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Abstract. The paper describes a Bayesian automatic adaptive quadrature (BAAQ) so-
lution for numerical integration which is simultaneously robust, reliable, and efficient.
Detailed discussion is provided of three main factors which contribute to the enhance-
ment of these features: (1) refinement of the m-panel automatic adaptive scheme through
the use of integration-domain-length-scale-adapted quadrature sums; (2) fast early prob-
lem complexity assessment – enables the non-transitive choice among three execution
paths: (i) immediate termination (exceptional cases); (ii) pessimistic – involves time and
resource consuming Bayesian inference resulting in radical reformulation of the problem
to be solved; (iii) optimistic – asks exclusively for subrange subdivision by bisection;
(3) use of the weaker accuracy target from the two possible ones (the input accuracy
specifications and the intrinsic integrand properties respectively) – results in maximum
possible solution accuracy under minimum possible computing time.

1 Introduction

The present paper reports results along the lines of our recent investigations [1, 2] concerning the
Bayesian automatic adaptive quadrature (BAAQ) solution [3] of definite Riemann integrals.

The essential requirements to the BAAQ algorithms are robustness, reliability, and efficiency under
floating point computations. Their implementation asks for three main BAAQ developments.

(a) The refinement of the m-panel scheme of the standard adaptive quadrature (described, e.g.,
in [4–7]). This development was suggested by the fact that, under floating point computations, the
algebraic degree of precision of an interpolatory quadrature sum ceases to be a characteristic invariant
feature of it. The floating point degree of precision is the adequate quantity characterizing a quadrature
sum [8]. A convenient way of taking into account this floating point feature was [1] to modify the
m-panel scheme by the definition of three classes of integration domain length scales: macroscopic,
mesoscopic, and microscopic and to use characteristic quadrature sums over each scale.

(b) The fast early problem complexity assessment is a new undertaking the need of which follows
from the empirical fact that a single algorithm cannot efficiently cope with the myriad of existing

�e-mail: adamg@jinr.ru,adamg@theory.nipne.ro
��e-mail: adams@jinr.ru,adams@theory.nipne.ro

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 173, 01001 (2018) https://doi.org/10.1051/epjconf/201817301001
Mathematical Modeling and Computational Physics 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/192466988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Riemann integrals. However, instead of leaving with the user the expert decision on the choice among
the large number of existing computing codes for numerical solution of the integrals (see, [4–7]), an
attempt was made to investigate the possibility to define decision paths based on Bayesian inferences
which are tailoring automatically the best way to follow to the derivation of accurate output.

(c) Finally, new results are reported concerning the code optimization in connection with the user
accuracy requirements. A useful by-product of the problem complexity assessment is the possibility
to define an integrand adapted upper accuracy target. Whenever this is less stringent than the target
following from the user defined accuracy requirements, the latter is superseded by the former one.
This decision has two desirable effects: it provides at output the best possible accuracy for the problem
at hand, while sparing the unnecessary computations done beyond the maximum available accuracy.

With this general plan in mind, the discussion below is organized in four sections. Section 2
provides a summary of the BAAQ approach enabling independent lecture of this paper. Section 3
adds progress to the three class m-panel scheme proposed in [1]. Section 4 describes in detail the
complexity assessment over macroscopic ranges. It also summarizes the integrand induced accuracy
limitations. The paper ends with concluding remarks in section 5.

2 Summary of the Bayesian automatic adaptive quadrature

A BAAQ numerical solution of the (proper or improper) Riemann integral

I ≡ I[a,b][ f ] =
∫ b

a
g(x) f (x) dx , −∞ < a < b < ∞, (1)

is sought under the assumption that the real valued integrand function f (x) is continuous almost
everywhere on [a, b] such that (1) exists and is finite. Here the weight function g(x) either absorbs
an analytically integrable difficult factor in the integrand (e.g., endpoint singularity or oscillatory
function), or else g(x) ≡ 1, ∀x ∈ [a, b].

Following [1], the subsequent BAAQ developments implement a solution of (1) within a class
dependent m-panel rule approach. We remind that the m-panel rule idea was proposed within the
standard automatic adaptive quadrature (AAQ) (see, e.g., [4–6]) as a means to adjust the discretization
of the original integration domain [a, b] to the rate of variation of f (x) inside [a, b]. Within AAQ, over
any integration range [α, β] ⊆ [a, b], a fixed quadrature rule is used irrespective of the width of [α, β].

The quadrature rule yields an [α, β] – dependent pair {q, e > 0} where q ≡ q[α,β][ f ] denotes an
approximation of I[α,β][ f ] produced by an interpolatory quadrature sum, while e ≡ e[α,β][ f ] denotes
the error estimate associated to q, which is intended to provide an upper bound to the modulus of
the remainder r[α,β][ f ] = I[α,β][ f ] − q[α,β][ f ]. As pointed out in [1], the quadrature sum q is to be
computed by different quadrature sums over three classes of integration domain widths: macroscopic,
mesoscopic, and microscopic, respectively.

An AAQ algorithm works iteratively. The quadrature rule at hand provides a global output ini-
tialization {QN , EN |N = 1} over [a, b]. If the obtained approximation Q1 of (1) is not accurate
enough, then global output refinement is obtained by gradual subdivision of [a, b] into subranges
[xi−1, xi] ⊂ [a, b]; i = 1, 2, . . . ,N; N > 1, over which local outputs {qi, ei > 0} are computed. The sum-
mation of the local outputs over the existing subranges results in a global output update {QN , EN > 0}.
After each derived global output {QN , EN |N ≥ 1}, the fulfilment of the global termination criterion is
checked [4],

|I − QN | < EN < max{εa, εr |I|} � max{εa, εr |QN |}, (2)

where, εa and εr denote the absolute accuracy, respectively relative accuracy requested at input.
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The termination of the iterative process may end successfully, or it may not. The reason for failure
is the evaluation of local error estimates by use of probabilistic arguments which might result in one
or more persistently spurious ei values.

The BAAQ advancement to the solution rests on Bayesian inference based on four pillars: the theory
of the Riemann integral, the theory of the numerical integration (quadrature), features of the floating
point computation, the accumulated empirical evidence. Essentially, the probabilistic character of the
AAQ approach to the derivation of local error estimates e > 0 is preserved. However, each step of
the gradual advancement to the solution is scrutinized based on a set of hierarchically ordered criteria
which enable decision taking in terms of the established diagnostics [3].

3 Refinement of the m-panel AAQ scheme

The inadequacy of the algebraic degree of precision for the characterization of the outputs of a quadra-
ture sum in floating point computations [8] is illustrated in the figure 1.
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Figure 1. Variation of the floating point degree of precision of the CC-32 local quadrature rule over the gliding
range [0, 1] versus its distance j − 1 from the origin. It is found that dfp = d = 32 at low j values ( j = 1, 2, 3),
then dfp abruptly decreases at larger but small enough j, to show slower decreasing rates under the displacement
of [0, 1] far away from the origin, and reaching a minimal value dfp = 6 at 407 ≤ j ≤ 1023.

The quadrature sum of interest, abridged CC-32, implements Clenshaw-Curtis (CC) quadrature [9]
at the 33-knot set at which the Chebyshev polynomial of the first kind and of polynomial degree 32
gets extremal values inside the standard reduced interval [−1, 1]. The CC-32 is of special interest
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since it is the best choice [2] among the CC-like quadrature sums of algebraic degree of precision
2m, m ∈ N+.

The evidence reported in fig. 1 contrasts the constant value (d = 32) of the algebraic degree of
precision of the CC-32 and the dramatic variation of its floating point degree of precision in the case
of the unit length range [ j− 1, j] gliding along the real axis through integer values, j = 1, 2, . . . , 1023.

Extensive numerical tests have confirmed the usefulness of the m-panel AAQ scheme refinement
proposed in [1], concerning the definition of three length scales of the integration domain widths:
macroscopic, mesoscopic, and microscopic, respectively.

However the separation boundaries between adjacent classes have been shifted toward larger
values: τµ = 2−20 (in-between microscopic and mesoscopic lengths) and τm = 2−6 (in-between meso-
scopic and macroscopic lengths). The motivation stems from the need to start, over microscopic and
mesoscopic length ranges, with computed integrand values over large enough sets of equally spaced
quadrature knots. This enables a preliminary analysis of the complexity of the integral to be solved
similar to that detailed below in the case of macroscopic ranges.

Over ranges of microscopic length, the minimal set of equally spaced quadrature knots is to con-
sist of 2 × 2 + 1 = 5 elements. Over such a set, a two-term composite Simpson rule provides the
reference quadrature sum output characterized by the highest possible algebraic degree of precision.
The alternative knot grouping which consists of one central triplet for Simpson rule and two lateral
doublets for composite trapezoidal rule yields a secondary composite quadrature sum output. From
the difference of the two quadrature outputs and use of the triangle inequality rule, an associated error
estimate results as a superposition of integrand curvatures at the three inner knots.

Over ranges of mesoscopic length, the use of a set of 4×2+1 = 9 equally spaced quadrature knots
yields a reference quadrature sum from a two-term composite 4-interval Newton rule. Combination
of a 4-interval Newton rule over the central knot quintuple with two lateral triplets for composite
Simpson rule yields a secondary quadrature rule. Similar to the microscopic case, quadrature error
estimates are obtained as a superposition of integrand curvatures at the seven inner knots.

Precision loss originating in cancellation by subtraction over microscopic and mesoscopic ranges.
As noticed in [1], the specification of the integration domain ends, which enters the standard input

formulation provided by the equation (1), results in an unavoidable precision loss due to the cancel-
lation by subtraction involved in the computation of the integration domain length as the difference of
two (arbitrary) machine numbers sharing a set of common most significant digits.

If, however, the integration domain length is specified to machine accuracy either separately or
within the definition of the integral to be solved, then no precision loss originating in cancellation by
subtraction will happen.

4 Early Bayesian diagnostics over macroscopic ranges
4.1 Enhanced accuracy Clenshaw-Curtis Quadrature

The recent monograph [10] provides a detailed rigorous presentation of the attractive mathematical
properties of the CC quadrature. In the frame of the BAAQ, the selection of the CC quadrature sums
for the approximation of the Riemann integrals (1) over macroscopic integration ranges is motivated
by several features of the spanning Chebyshev polynomials: closeness to the polynomials of the best
approximation, symmetry properties, easiness of the analytic computation of the quadrature weights
for different weight functions [4, 9, 11–13].

The interpolatory polynomial of the method is given by the truncated Chebyshev series expansion

Lφn(y) =
n∑

k=0

′′bn
kTk(y), (3)
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′′bn
kTk(y), (3)

(where the double prime shows that the first and the last terms of the sum are halved) of the reduced
integrand

φ(y) = f (c + hy), c = (b + a)/2, h = (b − a)/2, y ∈ [−1, 1]. (4)

Lφn(y) equates φ(y) at the set of (n + 1) standard reduced CC quadrature knots

{yn
j = cos( jπ/n) | j = 0, 1, . . . , n}. (5)

The computation of the Chebyshev expansion coefficients in (3) is the most computer intensive
task of the method. The elucidation of the binary tree structures unveiling inheritance properties in
the family of spanning Chebyshev polynomials of degrees n = 2m (m = 1, 2, . . . ) [2] allowed the
derivation of a fast algorithm for the computation of these coefficients inside which the number of
multiplications is kept at the lowest possible value.

The scrutiny of the derived algorithm has shown that the CC quadrature spanned by the 32-nd
degree Chebyshev polynomial provides the best CC solution (rich integrand sampling and still eco-
nomical algorithm). An undesirable feature of the reduction procedure (4) to the standard integration
domain [−1, 1] is the sizeable precision loss, due to the cancellation by subtraction, of the floating
point values of the distances in-between neighbouring quadrature knots for the overwhelming frac-
tion of the emerging pairs. This unfavourably impinges on the floating point accuracy of the divided
differences entering the integrand profile (IP) analysis enabling Bayesian inferences [14].

The solution which avoids the above-mentioned precision loss is to use modified reduced abscissas
(MRA), which are defined as distances of the standard reduced abscissas yn

j to the nearest integration
domain ends. The implementation of the MRA computation was done to machine accuracy. The
computation of the distances between neighbouring MRA abscissas can be straightforwardly done,
without precision loss by subtraction.

There is a set of 17 MRA entering the CC-32:

0 = η0 < η1 < · · · < ηk < · · · < η16 = 1, ηk+µ − ηk+µ−1 > ηk − ηk−1, µ > 0. (6)

The price to be paid for this accuracy increase is the separate computation and storage into two
separate vectors of the integrand values at MRA over the left and the right halves of an integration
domain [a, b] of width h = (b − a)/2: f l

k = f (a + hηk); f r
k = f (b − hηk); k = 0, 1, . . . , K = 16, such

that f l
16 = f (a + h) = f r

16 = f (b − h).

4.2 Flow chart of early Bayesian inference

There are two main results established in this subsection: (1) the early Bayesian inference enables
consistent accommodation of the standard AAQ approach within the BAAQ and (2) robust termina-
tion criteria are defined which efficiently stop the computations while returning optimum output for
the input integral (with a problem defined accuracy ceiling which supersedes an unreachable ceiling
following from the user accuracy requirements).

The flow chart below summarizes the eight steps of the proposed early Bayesian inference.
Input required:

• the accuracy parameter values ε(i)
a , ε

(i)
r

• the integration domain (ID) [a, b]; its centre c = (b + a)/2; half width h = (b − a)/2
• the integrand function f (x)
• the MRA set {ηk}, computed to machine accuracy
• the computed integrand profile (IP) {(ηk, f l

k) |k = 0, 1, . . . ,K = 16} ∪ {(ηk, f r
k ) |k = 0, 1, . . . ,K = 16}

Main steps:
• Step 0: Set grey diagnostic (GD) as default (postponed decision)
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• Step 1: Integrand boundedness check over the input IP enables:
– Definition of extremal (max,min) integrand values, together with their location inside the IP
– End of computation (EOC) under detection of exceptional cases: (computationally) constant

integrand; odd integrand with respect to the ID centre c = (b + a)/2
• Step 2: If(.NOT.EOC) Computation of Riemann sums over sublattices

– Two CC-32 sublattices are defined respectively by:
� the 17 inherited CC-16 reduced abscissas (CC16)
� the 16 newly added Fejer reduced abscissas (FJ16)

– Pairs of Riemann sums over sublattices: qCC16[(∗)] and qFJ16[(∗)], where (∗) stays either
for f or | f |

– Riemann sum quadrature rule outputs for CC-32 IP:
� trapezoidal rule quadrature sums: qCC32[(∗)] = (qCC16[(∗)] + qFJ16[(∗)])/2
� rough error estimates: eCC32[(∗)] = |qCC16[(∗)] − qFJ16[(∗)]|

• Step 3: EOC under detection of catastrophic cancellation by subtraction: |qCC32[( f )]| < τ ·qCC32[| f |],
τ close to machine epsilon with respect to addition.

• Step 4: If (.NOT. EOC) check for problem dependent update of accuracy parameters ε(o)
a , ε

(o)
r

• Step 5: If (.NOT. EOC) decide on an ill-conditioning (IC) diagnostic iff
– either |qCC32[( f )]| < 2.0 · qCC32[| f |]
– or qM > ti · qm, where ti ∼ 100 is an empirical threshold for the comparison of qM with qm ,

where qM = max{|qCC16[ f ]|, |qFJ16[ f ]|} and qm = min{|qCC16[ f ]|, |qFJ16[ f ]|}
• Step 6: GD diagnostic refinement based on the outputs got for the Chebyshev series expansion

coefficients
– GD is changed to EOC iff negligible highest label even-rank and odd-rank CC-32 coefficients
– GD is changed to IC iff either

(1) monotonicity is infringed for suitably chosen binary tree structure dependent subsets
of CC-32 coefficients, or

(2) non-convergence or slow convergence is established to occurr for the CC-32 coefficients
• Step 7: Check for further accuracy parameter updates, ε(o)

a , ε
(o)
r

• Step 8: Path to subrange subdivision:
– If (IC) then define offending IP abscissas and refine IC diagnostic at these abscissas;

subdivide current subrange into diagnostic-dependent finer subranges
– elseif (GD) then proceed along the standard AAQ scheme.

4.3 Two illustrative examples

The accumulated empirical evidence plays a very important role in the decision taking process based
on Bayesian inference. The data reported in [2] pointed to three different patterns of behaviour of
the magnitudes of the Chebyshev expansion coefficients: fast convergence (suggesting rapid end of
computations), moderate convergence (suggesting output improvement based on subrange bisection
along the lines of the standard AAQ scheme), and ill-conditioning (irregular behaviour inside both the
even-rank and the odd-rank coefficient subsets which is asking for IP analysis to resolve the offending
integrand features).

The above-mentioned framework is refined by the scrutiny of the dependence of the even-rank (e)
and odd-rank (o) Chebyshev expansion coefficients on the position of a singularity with respect to the
ends of the current integration domain (figure 2).

Figure 2–left reports data for the integrand ([4], p.110) f1 : [0, 1] → R, f1(x) = |x2 + 2x − 2|−1/2,
which shows an inner singularity at xs =

√
3 − 1.
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and odd-rank (o) Chebyshev expansion coefficients on the position of a singularity with respect to the
ends of the current integration domain (figure 2).

Figure 2–left reports data for the integrand ([4], p.110) f1 : [0, 1] → R, f1(x) = |x2 + 2x − 2|−1/2,
which shows an inner singularity at xs =

√
3 − 1.
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Figure 2. Patterns of variation of the Chebyshev expansion coefficients within the even and odd rank subsets
versus the coefficient labels. In the file names in the left figure, “s” points to singular, “e” to even-rank coefficient
subset, “3” to the subrange [0, 1], “2” to the subrange [xs, 1], and “1” to the subrange [xs,

√
3/2]. In the file names

in the right figure “e” points to even-rank coefficient subset, “o” to odd-rank coefficient subset, the remaining
figure pairs point to the left and the right ends of the subranges, respectively.

Figure 2–right reports outputs got for the integrand ([9]) f2 : [−1, 1] → R, f2(x) = |x + 0.5|1/2 ,
which shows an inner derivative singularity at xd = −0.5.

The meanings of the notations used in the figure 2 are explained in the figure caption.
In the left figure, the behaviour of the “e” and “o” coefficient subsets over the range [0, 1] is

irregular due to the presence of an inner singularity at xs, in agreement with [2]. In this case, an
ill-conditioning diagnostic is issued at step 8 of Sec. 4.2, which is asking for the localization of the
offending integrand feature to machine accuracy. However, for the ranges [xs, 1] and [xs,

√
3/2], both

characterized by endpoint singularities, a regular variation of both the “e” and “o” coefficient subsets
is noticed and this asks in the decision path for the activation of a convergence acceleration procedure.

The data in figure 2–right are given in semi-logarithmic scale. The behavioural patterns over the
inner derivative singularity range [−1, 1] as well as over the outer derivative singularity ranges [0, 1]
and [−1,−0.75] are consistent with the data reported in Fig. 2–left and in [2]. The irregular behaviour
pattern over the range [−1, 1] asks for localization of the offending abscissa to machine accuracy.
Over the ranges [−1, xd] and [−0.75, xd], characterized by endpoint derivative singularities, the no-
ticed slowly converging monotonic behaviours of the coefficient subsets ask for the activation of the
convergence acceleration procedure. Far from singularity (the other two cases), the good convergence
properties shift the decision path to the standard AAQ scheme.

In both the left and right figures 2, the smaller the extension of the integration domain with an
endpoint singularity, the larger are the ranges of variation of the two Chebyshev expansion coefficient
subsets.

5 Conclusions

The present report discusses a Bayesian automatic adaptive quadrature (BAAQ) solution for numerical
integration which is simultaneously robust, reliable, and efficient, yielding maximum possible output
accuracy in numerical experiments under arbitrary behaviour of the integrand function.

An essential ingredient of the solution is the multiscale approach.
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An early decision path to the integrand profile (IP) scrutiny enables the identification of trivial or
manifestly unsolvable problems as well as the need to relax the user requested accuracy parameters.

Within the Clenshaw-Curtis quadrature over macroscopic ranges, the scrutiny of the Chebyshev
expansion coefficients enable further identification of unresolved ill-conditioned features.

We are thus left either with a hopefully well-conditioned integral, for which the standard automatic
adaptive quadrature can be used, or with a manifestly ill-conditioned problem for which an improved
version of the full BAAQ machinery is activated.
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