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The compressive strength of shale is a comprehensive index for evaluating the shale strength, which is linked to shale well borehole
stability. Based on correlation analysis between factors (confining stress, height/diameter ratio, bedding angle, and porosity) and
shale compressive strength (Longmaxi Shale in Sichuan Basin, China), we develop a dimension analysis-basedmodel for prediction
of shale compressive strength. A nonlinear-regression model is used for comparison. A multitraining method is used to achieve
reliability of model prediction. The results show that, compared to a multi-nonlinear-regression model (average prediction error
= 19.5%), the average prediction error of the dimension analysis-based model is 19.2%. More importantly, our dimension analysis-
based model needs to determine only one parameter, whereas the multi-nonlinear-regression model needs to determine five. In
addition, sensitivity analysis shows that height/diameter ratio has greater sensitivity to compressive strength than other factors.

1. Introduction

Shale compressive strength is an important parameter that
reflects the shale brittleness, and thus it is used as a
comprehensive index to evaluate the stability of shale well
boreholes. Most shale types have flaky bedding which is
obviously anisotropic, which affects the performance of the
rock strength. Thus, the physical properties of shale strongly
affect the shale compressive strength. A common way to
evaluate the effect of rock properties on rock strength is to
carry out triaxial compressive experiments in the laboratory
and then to analyze the relation between factors and rock
strength. Knowledge of the shale anisotropy is vital for
borehole instability issues [1, 2]. A total of three triaxial
tests with different sample orientations (i.e., 0, 45, 60, and
90∘), including Brazilian tests and CT scans, were used to
investigate how the bedding angle affects the shale strength
[3]. In particular, Lyu et al. [4] present an experimental
study of the effects of bedding planes on the mechanical

properties of Chinese shale samples (Sichuan Basin, China).
Hudson et al. [5] carried out uniaxial compression tests
of marbles of different sizes to obtain the rock strength
with the aspect to the height/diameter ratio. It was found
that an increase of the height/diameter ratio reduced the
rock strength until it reached a relatively stable value. Hoek
[6] suggests that this reduction in strength is due to the
increased probability that failure of rock grains will occur
as the specimen size increases. Pells [7] found that 150mm
specimens have strength of around 85% of that of 50mm
specimens. Darlington et al. [8] found that the multifractal
scaling law (MFSL)model most closely predicts the strength-
size relationship in rock and cementitious materials. Li and
Aubertin [9] showed that increases in porosity within the
rock reduce the compressive, tensile, and shear strengths of
the intact rock. Similar results were also obtained by Chang et
al. [10], Horsrud [11], and Lashkaripour and Dusseault [12]. It
is comprehensively accepted that an increase of the confining
stress improves the rock compressive strength; for example,
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Figure 1: Information on shale specimen: (a) tectonic map, (b) shale specimen, (c) specimens with different bedding angles, (d) specimens
with different porosities, and (e) specimens with different ratios of height/diameter ratio.

Liang et al. [13] found that the elastic modulus of bedded
salt rock increases with an increase in the confining stress.
Lal [14] focused especially on the similar relation between
confining stress and compressive strength. In summary, it
is considered that the main factors of porosity, geometry,
bedding angle, and confining stress affect the shale compres-
sive strength. Therefore, considering the effect of only one
factor on the shale strength may not reflect the true shale
strength. Currently, rock strength predictionmainly depends
on a multi-nonlinear-regression model [15, 16]. This type
of method requires the determination of many parameters
and has less physical meaning. In our study, we consider the
shale specimens from the Longmaxi Shale in Sichuan Basin,
China, by carrying out a correlation analysis between the
main factors (confining stress, height/diameter ratio, bedding
angle, and porosity) and the shale compressive strength.
A dimension analysis-based model is developed to predict
the shale compressive strength. Amulti-nonlinear-regression
model based on the same data is used for comparison.

2. Shale Specimen and Experiments

2.1. Introduction of Shale Origin and Shale Specimens. The
Sichuan Basin is a prolific hydrocarbon region and is cur-
rently China’s largest gas-producing region. The Longmaxi
region in this study is located at the margin of the southern
Sichuan Basin. The Sichuan Basin, located in the west of the
Yangtze metaplatform tectonically, is large and tectonically
stable.The strata are of the South China type, with a complete
regional sedimentary rock exposed from a Presinian system
to a Quaternary system, whose sedimentary cover thickness
is approximately 6000 to 12,000m from the Paleozoic to
Cenozoic. The Longmaxi Formation (shale) distribution is
determined based on the depositional environment and the
subsequent erosional events related to the tectonic history.
The Longmaxi black shale is the most organically rich part of

the Lower Silurian.The Longmaxi Formation has a thickness
ranging from 229.2 to 672.5m. The stratigraphy consists
of black shale, black and dark/grey shale, dark grey shale,
and silty mudstone, mainly comprising carbonaceous and
clay shale. Shale samples are from the “Longmaxi Shale”
in Sichuan Basin, China (Figure 1(a)). There are 93 shale
specimens. All of the shale specimens have a diameter of
25mm and a height between 34.5 and 54mm. The bedding
angles considered are 0, 15, 30, 45, 60, 75, and 90∘, respectively.
The range of porosity is from 1.7 to 5.4% (Figures 1(b)–1(e)).
The shale samples generally belong to black shale, also called
carboniferous shale. The variety of shale contains abundant
organic matter, pyrite, and sometimes carbonate nodules
or layers as well as, in some locations, concentrations of
copper, nickel, uranium, and vanadium. Black shale is of
interest commercially since it is a potentially valuable source
of synthetic crude oil and plays an important role in oil-shale
formation. In this study, X-ray diffraction (XRD) analysis
was used to analyze the mineral components of shale (a
total of 20 samples). The relative contents of minerals in
the composition and the clay mineral content are shown
in Figure 2. A comparison of the mineral compositions of
the “Longmaxi” and “North American” shale formations is
shown in Figure 3 (the statistical data for Bossier Shale, Ohio
Shale, and West Texas Woodford/Barnett are from [17–21]).

2.2. Experimental Devices. We used an RTR-1000 triaxial
testing machine (GCTS, USA) for the compressive strength
tests. An HK GP-3 type porosity analyzer was used for
porosity measurements. An X’Pert Pro powder X-ray diffrac-
tometer (from PANalytical) was used for the XRD analysis.

3. Correlation Analyses

The relation between height and diameter (1.62–1.94) and
compressive shale strength is shown in Figure 4(a). The
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Figure 2: Analysis of mineral composition: (a) the relative contents of minerals in the composition; (b) clay mineral content.
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Figure 3: Comparison of the mineral compositions of shale forma-
tions (the statistical data for Bossier Shale, Ohio Shale, and West
Texas Woodford/Barnett are taken from [17–21]).

bedding angles of specimens are 30∘ and the porosity is
∼1.9%. The confining stress is 0MPa. The relation between
porosity (1.7–5.3%) and compressive shale strength is shown
in Figure 4(b). The bedding angle of these specimens is
0∘ and the confining stress is 0MPa. The height/diameter
ratio is 2. The relation between confining stress (0–30MPa)
and compressive shale strength is shown in Figure 4(c). The
bedding angle of these specimens is 15∘ and the porosity is

∼1.9. The height/diameter ratio is 2. The relation between
confining stress (0–90∘) and compressive shale strength is
shown in Figure 4(d).The porosity of specimens is ∼1.9% and
the confining stress is 13.5MPa. The height/diameter ratio is
2.

4. Dimension Analysis-Based Model

4.1. Model Construction. The compressive strength (𝑅), con-
fining stress (𝑃), diameter (𝑑), bedding angle (𝐷), height (𝐿),
and porosity (𝜙) were employed to construct the compressive
strength prediction model. According to the law of dimen-
sional homogeneity, (1) the above factors are denoted as
𝑥

1
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2
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Figure 4: Correlation analysis: (a) height/diameter ratio versus compressive strength; (b) porosity versus compressive strength; (c) confining
stress versus compressive strength; (d) bedding angle versus compressive strength.
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Thus the final expression is as follows:
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Figure 5: Working principle of multitraining and prediction (𝑖 = 1

means that the first six datasets were used for prediction validation,
and the rest of the data were used as the training model; 𝑖 = 2means
that the second six datasets were used for prediction validation, and
the rest of the data were used as the training model; . . ., 𝑖 = 6means
that the last six datasets were used for prediction validation, and the
rest of the data were used as the training model).

Considering the correlation analysis before, (8) can be mod-
ified to give
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where 𝑘 is the coefficient, which can be determined by data
training.

4.2. Prediction of Model. We randomly chose 36 groups of
data as a database for coefficient training (30 groups of data)
and validation of the model (six groups of data). In order to
increase the reliability of model prediction, we carry out the
multitraining and prediction as shown in Figure 5.

Ordinary Least Squares (see (10)) is used to calculate the
coefficient:
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The results of training are as shown in Figure 6. The average
fitting error is 18.4% and 𝑘 = 13.17.

Figure 7 shows the seven groups of prediction errors of
the model and the average error is 19.2%.

5. Multi-Nonlinear-Regression
Model for Comparison

5.1. Multi-Nonlinear-Regression Model. The compressive
strength (𝑅), confining stress (𝑃), height/diameter ratio (𝜆),

bedding angle (𝐷), and porosity (𝜙) are employed to cons-
truct the multi-nonlinear-regression model for compressive
strength prediction as expressed by
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where 𝑏
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are the object coefficients.
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Figure 6: Continued.
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Figure 6: Multitraining results: (a) training on the first group of data; (b) training on the second group of data; (c) training on the third group
of data; (d) training on the fourth group of data; (e) training on the fifth group of data; (f) training on the sixth group of data; (g) training on
the seventh group of data.

5.2. Prediction of Model. We still use the database for
multitraining and prediction as shown in Figure 5. Ordinary
Least Squares (see (12)) is used to calculate the coefficients:
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The results of training are as shown in Figure 8. The average
fitting error is 19.7% and the values of 𝑏

0
, . . . , 𝑏

4
are −35.3,

3254.8, 250.9, 3.0, and 0.2, respectively.
Figure 9 shows the seven groups of the prediction errors

of the model, and the average error is 19.7%.

6. Discussion
6.1. Comparison of Two Models. The average error of the
dimension analysis-based model is lower than that of the
multi-nonlinear-regression model. More importantly, the
dimension analysis-based model only needs to train one
parameter, whereas the multi-nonlinear-regression model
needs to train five. Besides, the multi-nonlinear-regression
model comes purely from the data fittingwhile the dimension
analysis-based model considers more physical meanings
between the factors and model output. However, for both
models, the size of the training data will limit the accuracy of
prediction. In other words, the model prediction ability will
be further improved by the use of more training data.

6.2. Sensitivity Analysis. A sensitivity analysis was conducted
to identify which input parameters have the greatest effect on

the model results and to understand the relative importance
of the parameters for the predicted outcomes. The sensitivity
values are based on the ratio of the change in the model
outcome if themodel input is varied [22].We chose 30 groups
of data as the database for the sensitivity analysis. These data
are transformed into dimensionless numbers (between 0 and
1). Three of main factors remain constant at 0.5 while the
other factor begins to increase from 0 to 1.The results of both
models are shown in Figure 10.

Obviously, the height/diameter ratio has greater sensitiv-
ity to compressive strength than the other factors.The friction
effect of the end surface of the rock sample influences the
compressive strength of rock, since the frictional effects pro-
duce a nonuniform distribution of the internal stress of the
rock sample.When the height/diameter ratio of a rock sample
is small, a three-dimensional stress state is more obvious
within the rock, and therefore it has high strength; when the
height/diameter ratio reaches 2 : 1, the internal stress distribu-
tion becomes quite even.At thismoment, the height/diameter
ratio of the rock does not affect the rock strength very much.
Thus, the sensitivity of height/diameter ratio to compressive
strength shows an increase first and then decreases. The
degree of sensitivity to the compressive strength of shale of
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the other parameters, namely, the porosity, bedding direction,
and confining pressure, remains almost the same.The value of
the rock porosity reflects the density of the rock. The greater
the porosity of the rock, the lower the compressive strength.
Not only does the effect of porosity on compressive strength
reflect the size of porosity’s impact, but more importantly,
due to the directional distribution of the pores, the rock
compressive strength shows anisotropy. To some extent, the
pores lead to the anisotropic and heterogeneous distribution
of shale bedding, resulting in different bedding directions
in the shale. Interaction between porosity and anisotropic
bedding may lower their sensitivity, respectively. Due to the
increase of confining pressure, rock fissures are compacted,
limiting the brittle damage of rock. Thus, the compressive
strength of shale increases. However, a limited number of
fractures would reduce the effect of the confining pressure on
compressive strength. It is impossible to cause a substantial
increase in compressive strength by increasing the confining
pressure. As a result, there is a lower sensitivity to confining
pressure.

6.3. Model Calculations of Peak Strength Coupled with Strain.
In the case of compressive loading, the strong bonds between
atoms are responsible for the high compressive strength of
brittle materials. Material with higher brittleness tolerates a
higher level of pressure without the occurrence of fracture
[23, 24]. On the other hand, ductile material accommodates
more plastic deformation, and thus brittle material produces
less deformation under compressive stress [25]. Thus,

𝐵 ∝

𝑅

𝜀

𝑝

, (13)

where 𝜀
𝑝
is the peak strain according to peak strength (stress).

𝐵 is proportional to brittleness.
Figure 11 shows the correlation between peak strength/

strain and the other factors (height/diameter ratio, porosity,
bedding angle, and confining stress). Figure 12 demonstrates

the prediction of the value of “𝐵” by the multi-nonlinear-
regression and dimension analysis models. It is found that
there is still no large difference in prediction accuracy,
although the dimension analysis model has a simpler struc-
ture than the nonlinear-regression model.

6.4. Limitations of Our Study. This study does not consider
the disturbance loading in the project, such as dynamic and
cyclic loads [26]. In addition, the method still needs a large
number of test data to achieve better reliability. Finally, the
model is mainly aimed at sedimentary rock such as shale and
not at other rock types such as marble or granite.

7. Conclusions

Based on the compressive experiments on shale samples from
Sichuan Basin, China, we developed a dimension analysis
model for the prediction of shale peak strength. This model
mainly considered the height/diameter ratio, porosity, con-
fining stress, and bedding angle as the impact factors. Com-
pared to the commonly used nonlinear-regression model,
some valuable conclusions are as follows:

(1) The prediction ability of the dimension analysis-
based model is not obviously different, but it has
a much simpler structure than the multi-nonlinear-
regression model in the estimation of shale compres-
sive strength.

(2) Multitraining and prediction can be used to increase
and evaluate the reliability of modeling work.

(3) Height/diameter ratio has more sensitivity to com-
pressive strength than other factors.The sensitivity of
height/diameter ratio to compressive strength shows
first an increase and then a decrease.

(4) With regard to the peak strength/strain (brittleness
related), the prediction ability of both the nonlinear-
regression model and the dimension analysis-based
model decreased.
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Figure 8: Continued.
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Figure 8: Multitraining results: (a) training on the first group of data; (b) training on the second group of data; (c) training on the third group
of data; (d) training on the fourth group of data; (e) training on the fifth group of data; (f) training on the sixth group of data; (g) training on
the seventh group of data.

1 2 3 4 5 6 7
Prediction group

Model prediction

0.00

5.00

10.00

15.00

20.00

25.00

Av
er

ag
e e

rr
or

 (%
)

Figure 9: Prediction error of multi-nonlinear-regression model.
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Figure 10: Sensitivity analysis of both models: (a) dimension analysis-based model; (b) multi-nonlinear-regression model.
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Figure 11: Correlation analysis: (a) height/diameter ratio versus peak strength/strain; (b) porosity versus peak strength/strain; (c) confining
stress versus peak strength/strain; (d) bedding angle versus peak strength/strain.
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