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This article details a new optimizing algorithm called Adaptive Chaotic Mutation Particle Swarm Optimization (ACM-PSO). The
new algorithm is used to perform aerodynamic parameter estimation on a spinning symmetric projectile.Themain creative ideas of
this new algorithm are as follows. First, a self-adaptiveweight function is used so that the inertial weight can be adjusted dynamically
by itself. Second, the initialized particle is generated by chaos theory. Last, amethod that can be used to judge whether the algorithm
has fallen into a local optimum is established.The common testing function is used to test the new algorithm, and the result shows
that, compared with the basic particle swarm optimization (PSO) algorithm, it is more likely to have a quick convergence and high
accuracy and precision, leading to extensive application. Simulated ballistic data are used as testing data, and the data are subjected
to the new algorithm to identify the aerodynamic parameters of a spinning symmetric projectile.The result shows that the algorithm
proposed in this paper can effectively identify the aerodynamic parameters with high precision and a quick convergence velocity
and is therefore suitable for use in actual engineering.

1. Introduction

Artillery forms an important wing of the army in providing
firepower during both war and cross-border skirmishes
with an enemy. The traditional artillery shell aeroballistic
theory has been developed over several years, and it is an
important part of the field of aerodynamics. The accuracy
of an artillery shell is an important indicator that is used
to estimate its effectiveness. The mathematical models of an
artillery shell have often been used for predicting its behav-
ior and flight performance from a conventional approach
[1].

The estimation of aerodynamic parameters in the pre-
liminary design stage for vehicles, such as airplanes, mis-
siles, and gun-launched weapons by theoretical methods is
very useful. Computational fluid dynamics has recently [2]
positively influenced the analytical scenario by providing
numerical solutions of the total configuration via sophisti-
cated Euler and Navier-Stokes flow solvers. Several methods
based on experimental approaches are essential to validating

the analytical result. Although wind tunnel experiments
have been used to improve the precision of the estimated
parameters, it is difficult to simulate the right flight conditions
and weather circumstances. Moreover, the vehicle model
tested in the tunnel is slightly different from the actual model
used in flight due to last-minute changes [3]. Consequently,
an analysis guided by flight data appears to be the best
option [4]. Aerodynamic parameter identification is themost
developed field in conventional aircraft system identification
and has been successfully applied to aircraft and missiles
[5]. Suk et al. [6] used maximum likelihood estimation and
the extended Kalman filter to identify the system of a UAV
in 2003. Tang et al. [7] used a numerically robust least-
squares estimator in the frequency domain to identify the
aircraft flutter modal parameters in 2008. Burchett [8] used
an improved gradient-based method to estimate the aerody-
namic coefficients of a projectile from flight range data. Singh
and Ghosh [9] used the neural network method to identify
the aerocoefficients. Wu et al. [10] designed signals to excite
the longitudinal motion of a fly-by-wire passenger airliner to
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identify the aerodynamic parameters in 2013. However, there
have been few studies on spinning symmetric projectiles
in recent years. Intelligent identification algorithms have
been widely used in the field of aerodynamic coefficient
identification with the development of optimization theories
[11].

This paper proposes a new PSO algorithm to strengthen
the properties of the basic PSO. The new algorithm is then
used to identify the aerocoefficients of a spinning projec-
tile. The paper is organized as follows. Section 1 introduces
the background of gun-launched projectile aerodynamic
parameter identification. Section 2 presents themathematical
modeling of a spinning projectile with 6 degrees of freedom.
Section 3 gives the algorithm for the basic PSO and ACM-
PSO. Section 4 uses some testing functions to verify the
performance of the ACM-PSO. Section 5 uses ACM-PSO to
identify the aerodynamic parameters using simulated data.
Section 6 is the conclusion.

2. Modeling

To acquire a more precise description of the motion of
a spinning projectile, six-degree-of-freedom flight dynamic
equations are used in this paper. The detailed expressions of
these equations are as follows:

𝑑V
𝑑𝑡

=
1

𝑚
(−

𝜌V
𝑟

2
𝑆𝑐
𝑥0
(V − 𝑤

𝑥2
) −

𝜌V
𝑟

2
𝑆𝑐
𝑥2
𝛿
2

𝑟
(V − 𝑤

𝑥2
)

+
𝜌𝑆

2
𝑐
𝑦

V2
𝑟
cos 𝛿
2
cos 𝛿
1

sin 𝛿
𝑟

−
𝜌𝑆

2
𝑐
𝑦

V
𝑟𝜀
(V − 𝑤

𝑥2
)

sin 𝛿
𝑟

−
𝜌V
𝑟

2

⋅ 𝑆𝑐
𝑧

𝑤
𝑧2
cos 𝛿
2
sin 𝛿
1

sin 𝛿
𝑟

+
𝜌V
𝑟

2
𝑆𝑐
𝑧

𝑤
𝑦2
sin 𝛿
2

sin 𝛿
𝑟

− 𝑚𝑔

⋅ sin 𝜃
𝑎
cos𝜓
2
) ,

𝑑𝜃
𝑎

𝑑𝑡
=
1

𝑚
⋅ (

𝜌V
𝑟
𝑆𝑐
𝑥
𝑤
𝑦2

2V cos𝜓
2

+
𝜌𝑆𝑐
𝑦
(V2
𝑟
cos 𝛿
2
sin 𝛿
1
+ V
𝑟𝜁
𝑤
𝑦2
)

2V cos𝜓
2
sin 𝛿
𝑟

−
𝜌V2
𝑟
𝑆𝑐


𝑦
𝛿
𝑁
cos 𝛾
1

2V cos𝜓
2

+
𝜌V
𝑟
𝑆𝑐
𝑧
[(V − 𝑤

𝑥2
) sin 𝛿

2
+ 𝑤
𝑧2
cos 𝛿
2
cos 𝛿
1
]

2V cos𝜓
2
sin 𝛿
𝑟

−
𝑚𝑔 cos 𝜃

𝑎

V cos𝜓
2

+
2Ω
𝐸
𝑚V

V cos𝜓
2

(sin𝜓
2
cos 𝜃
𝑎
cosΛ cos𝛼

𝑁

+ sin 𝜃
𝑎
sin𝜓
2
sinΛ + cos𝜓

2
cosΛ sin𝛼

𝑁
)) ,

𝑑𝜓
2

𝑑𝑡
=
1

𝑚
(
𝜌V
𝑟

2V
𝑆𝑐
𝑥
𝑤
𝑧2
+
𝜌𝑆

2V
𝑐
𝑦

1

sin 𝛿
𝑟

[V2
𝑟
sin 𝛿
2

+ V
𝑟𝜁
𝑤
𝑧2
] −

𝜌V2𝑆𝑐
𝑦
𝛿
𝑁
sin 𝛾
1

2V
+
𝜌V
𝑟

2V
𝑆𝑐
𝑧

⋅
1

sin 𝛿
𝑟

(−𝑤
𝑦2
cos 𝛿
2
cos 𝛿
1
) −

𝜌V
𝑟

2V
𝑆𝑐
𝑧

1

sin 𝛿
𝑟

(V

− 𝑤
𝑥2
) cos 𝛿

2
sin 𝛿
1
+
1

V
𝑚𝑔 sin 𝜃

𝑎
sin𝜓
2

+ 2Ω
𝐸
𝑚(sinΛ cos 𝜃

𝑎
− cosΛ sin 𝜃

𝑎
cos𝛼
𝑁
)) ,

𝑑𝜔
𝜀

𝑑𝑡
=
1

𝐶
[−

𝜌𝑆𝑙𝑑

2
𝑚


𝑥𝑧
V
𝑟
𝜔
𝜀
+
𝜌V2
𝑟

2
𝑆𝑙𝑚


𝑥𝑤
𝛿
𝑓
] ,

𝑑𝜔
𝜂

𝑑𝑡
=
1

𝐴
[
𝜌𝑆𝑙

2
V
𝑟
𝑚
𝑧

1

sin 𝛿
𝑟

V
𝑟𝜁
−
𝜌𝑆𝑙𝑑

2
V
𝑟
𝑚


𝑧𝑧
𝜔
𝜂
−
𝜌𝑆𝑙𝑑

2

⋅ 𝑚


𝑦

1

sin 𝛿
𝑟

𝜔
𝜀
V
𝑟𝜂
−
𝜌V2𝑆𝑙𝑚

𝑧
𝛿
𝑀
sin 𝛾
2

2
] −

𝐶

𝐴
𝜔
𝜀
𝜔
𝜁

+ 𝜔
2

𝜁
tan𝜑
2
,

𝑑𝜔
𝜁

𝑑𝑡
=
1

𝐴
[
𝜌𝑆𝑙

2
V
𝑟
𝑚
𝑧

1

sin 𝛿
𝑟

V
𝑟𝜂
−
𝜌𝑆𝑙𝑑

2
V
𝑟
𝑚


𝑧𝑧
𝜔
𝜁
−
𝜌𝑆𝑙𝑑

2

⋅ 𝑚


𝑦

1

sin 𝛿
𝑟

𝜔
𝜀
V
𝑟𝜁
+
𝜌V2𝑆𝑙𝑚

𝑧
𝛿
𝑀

2
] +

𝐶

𝐴
𝜔
𝜀
𝜔
𝜂
− 𝜔
𝜂
𝜔
𝜁

⋅ tan𝜑
2
,

𝑑𝜑
𝑎

𝑑𝑡
=

𝜔
𝜁

cos𝜑
2

,

𝑑𝜑
2

𝑑𝑡
= −𝜔
𝜂
,

𝑑𝛾

𝑑𝑡
= 𝜔
𝜀
− 𝜔
𝜁
tan𝜑
2
,

𝑑𝑥

𝑑𝑡
= V cos𝜓

2
cos 𝜃
𝑎
,

𝑑𝑦

𝑑𝑡
= V cos𝜓

2
sin 𝜃
𝑎
,

𝑑𝑧

𝑑𝑡
= V sin𝜓

2
.

(1)
The physical meanings of each variable in (1) and other

unlisted equations can be found in [12].

3. Algorithm

3.1. Particle SwarmOptimization (PSO). Particle swarm opti-
mization [13] is an intelligent optimization algorithm that
was proposed by Kenny and Eberhart in 1995. PSO is a
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population-based optimization tool that could be used to
solve several function optimization problems or problems
that can be transformed to function optimization prob-
lems. Compared with other global optimization algorithms,
like Genetic Algorithms or Simulated Annealing, the main
strength of PSO is its fast convergence. PSO is inspired by the
migration and aggregation of bird flocks as they seek foods.
PSO is initialized with a population of random solutions
[14]. The potential solutions called particles fly through the
problem space by following the current optimum particles.
Each particle keeps track of its coordinates in the problem
space, which are associated with the best solution achieved
so far.This value is called 𝑝𝑏𝑒𝑠𝑡. Another value that is tracked
by the particle swarm optimizer is the best value obtained
so far by any particle in the neighborhood of the particle.
This value is called 𝑙𝑏𝑒𝑠𝑡. The particle also takes the entire
population as its topological neighbors, and the best value
is a global best, which is called 𝑔𝑏𝑒𝑠𝑡. The position of an
individual particle is adjusted according to its own previous
searching experience. The best solution is determined by its
objective function value. The general procedure of PSO is as
follows.

Step 1 (determination of necessary parameters). The main
parameters of a basic PSO include the population size 𝑁,
particle dimensions 𝐷, inertial weight 𝑤, personal cognition
coefficient 𝑐

1
, social cognition coefficient 𝑐

2
, and maximum

iterated generations 𝑘max.

Step 2 (initialization). The initialized particles are generated
by the methods of randomization. For each particle, both its
position and velocity must be initialized.

Step 3 (position and velocity changes). The position of a
particle is influenced by its velocity. Let x

𝑖
(𝑘) denote the

position of particle 𝑖 in the solution space at time step
𝑘. Through adding the velocity k

𝑖
(𝑘) as shown in formula

(2), the position is updated. The velocity-updating law is
described in formula (3):
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where k
𝑖
(𝑘) and x
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(𝑘) represent the particle’s previous speed

and position, respectively. k
𝑖
(𝑘 + 1) and x
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particle’s current speed and position, respectively. 𝑤 is the
inertial weight coefficient; 𝑟

1
and 𝑟
2
are random numbers that

are in the range of [0, 1]; and 𝑐
1
and 𝑐
2
are the personal and

social cognitive coefficients, which have fixed values in the
basic PSO. p

𝑖
(𝑘) is the previous individual best position of

particle 𝑖, and p
𝑔
(𝑘) is the previous best particle position for

all of the particles.

Step 4 (calculation of the fitness function). Calculate each
particle’s fitness value, and update p

𝑖
(𝑘) if the current fitness

value of the 𝑖th particle is better than the previous value.
Compare the fitness value of each particle with its p

𝑖
(𝑘), and if

the current value is better, update p
𝑔
(𝑘). p
𝑔
(𝑘) can be updated

as shown in

p
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(𝑘)) | 𝑖 = 1, 2, . . . , 𝑁} , (4)

where 𝑓(⋅) denotes a fitness function.

Step 5 (termination). Stop the algorithm if the stopping
condition is satisfied; if not, go to Step 3.

3.2. Adaptive Chaotic Mutation Particle Swarm Optimization.
The classical PSO is widely used in the area of function
optimization, parameter identification, and control system
design. PSO has advantages including simple computation
and quick convergence but also some disadvantages. For
example, long computation times, undispersed initial parti-
cles, and easing to fall into local optimum. To address these
problems, a modified PSO called Adaptive Chaotic Mutation
Particle SwarmOptimization (ACM-PSO) is proposed in this
paper. The new algorithm has specific powers, such as short
computation time; the generated initial particles will be more
dispersed in the solution space and more likely to have a
global optimization.

3.2.1. Adaptive Inertial Weight. The inertial weight 𝑤 in
(3) is employed to manipulate the impact of the previous
history of the velocities on the current velocity [15]. The
inertial weight resolves the tradeoff between the global and
local exploration abilities of the swarm. Many researchers
have advocated that the value of 𝑤 should be large in the
exploration (global optimization) state and small in the
exploitation (local optimization) state [16]. A large inertial
weight encourages global exploration, while a small one
enhances local optimization, that is, fine-tuning the current
search area. A proper value of the inertial weight supplies the
expected balance between the global and local optimization
abilities of the particles and consequently improves the
effectiveness of the PSO algorithm. It has been shown in
many experiments that a large value for the initialized 𝑤

gives a quick convergence to the global exploration in the
solution space, and 𝑤 gradually decreases to acquire refined
solutions. A new adaptive updating law for the inertial weight
is proposed in this paper:

𝑤
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where 𝑤𝑘
𝑖
denotes the inertial weight of particle 𝑖 in the 𝑘th

generation,𝑤max is the maximum inertial weight, and𝑤min is
the minimum value. Formula (3) can now be rewritten as the
following expression:

k
𝑖
(𝑘 + 1) = 𝑤

𝑘

𝑖
k
𝑖
(𝑘) + 𝑐

1
𝑟
1
(p
𝑖
(𝑘) − x

𝑖
(𝑘))

+ 𝑐
2
𝑟
2
(p
𝑔
(𝑘) − x

𝑖
(𝑘)) .

(6)

The physical meaning of formula (5) can be described as
follows.The larger the generation number 𝑘 is, the smaller the
inertial weight 𝑤𝑘

𝑖
becomes. The norm ‖x𝑘

𝑖
− p𝑘
𝑔
‖ denotes the
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distance between the 𝑖th particle and the global best particle.
When the value is small and the value of 𝑤𝑘

𝑖
is also small, it

means that this particle is near the global solution, and a small
value of 𝑤𝑘

𝑖
enables a refined search to obtain more precise

solutions.

3.2.2. Chaotic Initialization. In the PSO algorithm, the ini-
tialization of particles is usually randomly generated. The
convergence speed of the whole search process and the
optimization efficiency of the algorithm are directly affected
by the initial position of the spread degree and the uniform
characteristic of its position in the search space. It is not likely
for the initialization of particles to be a uniform distribution
if the solution space has a large dimension or only a small
number of particles. Chaos is a common nonlinear phe-
nomenon whose behavior is seemingly complex and random
but actually has strong internal rules. Chaos has features of
randomness, ergodicity, and sensitivity to initial conditions.
An initialization strategy utilizing chaotic theory is used in
this paper. Cubical mapping is selected to produce the initial
sequence. The mathematical form is as follows:
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1
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3.2.3. Premature Judge Criterion. PSO can easily fall into local
optima. In this paper, a mutate operator is introduced to
the classical PSO to enhance the global optimization ability.
When the criterion of premature is satisfied, the mutation
operator is applied to the global optimization particle p𝑘

𝑔
to

make the algorithm jump out of the local convergence. A fit-
ness variance is used to judge whether the local convergence
has occurred. The mathematical form of the fitness variance
𝜎
2 is shown in
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where 𝑓𝑘average is the average fitness value of all of the particles
in the 𝑘th generation. 𝜎2 denotes the convergence degree of
the algorithm. If the value of 𝜎2 is not only smaller than
a set threshold but also larger than the smallest theoretical
fitness variance, we can judge that the algorithm has fallen
into a local convergence. Once the algorithm is in a local
convergence, a mutation operator in accordance with a
certain probability is applied to p𝑘

𝑔
= [𝑝
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(1 + 0.5𝜇) (𝑖 = 1, 2, . . . , 𝐷) , (9)

where 𝜇 is Gaussian white noise.

3.2.4. Procedure of ACM-PSO

Step 1 (determination of relevant parameters). The main
parameters have a population size 𝑁, the dimension of each
particle is 𝐷, the maximum and minimum values of the

inertial weight are 𝑤max and 𝑤min, respectively, the personal
cognitive coefficient is 𝑐

1
, the social cognitive coefficient is 𝑐

2
,

and the maximum iteration generation number is 𝑘max.

Step 2 (initialization of particles). Use themethod detailed in
Section 3.2.2 to generate initial chaotic particles.

Step 3 (update inertial weight). According to formula (5),
update the inertial weight.

Step 4 (update position and velocity). According to formulas
(2) and (6), update the position and velocity.

Step 5 (judge whether the algorithm has fallen into a local
convergence). Use the method detailed in Section 3.2.3 to
judge whether local convergence has occurred. If premature
convergence has occurred, formula (9) can be used to
do a mutation operation to help the algorithm jump out.
Otherwise, go to Step 6.

Step 6 (termination). Stop the algorithm if the stopping
criterion is met; otherwise, go to Step 3.

4. Algorithm Validation

To verify the effectiveness of the ACM-PSO proposed in
this paper, standard testing functions are used. In this paper,
the sphere function 𝑓

1
, Rastrigin function 𝑓

2
, and Schaffer

function 𝑓
3
are used as testing functions. The mathematical

formulas of these functions are as follows:

Sphere function:

𝑓
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=
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Schaffer function:
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− 0.5
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2
, 𝑥
𝑖
∈ [−10, 10]

(12)

The necessary parameters are set as follows: 𝑘max = 1000,
Vmax = 0.3, Vmin = −0.3,𝑤max = 0.9,𝑤min = 0.5, 𝑐1 = 1.49618,
𝑐
2
= 1.49618, and 𝜎2 threshold of 0.05. The testing result is

shown in Table 1.
It can be seen fromTable 1 that the performance of ACM-

PSO is remarkably better than that of classical PSO.
The solution of ACM-PSO is closer to the true value

than that of PSO, and the minimum value, average value,
and variance value are also smaller than those of classical
PSO. The fitness value change with the generation number
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Table 1: Objective values of different testing functions.

Test
function Algorithm Particle number Maximum value Minimum value Average value Variance True

value
Computation time
consumed (s)

Sphere

PSO
𝑁 = 50 0.449 0.0321 0.1295 0.0053 0 1.1822
𝑁 = 100 0.0507 0.0036 0.0183 1.13𝐸 − 04 0 1.5750
𝑁 = 200 0.0089 1.02𝐸 − 04 0.0021 2.70𝐸 − 06 0 2.4435

ACM-PSO
𝑁 = 50 5.89𝐸 − 37 2.37𝐸 − 52 6.46𝐸 − 39 3.48𝐸 − 75 0 0.8866
𝑁 = 100 8.77𝐸 − 44 9.60𝐸 − 58 1.60𝐸 − 45 1.13𝐸 − 88 0 1.1812
𝑁 = 200 9.81𝐸 − 49 2.56𝐸 − 60 1.35𝐸 − 50 1.01𝐸 − 98 0 1.8326

Rastrigin

PSO
𝑁 = 50 0.0703 0.0189 4.46𝐸 − 02 2.23𝐸 − 05 0 1.3238
𝑁 = 100 0.0601 0.0024 0.0182 1.16𝐸 − 04 0 1.7426
𝑁 = 200 0.0084 3.07𝐸 − 04 0.0021 3.12𝐸 − 06 0 2.6602

ACM-PSO
𝑁 = 50 2.1745 1.46𝐸 − 08 0.6807 0.3825 0 0.9928
𝑁 = 100 2.2075 1.73𝐸 − 10 0.5769 0.3643 0 1.3069
𝑁 = 200 2.3464 8.66𝐸 − 12 0.4469 0.3093 0 1.9951

Schaffer

PSO
𝑁 = 50 0.0372 9.70𝐸 − 03 1.03𝐸 − 02 1.50𝐸 − 05 0 1.3453
𝑁 = 100 0.0372 0.0097 0.0100 7.57𝐸 − 06 0 1.7610
𝑁 = 200 0.0097 1.11𝐸 − 16 0.0096 9.44𝐸 − 07 0 2.7522

ACM-PSO
𝑁 = 50 0.0097 0.00𝐸 + 00 6.35𝐸 − 04 5.58𝐸 − 06 0 1.0090
𝑁 = 100 0.0097 0.0000 9.72𝐸 − 05 9.44𝐸 − 07 0 1.3207
𝑁 = 200 0.0000 0.0000 0.0000 0.0000 0 2.0641

ACM-PSO
PSO

0

20000

40000

60000

80000

100000

O
bj

ec
tiv

e f
un

ct
io

n 
va

lu
e

200 400 600 800 10000
Iterated number

Figure 1: Relationship between objective value and generation
number.

is depicted in Figure 1. It can be seen from this figure
that ACM-PSO reaches convergence in approximately the
300th generation, while PSO converges in approximately the
500th generation. The convergence velocity of the former is
higher than that of the latter. In conclusion, the ACM-PSO
proposed in this paper not only can effectively resolve the
problem of function optimization but also provides more
precise solutions. The algorithm can thus meet the needs of
engineering.

5. Projectile Aerodynamic
Parameter Identification

In this paper, ACM-PSO is used to identify the main
parameters of a spinning projectile.The parameters identified
in this paper are the zero-yaw drag coefficient 𝑐

𝑥0
, yaw drag

coefficient 𝑐
𝑥2
, linear lift coefficient 𝑐

𝑦
, and linear overturning

moment coefficient 𝑚
𝑧
. The basic task of parameter identi-

fication is to find a group of parameters that minimize an
objective function.

5.1. Objective Function. The maximum likelihood estimate
(MLE) used in parameter identification is asymptotically
unbiased, asymptotically uniform, and asymptotically effi-
cient. Practice has also proven that MLE is an effective
parameter identification method. Suppose 𝜃 is a parameter
vector that is waiting to be estimated:

𝜃 = [𝑚


𝑧
𝑐
𝑥0

𝑐
𝑥2

𝑐


𝑦
]
T
. (13)

y
𝑚
(𝑖) is the measurement vector, y(𝑖) is the calculated

vector, and 𝑖 denotes the time 𝑡
𝑖
:

y
𝑚
(𝑖) = [𝛿

𝑟𝑚
(𝑡
𝑖
) V
𝑚
(𝑡
𝑖
) 𝑥
𝑚
(𝑡
𝑖
) 𝑦
𝑚
(𝑡
𝑖
) 𝑧
𝑚
(𝑡
𝑖
)]

T
,

y (𝑖) = [𝛿
𝑟
(𝑡
𝑖
) V (𝑡

𝑖
) 𝑥 (𝑡

𝑖
) 𝑦 (𝑡

𝑖
) 𝑧 (𝑡

𝑖
)]

T
.

(14)

The maximum likelihood criterion is chosen as the
objective function, and its mathematical expression is 𝐽(𝜃):

𝐽 (𝜃) =

𝑀

∑

𝑖=1

[eΤ (𝑖)R−1e (𝑖) + ln |R|] , (15)
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Table 2: Results of identified aerodynamic parameters.

Parameters True value ACM-PSO
Case 1 Case 2 Case 3 Case 4

𝑐
𝑥0

0.4000 0.4000 0.4000 0.3999 0.4002
𝑐
𝑥2

4.5000 4.5000 4.5002 4.4975 4.4879
𝑐


𝑦
2.5000 2.5000 2.4961 2.4933 2.4901

𝑚


𝑧
4.0000 3.999 3.9875 3.9856 3.9833

Case 1: simulated data as radar output directly.
Case 2: add Gaussian white noise to simulated data as radar output with SNR of 30 dB.
Case 3: add Gaussian white noise to simulated data as radar output with SNR of 20 dB.
Case 4: add Gaussian white noise to simulated data as radar output with SNR of 10 dB.

The measured data of AOA
Calculated AOA using identified parameters
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Figure 2: Comparison of angles of attack.

where e is the error vector between y
𝑚
and y, which can be

described as e(𝑖) = y(𝑖) − y
𝑚
(𝑖). 𝑀 is the number of data

points. R is the covariance matrix of measurement noise. As
the statistical property of themeasurement noise is unknown,
the optimum estimation R̂ usually replaces R:

R ≈ R̂ =
1

𝑀

𝑀

∑

𝑖=1

e (𝑖) eΤ (𝑖) . (16)

5.2. Simulation Validation. With the background of a high
spinning projectile, 6-degree-of-freedom flight equations are
used for generating simulated flight test data.We use the sim-
ulated data as the output of a radar combined with the PSO
algorithm identifying high spinning projectile aerodynamic
parameters to validate the performance of the PSO algorithm.
The identified result can be seen in Table 2.

It is often necessary to put the identified parameters into
flight dynamic equations to examine whether the identified
parameters satisfy the accuracy requirements of engineering.
This checking method is also used in this paper. Figures 2–
6 provide the angle of attack, velocity, distance, height, and
side deviation, respectively, which are calculated using the
identified parameters that are compared with the original

The measured velocity
Calculated velocity using identified parameters
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Figure 3: Comparison of velocities.

The measured X-direction distance
Calculated X-direction distance using identified parameters
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Figure 4: Comparison of 𝑥-direction distances.

radar data. It can be seen from these figures that the bias
between two curves in every figure is very small. From the
figure data analyses, we can confirm that the identification
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The measured height data
Calculated height data using identified parameters
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Figure 5: Comparison of the ballistic heights.

The measured side range
Calculated side range using identified parameters
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Figure 6: Comparison of the side ranges.

result is very accurate for an uncontrolled gun-launched
projectile.

6. Conclusions

The algorithm of ACM-PSO is proposed based on the PSO
method and a mathematical model for the 6-degree-of-
freedom of spinning projectile flight dynamic equations.
ACM-PSO is introduced and applied towards parameter
identification for a gun-launched spinning projectile:

(1) The result of simulation validation shows that the
mathematical model is correct, and the aerodynamic
parameters and coefficients can be identified accu-
rately. This method can be applied in practical engi-
neering.

(2) ACM-PSO has strong global and local search abilities
for the spinning projectile aerodynamic parameter
identification.

(3) The identification result has some difference from the
true value, but the error is allowable.
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