose a slaving data synchronization approach
for the RSS based on MME so that the MCS can adaptively
find an appropriate dynamic model at an arbitrary time
index, where time delay has occurred. The performance of
slaving data synchronization is compared to various bench-
mark methods such as cubic spline extrapolation, prediction
through an𝛼-𝛽-𝛾 filter, and a singlemodel KF to demonstrate
the effectiveness of the proposed algorithm.

The remainder of the paper is organized as follows.
Section 2 presents a statement of the problem for delayed slav-
ing data in RSS. In Section 3, conventional synchronization
approaches are illustrated. In Section 4, two proposedMME-
based synchronization approaches are derived. Section 5
presents simulation settings and results; the comparison
between different types of synchronization approaches is

depicted as an aspect of RMS error of the state vector. Finally,
in Section 6, the conclusions of this paper are presented.

2. Problem Statement for Delayed Slaving
Data in RSS

The transmission of slaving data from the MCS to multiple
TSs facilitates seamless tracking of the SLV in a sparsely
locatedmultiple TS environment. If a data transmission delay
problem occurs, it can cause an SLV tracking failure. As
depicted in Figure 1, the antennas of TSs are pointing at the
SLV by controlling their attitude according to slaving data
from the MCS. In this situation, a slight time delay in slaving
data can give rise to large differences between the antenna
beam and the SLV due to the fast movement of the SLV. To
solve this problem, we propose MMS approaches. Hence, the
goal of this paper is to find a synchronized state �̂�

sync
𝑘+𝑠

at time
𝑘+𝑠 (where s is a known delay) based on delayed slaving data
�̂�

delay
𝑘

at time k such that

�̂�

sync
𝑘+𝑠

= 𝑓
𝑝
(𝑠, �̂�

delay
𝑘

) , 𝑋 = [𝑥 𝑦 𝑧]

𝑇
, (1)

where 𝑓
𝑝 is a linear or nonlinear propagation function and

𝑋 = [𝑥 𝑦 𝑧]

𝑇 is a slaving state vector that is composed of
x-axis, y-axis, and z-axis positions but is not limited to the
position components.

3. Conventional Synchronization Approaches
for Slaving Data

3.1. Synchronization Using Cubic Spline Extrapolation [18, 19].
Let us assume a synchronized slaving state vector to be an
unknown function of the delayed slaving state vector whose
values are known only until time 𝑘. We then define a cubic
spline extrapolation function𝑓

ep
𝑛

(𝑘+𝑠), where 𝑛 = 𝑥, 𝑦, 𝑧 at a
specific synchronization time 𝑘 + 𝑠 that is extrapolated based
on the known function 𝑓𝑛(𝑘) that has a real value, with𝑁+1

points, where 𝑘0 ≤ 𝑘 ≤ 𝑘𝑁.
We approximate 𝑓

ep
𝑛

(𝑘 + 𝑠) as a three-order polynomial
based on the interval [𝑘𝑖, 𝑘𝑖+1], where 𝑖 = 0, . . . , 𝑁 − 1. Then
𝑓
ep
𝑛

(𝑘 + 𝑠) can be defined as follows:

𝑓
ep
𝑛

(𝑘 + 𝑠)

= {𝑓𝑛 (𝑘) , 𝑘 ∈ [𝑘𝑖, 𝑘𝑖+1] , 𝑖 = 0, . . . , 𝑁 − 1} ,

𝑓𝑛 (𝑘) = 𝑎𝑛,𝑖𝑘
3
+ 𝑏𝑛,𝑖𝑘

2
+ 𝑐𝑛,𝑖𝑘 + 𝑑𝑛,𝑖,

(2)

where 𝑎𝑛,𝑖, 𝑏𝑛,𝑖, 𝑐𝑛,𝑖, and 𝑑𝑛,𝑖 are unknown coefficients. To find
the unknown coefficients, wemake the assumption that𝑓𝑛(𝑘)

should be continuous in [𝑘0, 𝑘𝑁]. Therefore, the following
equation containing unknown coefficients 𝑎𝑛,𝑖, 𝑏𝑛,𝑖, 𝑐𝑛,𝑖, and
𝑑𝑛,𝑖 is obtained:

𝑓𝑛,𝑖 (𝑘𝑖) = 𝑓𝑛,𝑖+1 (𝑘𝑖)

𝑓


𝑛,𝑖
(𝑘𝑖) = 𝑓



𝑛,𝑖+1
(𝑘𝑖) ,
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Figure 1: Illustration of problem statement for delayed slaving data in RSS.

𝑓


𝑛,𝑖
(𝑘𝑖) = 𝑓



𝑛,𝑖+1
(𝑘𝑖)

𝑛 = 𝑥, 𝑦, 𝑧, 𝑖 = 1, . . . , 𝑁 − 1.

(3)

On combining (2) and (3), the cubic polynomials 𝑓
ep
𝑛

(𝑘 + 𝑠)

are reconstructed by solving the linear equations obtained.
Once we find the coefficients 𝑎𝑛,𝑖, 𝑏𝑛,𝑖, 𝑐𝑛,𝑖, and 𝑑𝑛,𝑖, where
𝑖 = 0, . . . , 𝑁 − 1, we can evaluate 𝑓

ep
𝑛

(𝑘 + 𝑠), where 𝑠 is an
arbitrary lead-time for future points in [𝑥0, 𝑥𝑁+𝑠].

3.2. Synchronization Using an 𝛼-𝛽-𝛾 Filter. When the state
estimation covariance for a time invariant system converges
under suitable conditions to a steady-state value, explicit
expressions of the steady-state covariance and filter gain
can be obtained. The resulting steady-state filters for noisy
kinematic models are known as 𝛼-𝛽 and 𝛼-𝛽-𝛾 filters [20]. In
this paper, a combined 𝛼-𝛽-𝛾 filter using both an expanding
memory polynomial filter (EMF) and a fading memory
polynomial filter (FMF) was used [21, 22]. At first, the EMF is
represented as follows:

𝑝
𝐸

𝑛,𝑘
= 𝑝

𝐸

𝑛,𝑘−1
+ Δ𝑡V𝐸

𝑛,𝑘−1
+

Δ𝑡
2

2

𝑎
𝐸

𝑛,𝑘−1

+

3 (3𝑘
2
+ 3𝑘 + 2)

(𝑘 + 3) (𝑘 + 2) (𝑘 + 1)

𝜀
𝐸

𝑛,𝑘
,

V𝐸
𝑛,𝑘

= V𝐸
𝑛,𝑘−1

+ Δ𝑎V𝐸
𝑛,𝑘−1

+

1

Δ𝑡

18 (2𝑘 + 1)

(𝑘 + 3) (𝑘 + 2) (𝑘 + 1)

𝜀
𝐸

𝑛,𝑘
,

𝑎
𝐸

𝑛,𝑘
= 𝑎

𝐸

𝑛,𝑘−1
+

1

Δ𝑡
2

60

(𝑘 + 3) (𝑘 + 2) (𝑘 + 1)

𝜀
𝐸

𝑛,𝑘
,

𝜀
𝐸

𝑛,𝑘
= 𝑦𝑛,𝑘 − 𝑝

𝐸

𝑛,𝑘−1
− Δ𝑡V𝐸

𝑛,𝑘−1
−

Δ𝑡
2

2

𝑎
𝐸

𝑛,𝑘−1
,

(4)

where Δ𝑡 is the sampling time and 𝑝
𝐸

𝑛,𝑘
, V𝐸

𝑛,𝑘
, and 𝑎

𝐸

𝑛,𝑘
are

the position, velocity, and acceleration estimates of the EMF,
respectively. In addition, the variance reduction factor (VRF)
[22] of the EMF, that is, VRF𝐸, can be represented as

VRF𝐸
=

9𝑘
2
+ 27𝑘 + 24

𝑘 (𝑘 + 1) (𝑘 − 1)

. (5)

On the other hand, the FMF and its VRF (VRF𝐹) can be
written as follows:

𝑝
𝐹

𝑛,𝑘
= 𝑝

𝐹

𝑛,𝑘−1
+ Δ𝑡V𝐹

𝑛,𝑘−1
+

Δ𝑡
2

2

𝑎
𝐹

𝑛,𝑘−1
+ (1 − 𝜆

3
) 𝜀

𝐹

𝑛,𝑘
,

V𝐹
𝑛,𝑘

= V𝐹
𝑛,𝑘−1

+ Δ𝑎V𝐹
𝑛,𝑘−1

+

3

2Δ𝑡

(1 − 𝜆)
2
(1 + 𝜆) 𝜀

𝐹

𝑛,𝑘
,

𝑎
𝐹

𝑛,𝑘
= 𝑎

𝐹

𝑛,𝑘−1
+

1

Δ𝑡
2
(1 − 𝜆)

3
𝜀
𝐹

𝑛,𝑘
,

𝜀
𝐹

𝑛,𝑘
= 𝑦𝑛,𝑘 − 𝑝

𝐹

𝑛,𝑘−1
− Δ𝑡V𝐹

𝑛,𝑘−1
−

Δ𝑡
2

2

𝑎
𝐹

𝑛,𝑘−1
,

VRF𝐹
=

1 − 𝜆

(1 + 𝜆)
5
(19 + 24𝜆 + 16𝜆

2
+ 6𝜆

3
+ 𝜆

4
) ,

(6)

where 0 < 𝜆 < 1. Both filters are conducted in parallel but
only one of them is selected as a final estimate by comparing
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the VRFs. During the early tracking phase, the EMF is
selected as the final estimate; however, at a certain time,where
VRF𝐹 is larger than VRF𝐸, FMF is selected as the final
estimate:

�̂�

𝛼𝛽𝛾

𝑛,𝑘
= 𝑓𝑛�̂�

𝛼𝛽𝛾

𝑛,𝑘−1
+ 𝐾[𝑦𝑘 − 𝐻

𝛼𝛽𝛾
�̂�

𝛼𝛽𝛾

𝑛,𝑘−1
] ,

[

[

[

𝑝𝑛,𝑘

V𝑛,𝑘
𝑎𝑛,𝑘

]

]

]

=

[

[

[

[

[

1 Δ𝑡

Δ𝑡
2

2

0 1 Δ𝑡

0 0 1

]

]

]

]

]

[

[

[

𝑝𝑛,𝑘−1

V𝑛,𝑘−1
𝑎𝑛,𝑘−1

]

]

]

+

[

[

[

[

[

[

𝛼

𝛽

Δ𝑡

𝛾

Δ𝑡
2

]

]

]

]

]

]

[

[

[

𝑦𝑘 − 𝐻
𝛼𝛽𝛾 [

[

[

𝑝𝑛,𝑘−1

V𝑛,𝑘−1
𝑎𝑛,𝑘−1

]

]

]

]

]

]

,

where 𝑋
𝛼𝛽𝛾

𝑛,𝑘
= [𝑝𝑛,𝑘 V𝑛,𝑘 𝑎𝑛,𝑘]

𝑇
, 𝐻

𝛼𝛽𝛾
= [1 0 0] ,

VRF𝐸
≥ VRF𝐹

→

𝑝𝑛,𝑘 = 𝑝
𝐸

𝑛,𝑘
,

V𝑛,𝑘 = V𝐸
𝑛,𝑘

,

𝑎𝑛,𝑘 = 𝑎
𝐸

𝑛,𝑘
,

VRF𝐹
> VRF𝐸

→

𝑝𝑛,𝑘 = 𝑝
𝐹

𝑛,𝑘
,

V𝑛,𝑘 = V𝐹
𝑛,𝑘

,

𝑎𝑛,𝑘 = 𝑎
𝐹

𝑛,𝑘
.

(7)

Finally, synchronization using an 𝛼-𝛽-𝛾 filter is completed by
linear propagation using the system matrix 𝑓𝑛 such that

�̂�

𝛼𝛽𝛾

𝑛,𝑘+𝑠
= (

𝑠

∏

𝐿=1

𝑓𝑛) ⋅ �̂�

𝛼𝛽𝛾

𝑛,𝑘
. (8)

3.3. Kalman Predictor. The motion of the SLV is simply
depicted as a discretized Wiener process acceleration model
[20]:

𝑋𝑘+1 = 𝐹𝑋𝑘 + 𝑤𝑘, (9)

where the state vector 𝑋𝑘 ∈ R9 consists of the
position, velocity, and acceleration components along 𝑥-
axis, 𝑦-axis, and 𝑧-axis, respectively; that is, 𝑋𝑘 =

[𝑥𝑝,𝑘 𝑥V,𝑘 𝑥𝑎,𝑘 𝑦𝑝,𝑘 𝑦V,𝑘 𝑦𝑎,𝑘 𝑧𝑝,𝑘 𝑧V,𝑘 𝑧𝑎,𝑘]
𝑇. The system

matrix and covariance matrix of the system noise 𝑤𝑘 are
represented as (10) and (11), respectively:

𝑓𝑛=𝑥,𝑦,𝑧 =

[

[

[

[

[

1 Δ𝑡

Δ𝑡
2

2

0 1 Δ𝑡

0 0 1

]

]

]

]

]

,

𝐹 =
[

[

[

𝑓𝑥 03 03
03 𝑓𝑦 03
03 03 𝑓𝑧

]

]

]

,

(10)

𝐸 [𝑤𝑘𝑤
𝑇

𝑙
] = 𝑄𝛿𝑘−𝑙,

𝑞𝐿=𝑥,𝑦,𝑧 =

[

[

[

[

[

[

[

[

[

Δ𝑡
5

20

Δ𝑡
4

8

Δ𝑡
2

6

Δ𝑡
4

8

Δ𝑡
3

3

Δ𝑡
2

2

Δ𝑡
3

6

Δ𝑡
2

2

Δ𝑡

]

]

]

]

]

]

]

]

]

,

𝑄 =
[

[

[

𝑞𝑥 03 03
03 𝑞𝑦 03
03 03 𝑞𝑧

]

]

]

.

(11)

A radar measurement for the SLV gives the spherical coordi-
nate observations such that

𝑍𝑘 = ℎ (𝑋𝑘) + V𝑠,𝑘,

𝑍𝑘 ∈ R
3
, V𝑠,𝑘 ∈ R

3
,

𝑍𝑘 =
[

[

[

𝑟𝑘

𝜑𝑘

𝜃𝑘

]

]

]

=

[

[

[

[

[

[

[

[

[

[

[

√𝑥
2

𝑝,𝑘
+ 𝑦

2

𝑝,𝑘
+ 𝑧

2

𝑝,𝑘

tan−1
(

𝑦𝑝,𝑘

𝑥𝑝,𝑘

)

tan−1
(

𝑦𝑝,𝑘

√𝑥
2

𝑝,𝑘
+ 𝑦

2

𝑝,𝑘

)

]

]

]

]

]

]

]

]

]

]

]

+
[

[

[

V𝑟
V𝜑
V𝜃

]

]

]

,

(12)

where V𝑠,𝑘 ∼ N(0, 𝑅𝑠,𝑘) and 𝑅𝑠,𝑘 = diag(𝜎2

𝑟
, 𝜎

2

𝜑
, 𝜎

2

𝜃
). Using a 3D

debiased converted measurement [23], we can transform the
original nonlinear equations (12) into their linear form as

z𝑘 = 𝐻𝑋𝑘 + V𝑘, V𝑘 ∈ R
3
,

z𝑘 =
[

[

[

𝑥𝑘

𝑦𝑘

𝑧𝑘

]

]

]

=
[

[

[

1 01×5 01×3
01×3 1 01×5
01×5 1 01×2

]

]

]

𝑋𝑘 +
[

[

[

V𝑥,𝑘
V𝑦,𝑘
V𝑧,𝑘

]

]

]

.

(13)

Here, V𝑐,𝑘 is the converted measurement noise expressed in
terms of Cartesian coordinates; that is, V𝑘 ∼ N(0, 𝑅𝑘):

𝑅𝑘 =

[

[

[

[

𝑅𝑥𝑥,𝑘 𝑅𝑥𝑦,𝑘 𝑅𝑥𝑧,𝑘

𝑅𝑦𝑥,𝑘 𝑅𝑦𝑦,𝑘 𝑅𝑦𝑧,𝑘

𝑅𝑧𝑥,𝑘 𝑅𝑧𝑦,𝑘 𝑅𝑧𝑧,𝑘

]

]

]

]

. (14)
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Prediction or fixed-lead prediction inmean squaremeans the
synchronization of the slaving data is the estimation of the
state at a future time 𝑘+𝑠, where 𝑠 > 0 beyond the observation
interval; that is, based on data up to an earlier time [20, 24],

�̂�𝑘+𝑠|𝑘 = 𝐸 (𝑋𝑘+𝑠|𝑘 | 𝑍𝑘) , 𝑍𝑘 = {z0, . . . , z𝑘} . (15)

The optimal predictor or synchronized state �̂�𝑘+𝑠|𝑘 ≜ �̂�

KP
𝑘+𝑠|𝑘

and its error covariance 𝑃𝑘+𝑠|𝑘 ≜ 𝑃
KP
𝑘+𝑠|𝑘

are given by the
Kalman predictor equations [2, 24]:

�̂�

KP
𝑘+𝑠|𝑘

= 𝐹𝑘+𝑠−1�̂�

KP
𝑘+𝑠−1|𝑘

= ⋅ ⋅ ⋅ = Φ𝑘+𝑠,𝑘�̂�

KP
𝑘|𝑘

,

�̂�

KP
𝑘|𝑘

≜ �̂�

KF
𝑘|𝑘

,

𝑃
KP
𝑘+𝑠|𝑘

= 𝐹𝑘+𝑠−1𝑃
KP
𝑘+𝑠−1|𝑘

𝐹
𝑇

𝑘+𝑠−1
+ 𝑄𝑘+𝑠−1

= Φ𝑘+𝑠,𝑘𝑃
KP
𝑘|𝑘

Φ
𝑇

𝑘+𝑠,𝑘

+

𝑠−1

∑

𝑗=0

Φ𝑘+𝑠,𝑘+𝑗+1𝑄𝑘+𝑗Φ
𝑇

𝑘+𝑠,𝑘+𝑗+1
, 𝑃

KP
𝑘|𝑘

≜ 𝑃
KF
𝑘|𝑘

,

Φ𝑘+𝑠,𝑘 = 𝐹𝑘+𝑠−1𝐹𝑘+𝑠−2 ⋅ ⋅ ⋅ 𝐹𝑘,

Φ𝑘,𝑘 = 𝐼𝑛,

𝑘 > 1,

(16)

where �̂�

KF
𝑘|𝑘

and 𝑃
KF
𝑘|𝑘

are the KF estimate and covariance,
respectively.

4. Proposed MME-Based Synchronization
Approaches

4.1. SynchronizationUsing an IMMwith Singer’s LinearModel.
Singer [16] described 2D manned maneuvering targets in
range-bearing coordinates. This model can be adapted to the
SLV kinematics in 3D Cartesian coordinates with multiple
flight phases:

[

[

[

�̇�
𝑛

V̇𝑛
�̇�𝑛

]

]

]

= 𝐹
[

[

[

𝑝𝑛

V𝑛
𝑎𝑛

]

]

]

+ 𝐺𝑤𝑛,

𝐹 =
[

[

[

0 1 0

0 0 1

0 0 −𝛼𝑛

]

]

]

,

𝐺 =
[

[

[

0

0

0

]

]

]

,

(17)

where𝑤𝑛 ∈ R3×1 is a white noise process along the Cartesian
axis 𝑛 = 𝑥, 𝑦, 𝑧. The parameter 𝛽 = 1/𝛼𝑛 is the maneuver
correlation time constant, and 𝜎

2

𝑎𝑛
is the acceleration variance

describing maneuver intensity. In a steady state,

𝜎
2

𝑤
𝑛

= 2𝛼𝜎
2

𝑎𝑛
. (18)

To describe SLV kinematics, the model must cope with cru-
cial nonzero mean acceleration maneuvers during the pro-
pelled phase. In addition, after each stage’s engine burns out,
a multiple model approach is applied to the coasting flight;
that is, one model describes PFP, whereas the other depicts
the CFP. Empirically tuned, independent probability density
functions (PDFs) represented by TUM describe the accel-
erations of the SLV in the local coordinate frame. Figure 2
shows the means and variances of the acceleration processes
of the SLV in this paper. The discrete-time model with state
transition matrix Ψ𝑛(𝛼𝑛, Δ𝑡) is as follows:

[

[

[

𝑝𝑛,𝑘+1

V𝑛,𝑘+1
𝑎𝑛,𝑘+1

]

]

]

= Ψ𝑛 (𝛼𝑛, Δ𝑡)
[

[

[

𝑝𝑛,𝑘

V𝑛,𝑘
𝑎𝑛,𝑘

]

]

]

+ 𝑤𝑛,𝑘,

Ψ𝑛 (𝛼𝑛, Δ𝑡) = 𝑒
𝐹Δ𝑡

[

[

[

[

[

[

[

1 Δ𝑡 (𝛼𝑛Δ𝑡 − 1 + 𝑒
−𝛼
𝑛
Δ𝑡

)

0 1

(1 − 𝑒
−𝛼
𝑛
Δ𝑡

)

𝛼𝑛

0 0 𝑒
−𝛼
𝑛
Δ𝑡

]

]

]

]

]

]

]

,

𝑤𝑛,𝑘 = ∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

𝑒
𝐹[(𝑘+1)Δ𝑡−𝑟]

𝐺𝑤𝑛 𝑑𝑟.

(19)

In the case of the PFP, 𝑤𝑛,𝑘 is a nonzero mean white noise
sequence caused by the nonzero mean acceleration 𝜇𝑎𝑛 seen
in Figure 2. A nonzeromeanwhite noise sequence for the PFP
should be considered in the target kinematics when imple-
menting the state propagation stage in theKF.Thus, the deter-
ministic input 𝑢𝑛,𝑘 caused by 𝑤𝑛,𝑘 along 𝑥-axis, 𝑦-axis, and
𝑧-axis is derived as follows:

𝑢𝑥,𝑘 = 𝐸 [𝑤𝑥,𝑘] = 𝐸{∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

𝑒
𝐹[(𝑘+1)Δ𝑡−𝑟]

𝐺𝑤𝑥𝑑𝑟}

≈ 𝐸

{
{
{

{
{
{

{

∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

[

[

[

[

𝑒
−𝛼
𝑥
[(𝑘+1)Δ𝑡−𝑟]

0

0

]

]

]

]

𝑤𝑥 𝑑𝑟

}
}
}

}
}
}

}

,

𝑢𝑥,𝑘 =

𝜇𝑎𝑥

𝛼𝑛 [
1−𝑒
−𝛼𝑥Δ𝑡

0
0

]

.

(20)

𝑦-axis and 𝑧-axis can be derived in the samemanner as shown
in (20). The maneuver excitation covariance [10], which
represents the uncertainty of the SLV kinematics model, is

𝑄𝑛,𝑘 (𝛼𝑛, Δ𝑡)

= 𝐸 {(𝑤𝑛,𝑘 − 𝐸 [𝑤𝑛,𝑘]) (𝑤𝑛,𝑘 − 𝐸 [𝑤𝑛,𝑘])
𝑇
}

= 2𝛼𝑛𝜎
2

𝑎𝑛

[

[

[

𝑞11 𝑞12 𝑞13

𝑞12 𝑞22 𝑞23

𝑞13 𝑞23 𝑞33

]

]

]

.

(21)

The specific components of 𝑞11, . . . , 𝑞33 are illustrated in [25].
In addition, the measurement matrix 𝐻𝐿 for Singer’s model
can be depicted as
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Figure 2: Nonzero mean acceleration PDF in the PFP model (a) along 𝑥-axis, (b) along 𝑦-axis, and (c) along 𝑧-axis. Zero mean acceleration
PDF in the CFP Model (d) along 𝑥-axis, 𝑦-axis, and 𝑧-axis.

𝑧𝐿,𝑘 = 𝐻𝐿x𝐿,𝑘 + ]𝑘, 𝐻𝐿 =
[

[

[

1 0 0

0 03×2 1 03×2 0 03×2
0 0 1

]

]

]

, x𝐿,𝑘 = [𝑥𝑘 �̇�𝑘 �̈�𝑘 𝑦𝑘 �̇�
𝑘

�̈�
𝑘

𝑧𝑘 �̇�𝑘 �̈�𝑘]
𝑇
, (22)

where ]𝑘 is measurement noise (as shown in (14)) with error
covariance.

4.1.1. IMM with Singer’s Linear Model. From (19)–(22) in
Section 4.1, we can rewrite the Markov jump linear systems,
where the 𝑖th model of the finite multiple model set M =

{𝑚
(1)

, . . . , 𝑚
(𝑀)

} obeys the following equations:

x𝐿,𝑘+1 = Ψ
(𝑖)

𝑘
x𝐿,𝑘 + 𝑤

(𝑖)

𝑘
,

𝑧𝐿,𝑘 = 𝐻𝐿x𝐿,𝑘 + ]𝑘,
(23)

where

cov (𝑤
(𝑖)

𝑘
) = 𝑄

(𝑖)

𝑘
,

cov (]𝑘) = 𝑅𝑘,

Ψ
(𝑖)

𝑘
= diag (Ψ𝑥,𝑘 (𝛼

(𝑖)

𝑥
, Δ𝑡) , Ψ𝑦,𝑘 (𝛼

(𝑖)

𝑦
, Δ𝑡) ,

Ψ𝑧,𝑘 (𝛼
(𝑖)

𝑧
, Δ𝑡)) ,

𝑄
(𝑖)

𝑘
= diag (𝑄𝑥,𝑘 (𝛼

(𝑖)

𝑥
, Δ𝑡) , 𝑄𝑦,𝑘 (𝛼

(𝑖)

𝑦
, Δ𝑡) ,

𝑄𝑧,𝑘 (𝛼
(𝑖)

𝑧
, Δ𝑡)) .

(24)

Here, 𝜎
2

𝑎𝑛
for the SLV can be represented by TUM as in

Figure 2. The PDFs of Figures 2(a)–2(d) are experimentally
sampled from the nominal acceleration profile of the SLV.The
superscript (i) denotes quantities pertinent to model 𝑚(𝑖) in
M, and the jumps of the system mode are assumed to have
transition probabilities:

Pr {𝑚(𝑗)

𝑘+1
| 𝑚

(𝑖)

𝑘
} ≜ 𝜋𝑖𝑗,

(25)

where 𝑚
(𝑖)

𝑘
denotes the event in which model 𝑚

(𝑖) matches
the system mode in effect at time 𝑘. In our application, 𝑀 =

2, and 𝑚
(1) and 𝑚

(2) are the propelled and coasting modes,
respectively.

Finally, complete recursion of the IMM with mode
matched KF for the SLV tracking is summarized as follows:

(i) Model-conditioned reinitialization (for 𝑖 = 1, 2, . . . ,

𝑀):
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(a) predicted mode probability: 𝜇(𝑖)

𝐿,𝑘|𝑘−1
≜ Pr{𝑚(𝑖)

𝑘
|

𝑧𝐿,𝑘−1} = ∑
𝑗
𝜋𝑗𝑖𝜇

(𝑗)

𝐿,𝑘−1
,

(b) mixingweight: 𝜇𝑗|𝑖

𝐿,𝑘−1
≜ Pr{𝑚(𝑗)

𝑘−1
| 𝑚

(𝑖)

𝑘
, 𝑧𝐿,𝑘−1} =

∑
𝑗
𝜋𝑗𝑖𝜇

(𝑗)

𝐿,𝑘−1
/𝜇

(𝑖)

𝐿,𝑘−1
,

(c) mixing estimate and covariance:

x(𝑖)
𝐿,𝑘−1|𝑘−1

≜ 𝐸 [x𝐿,𝑘−1|𝑘−1 | 𝑚
(𝑖)

𝑘
, 𝑧𝐿,𝑘−1]

= ∑

𝑗

x̂(𝑗)
𝐿,𝑘−1|𝑘−1

𝜇
𝑗|𝑖

𝐿,𝑘−1
,

𝑃

(𝑖)

𝐿,𝑘−1|𝑘−1
= ∑

𝑗

[𝑃
(𝑖)

𝐿,𝑘−1|𝑘−1
+ (x(𝑖)

𝐿,𝑘−1|𝑘−1
− x̂(𝑗)

𝐿,𝑘−1|𝑘−1
)

⋅ (x(𝑖)
𝐿,𝑘−1|𝑘−1

− x̂(𝑗)
𝐿,𝑘−1|𝑘−1

)

𝑇

] 𝜇
𝑗|𝑖

𝐿,𝑘−1
.

(26)

(ii) Model-conditioned filtering (for 𝑖 = 1, 2, . . . ,𝑀):

(a) predicted estimate and covariance:

x̂(𝑖)
𝐿,𝑘|𝑘−1

= Ψ
(𝑖)

𝑘−1
x(𝑖)
𝐿,𝑘−1|𝑘−1

+ u(𝑖)

𝑘−1
,

where u(1)

𝑘−1
= [𝑢

𝑇

𝑥,𝑘−1
𝑢
𝑇

𝑦,𝑘−1
𝑢
𝑇

𝑧,𝑘−1
]

𝑇

, u(2)

𝑘−1
= 03×1,

𝑃
(𝑖)

𝐿,𝑘|𝑘−1
= Ψ

(𝑖)

𝑘−1
𝑃

(𝑖)

𝐿,𝑘−1|𝑘−1
Ψ

(𝑖)
𝑇

𝑘−1
+ 𝑄

(𝑖)

𝑘−1
,

(27)

(b) measurement residual: �̃�(𝑖)

𝐿,𝑘
= 𝑧𝐿,𝑘 −𝐻𝐿x̂

(𝑖)

𝐿,𝑘|𝑘−1
−

]𝑘,
(c) residual covariance: 𝑆(𝑖)

𝐿,𝑘
= 𝐻𝐿𝑃

(𝑖)

𝐿,𝑘|𝑘−1
𝐻

𝑇

𝐿
− 𝑅𝑘,

(d) filter gain: 𝐾(𝑖)

𝐿,𝑘
= 𝑃

(𝑖)

𝐿,𝑘|𝑘−1
𝐻

𝑇

𝐿
(𝑆

(𝑖)

𝐿,𝑘
)
−1,

(e) update of state and covariance: x̂(𝑖)
𝐿,𝑘|𝑘

= x̂(𝑖)
𝐿,𝑘|𝑘−1

+

𝐾
(𝑖)

𝐿,𝑘
�̃�
(𝑖)

𝐿,𝑘
, 𝑃

(𝑖)

𝐿,𝑘|𝑘
= 𝑃

(𝑖)

𝐿,𝑘|𝑘−1
− 𝐾

(𝑖)

𝐿,𝑘
𝑆
(𝑖)

𝐿,𝑘
𝐾

(𝑖)
𝑇

𝐿,𝑘
.

(iii) Mode probability update (for 𝑖 = 1, 2, . . . ,𝑀):

(a) mode likelihood: Λ
(𝑖)

𝐿,𝑘
≜ 𝑝[𝑧

(𝑖)

𝐿,𝑘
| 𝑚

(𝑖)

𝑘
,

𝑍𝐿,𝑘−1]
assume

= N(𝑧
(𝑖)

𝐿,𝑘
; 0, 𝑆

(𝑖)

𝐿,𝑘
),

(b) mode probability: 𝜇
(𝑖)

𝐿,𝑘
= 𝜇

(𝑖)

𝐿,𝑘|𝑘−1
Λ

(𝑖)

𝐿,𝑘
/

(∑
𝑗
𝜇
(𝑗)

𝐿,𝑘|𝑘−1
Λ

(𝑗)

𝐿,𝑘
).

(iv) Combination (for 𝑖 = 1, 2, . . . ,𝑀):

x̂𝐿,𝑘|𝑘 = ∑

𝑖

x̂(𝑖)
𝐿,𝑘|𝑘

𝜇
(𝑖)

𝐿,𝑘
,

�̂�

(𝑖)

𝐿,𝑘|𝑘

= ∑

𝑖

[𝑃
(𝑖)

𝐿,𝑘|𝑘
+ (x̂𝐿,𝑘|𝑘 − x̂(𝑖)

𝐿,𝑘|𝑘
) (x̂𝐿,𝑘|𝑘 − x̂(𝑖)

𝐿,𝑘|𝑘
)

𝑇

] 𝜇
(𝑖)

𝐿,𝑘
.

(28)

Singer’s MMS of time delayed slaving data is completed by
propagating the combined estimate based on the current
mode’s dynamic model such that

x̂sync
𝐿,𝑘+𝑠|𝑘

= Φ
sync
𝑘+𝑠,𝑘

x̂𝐿,𝑘|𝑘,

Φ
sync
𝑘+𝑠,𝑘

= 𝐹
sync
𝑘+𝑠−1

𝐹
sync
𝑘+𝑠−2

⋅ ⋅ ⋅ 𝐹
sync
𝑘

,

Φ
sync
𝑘,𝑘

= 𝐼𝑛,

𝑘 > 1,

(29)

where 𝐹
sync
𝑘+𝑠−1

, 𝐹
sync
𝑘+𝑠−2

, . . . , 𝐹
sync
𝑘

are systemmatrices depending
on a flight phase mode at current time 𝑘.

4.2. Synchronization Using an IMM with a Nonlinear Ballistic
Model. For a nonlinear ballistic model, the state vector for
the propelled mode is denoted as

x𝑡 = [𝑥𝑡 𝑦𝑡 𝑧𝑡 �̇�𝑡 �̇�
𝑡

�̇�𝑡 𝜉𝑡 𝜏𝑡]
𝑇
, (30)

where 𝜉𝑡 is the drag coefficient and 𝜏𝑡 is the thrust. Generally,
the drag coefficient varies significantlywith theMachnumber
regime: subsonic, transonic, and supersonic. Therefore, we
take advantage of the dynamic model considering a Mach
number-dependent multiplier [11, 12] such that

[

[

[

�̈�

�̈�

�̈�

]

]

]

=

𝜏

𝑉

[

[

[

�̇�

�̇�

�̇�

]

]

]

thrust term

+ 𝜉𝜉𝑚𝐷
[

[

[

�̇�

�̇�

�̇�

]

]

]

drag term

+ 𝑔
[

[

[

0

0

1

]

]

]

gravity term

+ �̃�1,

̇
𝜉 = �̃�2,

�̇� = �̃�3.

(31)

The first term on the right side of (31) represents the thrust
(m2

/s) of the SLV in 𝑥, 𝑦, and 𝑧 directions. Two distinct
multiplemodes of a nonlinear SLVmodel can be separated by
the existence of thrust. In other words, the existence of thrust
signifies propelled flight mode, whereas zero thrust signifies
coasting flight mode. 𝑉 is the magnitude of the velocity V =

[�̇� �̇� �̇�]

𝑇, that is, the SLV speed (m/s). The second part of
(31) is the drag term, which is related to velocity and altitude;
that is, 𝐷 = −𝜌(𝑧)𝑉/2, where 𝜌(𝑧) = 𝜌0𝑒

−𝑐𝑧 is the air density
(kg/m3) at an altitude 𝑧 (m) and 𝑐 is the air density constant
(m−1) [9]. 𝜉 is the drag coefficient and 𝜉𝑚 is theMachnumber-
dependent drag coefficient multiplier, which is approximated
by the cubic spline curve shown in Figure 3. In this paper,
for the drag characteristics of the SLV, which are applied in
the subsequent simulation section, drag coefficients of the
Saturn𝑉 launch vehicle [15] are used.The third part of (31) is
a gravity term. Gravity 𝑔 is the standard acceleration due to
gravity at sea level, which is assumed to be constant through-
out the trajectory, with a value of 9.812 m/s2. �̃�1, �̃�2, and �̃�3

are assumed to be continuous time zeromeanwhite Gaussian
noises. The drag coefficient and thrust acceleration are rep-
resented as Wiener processes with a slow variation [11, 12].
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Figure 3: Normalized drag coefficient [15].

We can modify the dynamic equations (30) and (31) as a
compact form such that

ẋ𝑡 = 𝑓 [x𝑡] + �̃�𝑡, (32)

where

𝑓 [x𝑡] =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

�̇�𝑡

�̇�
𝑡

�̇�𝑡

𝜏

�̇�𝑡

𝑉𝑡

+ 𝜉𝑡𝐷𝑡�̇�𝑡

𝜏

�̇�
𝑡

𝑉𝑡

+ 𝜉𝑡𝐷𝑡�̇�𝑡

𝜏

�̇�𝑡

𝑉𝑡

+ 𝜉𝑡𝐷𝑡�̇�𝑡 − 𝑔

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

�̃�𝑡 = [�̃�1,𝑡 �̃�2,𝑡 �̃�3,𝑡]
𝑇
.

(33)

The state vector equation (33) is discretized by a second-
order Taylor expansion [26]. Then, (33) can be written as

a discretized continuous time systemwithwhite process noise
such that

x𝑘+1 = x𝑘 + 𝑓 [x𝑘] Δ𝑡 + 𝐴𝑘𝑓 [x𝑘]
Δ𝑡

2

2

+ 𝜔𝑘,
(34)

where 𝐴𝑘 is the Jacobian of (33) evaluated at x𝑘 [26] and
𝜔𝑘 is the discretized continuous time process noise for the
sampling interval Δ𝑡. The corresponding covariance matrix
of the discretized process noise is

𝑄 =
[

[

[

𝑄1𝑞V 06×1 06×1
01×6 Δ𝑡𝑞𝜉 0

01×6 0 Δ𝑡𝑞𝜏

]

]

]

,

𝑄1 =

[

[

[

[

Δ𝑡
3

3

𝐼3

Δ𝑡
2

2

𝐼3

Δ𝑡
2

2

𝐼3 Δ𝑡𝐼3

]

]

]

]

,

(35)

where 𝐼3 is the 3 × 3 identity matrix and the continuous time
process noise intensities 𝑞V, 𝑞𝜉, and 𝑞𝜏 are the corresponding
power spectral densities.

The measurement matrix 𝐻NL for the nonlinear ballistic
multiple model can be depicted as

𝑧NL,𝑘 = 𝐻NLxNL,𝑘 + ]𝑘,

𝐻NL = [𝐼3 0] , xNL,𝑘 = [𝑥𝑘 𝑦𝑘 𝑧𝑘 �̇�𝑘 �̇�
𝑘

�̇�𝑘 𝜉𝑘 𝜏𝑘]
𝑇
,

(36)

where ]𝑘 is measurement noise with error covariance
𝑅𝑘𝛿𝑘−𝑗 = 𝐸[]𝑘]

𝑇

𝑗
], that is, (14).

An IMMalgorithm for nonlinear dynamics with different
sizes of the mode state vector is summarized as follows [25]:

(v) Model-conditioned reinitialization (for 𝑖 = 1, 2, . . . ,

𝑀):

(a) predicted mode probability: 𝜇
(𝑖)

NL,𝑘|𝑘−1 ≜

Pr{𝑚(𝑖)

𝑘
| 𝑧NL,𝑘−1} = ∑

𝑗
𝜋𝑗𝑖𝜇

(𝑗)

NL,𝑘−1,
(b) mixing weight:

𝜇
𝑗|𝑖

NL,𝑘−1 ≜ Pr {𝑚(𝑗)

𝑘−1
| 𝑚

(𝑖)

𝑘
, 𝑧NL,𝑘−1} =

∑
𝑗
𝜋𝑗𝑖𝜇

(𝑗)

NL,𝑘−1

𝜇
(𝑖)

NL,𝑘−1

, (37)

(c) unbiased mixing estimate and covariance:

x(𝑖)NL,𝑘−1|𝑘−1 ≜ 𝐸 [xNL,𝑘−1|𝑘−1 | 𝑚
(𝑖)

𝑘
, 𝑧NL,𝑘−1] = ∑

𝑗

�̂�
(𝑗)

NL,𝑘−1|𝑘−1𝜇
𝑗|𝑖

NL,𝑘−1,

where �̂�
(1)

NL,𝑘−1|𝑘−1 ≜ x̂(1)NL,𝑘−1|𝑘−1, �̂�
(2)

NL,𝑘−1|𝑘−1 ≜ [x̂(2)
𝑇

NL,𝑘−1|𝑘−1, 𝜏𝑘−1]
𝑇

,

𝑃

(𝑖)

NL,𝑘−1|𝑘−1 = ∑

𝑗

[𝑃
(𝑖)

NL,𝑘−1|𝑘−1 + (x(𝑖)NL,𝑘−1|𝑘−1 − �̂�
(𝑗)

NL,𝑘−1|𝑘−1) (x(𝑖)NL,𝑘−1|𝑘−1 − �̂�
(𝑗)

NL,𝑘−1|𝑘−1)
𝑇

] 𝜇
𝑗|𝑖

NL,𝑘−1.

(38)
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(vi) Model-conditioned filtering (for 𝑖 = 1, 2, . . . ,𝑀):

(a) predicted estimate and covariance:

x̂(𝑖)NL,𝑘|𝑘−1 = x̂(𝑖)NL,𝑘−1|𝑘−1 + 𝑓 [x̂(𝑖)NL,𝑘−1|𝑘−1] Δ𝑡

+ �̂�

(𝑖)

NL,𝑘−1𝑓 [x̂(𝑖)NL,𝑘−1|𝑘−1]
Δ𝑡

2

2

,

�̂�

(𝑖)

𝑘
=

𝜕𝑓

𝜕x








x=x̂(𝑖)
𝑘

,

𝑃
(𝑖)

NL,𝑘|𝑘−1 = Ω
(𝑖)

𝑘−1
𝑃

(𝑖)

NL,𝑘−1|𝑘−1Ω
(𝑖)
𝑇

𝑘−1
+ 𝑄𝑘−1,

Ω
(𝑖)

𝑘−1
= 𝐼 + �̂�

(𝑖)

NL,𝑘−1,

(39)

(b) measurement residual: �̃�
(𝑖)

NL,𝑘 = 𝑧NL,𝑘 −

𝐻NLx̂
(𝑖)

NL,𝑘|𝑘−1 − ]𝑘,

(c) residual covariance: 𝑆(𝑖)NL,𝑘 = 𝐻NL𝑃
(𝑖)

NL,𝑘|𝑘−1𝐻
𝑇

NL −

𝑅𝑘,
(d) filter gain: 𝐾(𝑖)

NL,𝑘 = 𝑃
(𝑖)

NL,𝑘|𝑘−1𝐻
𝑇

NL(𝑆
(𝑖)

NL,𝑘)
−1,

(e) update of state and covariance:

x̂(𝑖)NL,𝑘|𝑘 = x̂(𝑖)NL,𝑘|𝑘−1 + 𝐾
(𝑖)

NL,𝑘�̃�
(𝑖)

NL,𝑘,

𝑃
(𝑖)

NL,𝑘|𝑘 = 𝑃
(𝑖)

NL,𝑘|𝑘−1 − 𝐾
(𝑖)

NL,𝑘𝑆
(𝑖)

NL,𝑘𝐾
(𝑖)
𝑇

NL,𝑘.

(40)

(vii) Mode probability update (for 𝑖 = 1, 2, . . . ,𝑀):

(a) mode likelihood:

Λ
(𝑖)

NL,𝑘 ≜ 𝑝 [𝑧
(𝑖)

NL,𝑘 | 𝑚
(𝑖)

𝑘
, 𝑍NL,𝑘−1]

assume
= N (𝑧

(𝑖)

NL,𝑘; 0, 𝑆
(𝑖)

NL,𝑘) ,

(41)

(b) mode probability: 𝜇
(𝑖)

NL,𝑘 = 𝜇
(𝑖)

NL,𝑘|𝑘−1Λ
(𝑖)

NL,𝑘/

(∑
𝑗
𝜇
(𝑗)

NL,𝑘|𝑘−1Λ
(𝑗)

NL,𝑘).

(viii) Combination (for 𝑖 = 1, 2, . . . ,𝑀):

x̂NL,𝑘|𝑘 = ∑

𝑖

x̂(𝑖)NL,𝑘|𝑘𝜇
(𝑖)

NL,𝑘,

�̂�

(𝑖)

NL,𝑘|𝑘 = ∑

𝑖

[𝑃
(𝑖)

NL,𝑘|𝑘

+ (x̂NL,𝑘|𝑘 − x̂(𝑖)NL,𝑘|𝑘) (x̂NL,𝑘|𝑘 − x̂(𝑖)NL,𝑘|𝑘)
𝑇

] 𝜇
(𝑖)

NL,𝑘.

(42)

The nonlinearMMS of time delayed slaving data is completed
by propagating the combined estimate based on the current
mode’s estimated vector such that

x̂NL,𝑘+𝑠|𝑘 = x̂NL,𝑘|𝑘 + 𝑓 [x̂NL,𝑘|𝑘] ⋅ 𝑠 + �̂�NL,𝑘𝑓 [x̂NL,𝑘|𝑘]

⋅

𝑠
2

2

,

(43)

where 𝑠 is a lead-time for synchronization (𝑠 = 𝑛 ⋅ Δ𝑡). If the
SLV is in the PFP (𝜇(1)

NL,𝑘 > 𝜇
(2)

NL,𝑘), the current state estimate
includes the thrust term; that is, the state vector xNL,𝑘 =

[𝑥𝑘 𝑦𝑘 𝑧𝑘 �̇�𝑘 �̇�
𝑘

�̇�𝑘 𝜉𝑘 𝜏𝑘]
𝑇. If the SLV is not in the PFP,

the state vector does not include the thrust term (𝜏𝑘 = 0).

5. Simulation Results

To demonstrate the performance of the proposed synchro-
nization approaches for delayed slaving data, we simulated
the SLV tracking problem based on the nominal flight tra-
jectory of the Korea Space Launch Vehicle-I (KSLV-I). In the
simulation, the radar measurement noise intensities of (12)
are selected as 𝜎𝑟 = 15m, 𝜎𝜑 = 0.01 deg, and 𝜎𝜃 = 0.01 deg.
The nominal flight sequence of KSLV-I is as follows. First, the
payload fairing separates during the first stage flight at 215.4 s.
After the first stage engine shutdown at 228.7 s, the upper
stage separates from the first stage and enters the CFP. The
second stage continues in the CFP until the kick motor igni-
tion at 395 s, and the vehicle then enters the PFP. At the end
of kickmotor combustion (452.7 s), the upper stage enters the
target orbit in CFP as in the previous separation. Finally, the
satellite is inserted into the target orbit after it separates from
the upper stage during CFP at 540 s. Since delayed slaving
data from the MCS to the TSs can occur in both the PFP and
CFP, synchronization simulations are conducted at arbitrary
points of the flight phases. Figure 4 shows the synchroniza-
tion error of the delayed slaving data with respect to the
benchmark and the proposed approaches for delays of 𝑠 =

0.1, 0.2, . . . , 1 s. Figures 4(a)–4(c) illustrate synchronization
errors, where delayed slaving data occurred at 155 s, which is
the first stage of PFP, and Figures 4(d)–4(f) show synchro-
nization errors, where delayed slaving data occurred at 280 s,
which is the first stage of CFP. As shown in Figures 4(a)–4(c),
the extrapolation and𝛼-𝛽-𝛾filter-based approach cannot find
the proper synchronized slaving data. The synchronization
errors of these approaches exponentially increase according
to increasing delay 𝑠; in particular, the error of the extrapo-
lation approaches an out-of-figure bound (2500m). On the
other hand, the Kalman prediction and the proposed
approaches have stable synchronization errors even if the
delay time 𝑠 is larger. Furthermore, we can observe that
the errors in the synchronization approach of the Kalman
prediction are relatively larger than the proposed approaches,
especially in the PFP. As explained in the flight sequence of
KSLV-I, in general, the motion of the SLV is described by
multiple dynamics (in our case PFP and CFP) rather than
single dynamics. However, the dynamic model of the KF and
prediction capability used in this paper is the constant accel-
eration (CA) model. This means that the filter is optimized
with respect to CAmotion, which is actually not occurring in
our application. This is why the performance of the Kalman
prediction-based synchronization is worse than the proposed
approaches. Nonetheless, we can see that the 𝑦-axis synchro-
nization errors shown in Figures 4(b) and 4(e) are small.
This result is observed because the 𝑦-axis motion of KSLV-
I in a local coordinate is relatively smaller than the other
axis motion, and the CA model approximately expresses this
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Figure 4: Synchronization errors at PFP and CFP.
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small motion. A single KF prediction model cannot exactly
describe the motion of both PFP and CFP, whereas the
proposed multiple model-based approaches work well. As
shown in Figure 4, regardless of the delay 𝑠, the proposed
multiplemodel-based approaches find synchronized position
vectors. In the comparison of synchronization performance
between linear IMM and nonlinear IMM synchronization,
the nonlinear IMM-based synchronization approach shows
the best performance, except for 𝑦-axis, where CA motion is
dominant. In addition, the difference between the proposed
multiple model-based approaches is very small as shown in
Figure 4, but the complexities of the algorithms for real-time
applications are quite dissimilar. Hence, the operator may
adaptively select one of the proposed approaches according
to one’s environment.

6. Conclusions

In this paper, we investigated the time synchronization
approaches of delayed slaving data in the RSS for SLV track-
ing.One of themost important roles of the RSS is to distribute
slaving data to each TS for continuous tracking of the SLV. If
there is a critical network delay resulting in time delayed slav-
ing data being sent to each TS, theMCS will not receive accu-
rate SLV tracking data. This problem can give rise to signifi-
cant difficulties for the SLVmission progress and analysis. To
overcome this problem,we proposedMMSapproacheswhich
take advantage of the multiple motion models of an SLV.The
linear IMM-based synchronization approach was developed
using Singer’s model with ternary uniform mixtures and the
nonlinear IMM-based synchronization approachwas derived
from a nonlinear ballistic model with a drag coefficient. For
verification of the proposed algorithms, SLV tracking simu-
lations using KSLV-I and the radar measurement data gen-
erated from nominal trajectory were conducted. To demon-
strate the superiority of time synchronization performance
in these simulations, we compared the proposed algorithm
with benchmark approaches for absolute error between the
nominal trajectory data and the synchronized slaving data;
the simulation results demonstrated that the proposed MMS
approaches performed competitively.
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