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The backtracking search optimization algorithm (BSA) is a new nature-inspired method which possesses a memory to take
advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving
multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE) algorithm is a robust
evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information
of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential
evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual
according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of

HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.

1. Introduction

Optimization plays an important role in many fields, for
example, decision science and physical system, and can be
abstracted as the minimization or maximization of objective
functions subject to constraints on their variables mathemat-
ically. Generally speaking, the optimization algorithms can
be employed to find their solutions. The stochastic relaxation
optimization algorithms, such as genetic algorithm (GA)
[1], particle swarm optimization algorithm (PSO) [2, 3], ant
colony algorithm (ACO) [4], and differential evolution (DE)
[5], are one of the methods for solving solutions effectively
and almost nature-inspired optimization techniques. For
instance, DE, one of the most powerful stochastic optimiza-
tion methods, employs the mutation, crossover, and selection
operators at each generation to drive the population to global
optimum. In DE, the mutation operator is one of core com-
ponents and includes many differential mutation strategies
which reveal different characteristics. For example, the strate-
gies, which utilize the information of the best solution found

so far, have fast convergence speed and favor exploitation.
These strategies are classified as the exploitative strategies [6].

Inspired by the success of GA, PSO, ACO, and DE for
solving optimization problems, new nature-inspired algo-
rithms have been a hot topic in the development of the
stochastic relaxation optimization techniques, such as arti-
ficial bee colony [7], cuckoo search [8], bat algorithm [9],
firefly algorithm [10], social emotional optimization [11-13],
harmony search [14], and biogeography based optimization
[15]. A survey has pointed out that there are about 40 different
nature-inspired algorithms [16].

The backtracking search optimization algorithm (BSA)
[17] is a new stochastic method for solving real-valued
numerical optimization problems. Similar to other evolution-
ary algorithms, BSA uses the mutation, crossover, and selec-
tion operators to generate trial solutions. When generating
trial solutions, BSA employs a memory to store experiences
gained from previous generation solutions. Taking advantage
of historical information to guide the population to global
optimum, BSA focuses on exploration and is capable of
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Input: Mutant, N and D
output: T'

Step 1.

Initiate map, ., ,.p = 1

Ifa > b then
Forifrom1to N do

map; y.epy = 0
End For
Else
Forifrom1to N do

map,; =0
End For
End If
Step 2.
Forifrom1to N do
For j from1to D do
If map, ; = 1 then

Ti, i~ P, j
Else
T;; = Mutant; ;
End If
End For

End For

Generate a, b drawn from uniformly distribution with the range between 0 and 1.

Generate a vector containing a random permutation of the integers U from 1 to D
Generate ¢ drawn from uniformly distribution with the range between 0 and 1.

Generate a random integer k from 1to D

ALGORITHM 1: Crossover operator.

solving multimodal optimization problems. However, utiliz-
ing experiences may make BSA converge slowly and prejudice
exploitation on later iteration stage.

On the other hand, researches have paid more and
more attention to combine different search optimization
algorithms or machine learning methods to improve the per-
formance for real-world optimization problems. Some good
surveys about hybrid metaheuristics or machine learning
methods can be found in the literatures [18-20]. In this paper,
we also concentrate on a hybrid metaheuristic algorithm,
called HBD, which combines BSA and DE. HBD employs DE
with exploitative mutation strategy to improve convergence
speed and to favor exploitation. Furthermore, in HBD, DE
is invoked to optimize only one worse individual selected
with the help of its probability at each iteration process. We
use 28 benchmark functions to verify the performance of
HBD, and the results show the improvement in effectiveness
and efliciency of hybridization of BSA and DE. The major
advantages of our approach are as follows. (i) DE with
exploitive strategies helps HBD converge fast and favor
exploitation. (ii) Since DE optimizes one individual, HBD
expends only one more function evaluation at each iteration
and will not increase the overall complexity of BSA. (iii) DE is
embedded behind BSA, and therefore HBD does not destroy
the structure of BSA, and it is still very simple.

The remainder of this paper is organized as follows.
Section 2 describes BSA and DE. Section 3 presents the
HBD algorithm. Section 4 reports the experimental results.
Section 5 concludes this paper.

2. Preliminary

2.1. BSA. The backtracking search optimization algorithm is
a new stochastic search technique developed recently [17].
BSA has a single control parameter and a simple structure
that is effective and capable of solving different optimization
problems. Furthermore, BSA is a population-based method
and possesses a memory in which it stores a population from
a randomly chosen previous generation for generating the
search-direction matrix. In addition, BSA is a nature-inspired
method employing three basic genetic operators: mutation,
crossover, and selection.

BSA employs a random mutation strategy that used
only one direction individual for each target individual,
formulated as follows:

Mutant = P + F @ (oldP — P), 1)

where P is the current population, oldP is the historical pop-
ulation, and F is a coefficient which controls the amplitude of
the search-direction matrix (oldP — P).

BSA also uses a nonuniform and more complex crossover
strategy. There are two steps in the crossover process. Firstly, a
binary integer-values matrix (map) of size NxD (N and D are
the population size and the problem dimensions) is generated
to indicate the mutant individual to be manipulated by using
the relevant individual. Secondly, the relevant dimensions
of mutant individual are updated by using the relevant
individual. This crossover process can be summarized as
shown in Algorithm 1.
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Initiate the population P and the historical population oldP randomly sampled from search space.
While (Stop Condition doesn’t meet)
Perform the first type selection: oldP = P in the case of a < b, where a and b are drawn from uniformly distribution with the
range between 0 and 1.
Permute arbitrary changes in position of oldP.
Generate the mutant according to (1).
Generate the population T based on Algorithm 1.
Perform the second type selection: select the population with better fitness from T and P.
Update the best solution.
End While
Output the best solution.
ALGORITHM 2: BSA.
BSA has two types of selection operators. The first “DE/rand/2”:
type selection operator is employed to select the historical
population for calculating search direction. The rule is that Vi=X, +F (sz - er) +F (Xm - er) , (7)

the historical population should be replaced with the current
population when the random number is smaller than the
other one. The second type of selection operator is greedy
to determine the better individuals to go into the next
generation.

According to the above descriptions, the pseudocode of
BSA is summarized as shown in Algorithm 2.

2.2. DE. DE is a powerful evolutionary algorithm for global
optimization over continuous space. When being used to
solve optimization problems, it evolves a population of N
candidate solutions with D-dimensional parameter vectors,
noted as X. In DE, the population is initiated by uniform
sampling within the prescribed minimum and maximum
bounds.

After initialization, DE steps into the iteration pro-
cess where the evolutionary operators, namely, mutation,
crossover, and selection, are invoked in turn, respectively.

DE employs the mutation strategy to generate a mutant
vector V. So far, there are several mutant strategies, and the
most well-known and widely used strategies are listed as
follows [21, 22]:

“DE/best/17:
‘/i = Xbest +F (Xrl - sz) > )

“DE/current-to-best/1”:

Vi= X, + F(Xpe - X) + F(X, - X,.), (3)
“DE/best/2”:
V= Xoew +F (X, - X, )+ F (X, -X,), @)
“DE/rand/1”:
V,=X, +F(X, -X,), ©)

“DE/current-to-rand/1”:

V=X, +F(X, -X;)+F(X, - X, ), (6)

where the indices 7|, 1,, 3, 14, and r5 are uniformly
random mutually different integers from 1to N, X .
denotes the best individual obtained so far, and X; and
V; are the ith vector of X and V, respectively.

The crossover operator is performed to generate a trial
vector U; according to each pair of X; and V; after the
mutant vector V; is generated. The most popular strategy is
the binomial crossover described as follows:

v;j ifrand(01) < C, OR j = jiq
U, ; = (8)
x;; otherwise,
where C, is called the crossover rate, j.,.4 is randomly
sampled from1to D, and u; j, v; ;, and x; ; are the jth element
of U}, V;, and X;, respectively.

Finally, DE uses a greedy mechanism to select the better
vector from each pair of X; and U;. This can be described as
follows:

U; if fitness (U;) < fitness (X;)
X = )

X; otherwise.

3. HBD

In this section, we describe the HBD algorithm in detail.
First, the motivations of this paper are given. Second, the
framework of HBD is shown.

3.1. Motivations. BSA uses an external archive to store expe-
riences gained from previous generation solutions and makes
use of them to guide the population to global optimum.
According to BSA, permuting arbitrary changes in position
of historical population makes the individuals be chosen
randomly in the mutation operator; therefore, the algorithm
focuses on exploration and is capable of solving multimodal
optimization problems. However, just due to random selec-
tion, by utilizing experiences, BSA may be led to converge



slowly and to prejudice exploitation on later iteration stage.
This motivates our approach which aims to accelerate the
convergence speed and to enhance the exploitation of the
search space to keep the balance between the exploration and
exploitation capabilities of BSA.

On the other hand, some studies have investigated the
exploration and exploitation ability of different DE muta-
tion strategies and pointed out the mutation operators that
incorporate the best individual (e.g., (2), (3), and (4)) favor
exploitation because the mutant individuals are strongly
attracted around the best individual [6, 23]. This motivates us
to hybridize these exploitative mutation strategies to enhance
the exploitation capability of BSA. In addition, this paper
is also in light of some studies which have shown that it
is an effective way to combine other optimization methods
to improve the performance for real-world optimization
problems [24-27].

3.2. Framework of HBD. Generally speaking, there are many
ways to hybridize BSA with DE. In this study, we propose
another hybrid schema between BSA with DE. In this schema,
HBD employs DE with exploitive strategy behind BSA at
each iteration process to share the information between
BSA and DE. However, more individuals are optimized by
DE, and more function evaluations will be spent. In this
case, HBD would gain the premature convergence, resulting
in prejudicing exploration. Thus, to keep the exploration
capability of HBD, DE is used to optimize only one worse
individual according to its probability. In addition, (2) is used
as default mutation strategy in HBD because (3) and (4)
have stronger exploration capabilities by introducing more
perturbation with the random individual [6] or a modi-
fication combining “DE/best/1” and “DE/rand/1” [28]. The
performance influenced by different exploitative strategies
will be discussed in Section 4.3.

In order to select one individual for DE, in this work, we
assign a probability model for each individual according to its
fitness. It can be formulated as follows:

pi=5 (10)
where N is the population size and #; is the ranking value of
each individual when the population is sorted from the worst
fitness to the best one.

Note that the probability equation is similar to the
selection probability in DE with ranking-based mutation
operators [29]. In general, the worse individuals are more far
away from the best individual than the better ones; thus, they
will have higher probabilities to get around the best one. This
selection strategy can be defined as follows:

I, =i

s ifrand(0,1)>p; i=1,...,N, 1
where I is selected individual and optimized by DE.

It is worth pointing out that our previous work [30],
called BSADE, splits the whole iteration process into two
parts: the previous two-third and the latter one-third stages.
BSA is used in the first stage, and DE is employed in the

second stage. In this case, DE does not share the population
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information with BSA. Moreover, it is difficult to split the
whole iteration process into two parts. Thus, the difference
between HBD and BSADE is that HBD shares the population
information between BSA and DE, while BSADE does not.
The comparison can be found in Section 4.4.

According to the above descriptions, the pseudocode of
HBD is described in Algorithm 3.

4. Experimental Verifications

In this section, to verify the performance of HBD, we
carry out comprehensive experimental tests on a suit of 28
benchmark functions proposed in the CEC-2013 competition
[31]. These 28 benchmark functions include 5 unimodal
functions F,-F;, 15 basic multimodal functions F¢-F,,, and
8 composition functions F,;-F,;. More details about 28
functions can be found in [31].

To make a fair comparison, we use the same parameters
for BSA and HBD, unless a change is mentioned. Each
algorithm is performed 25 times for each function with the
dimensions D = 10, 30, and 50, respectively. The population
size of each algorithm N is D when D = 30 and D = 50,
while it is 30 in the case of D = 10. The maximum function
evaluations are 10000 x D. The mutation factor F and the
crossover factor C, are 0.8 and 0.9 for HBD, respectively. In
addition, we use the boundary handling method given in [17].

To evaluate the performance of algorithms, we use Error
as an evaluation indicator first. Error, which is the function
error value for the solution X obtained by the algorithms, is
defined as f(X) — f(X™), where X" is the global optimum of
function. In addition, the average and standard deviation of
the best error values, presented as “AVGyg, + STDg,,” are used
in the different tables. Second, the convergence graphs are
employed to show the mean error values of the best solutions
at iteration process over the total run. Third, a Wilcoxon
signed-rank test at the 5% significance level (& = 0.05) is used
to show the significant differences between two algorithms.
The “+” symbol shows that the null hypothesis is rejected
at the 5% significant level and HBD outperforms BSA, the
“~” symbol says that the null hypothesis is rejected at the
5% significant level and BSA exceeds HBD, and the “=”
symbol reveals that the null hypothesis is accepted at the 5%
significant level and HBD ties BSA. Additionally, we also give
the total number of statistical significant cases at the bottom
of each table.

4.1. The Effect of HBD. To show the effect of the proposed
algorithm, Table 1 lists the average error values obtained by
BSA and HBD for 30-dimentional benchmark functions.
For unimodal functions F,-F;, HBD overall obtains better
average error values than BSA does. For instance, HBD
gains the global optimum on F; and brings solutions with
high quality to F,-F, in terms of average error values.
HBD exhibits a little inferiority to BSA for F,, but these
two approaches are not significant. For 15 basic multimodal
functions F,-F,,, with the help of average error values, HBD
brings superior solutions to 10 out of 15 functions, equal ones
to 2 out of 15 functions, and inferior ones to 3 out of 15
functions. However, according to the results of Wilcoxon test,
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Initiate the population P and the historical population oldP randomly sampled from search space.
While (Stop Condition doesn’t meet)

Perform the first type selection: oldP = P in the case of a < b, where a and b are drawn from uniformly distribution with the
range between 0 and 1.
Permute arbitrary changes in position of oldP.
Generate the mutant according to (1).
Generate the population T based on Algorithm 1.
Perform the second type selection: select the population with better fitness from T and P.
Update the best solution.
//Invoke DE with exploitive strategy
Select One Individual according to its probability: I_.
Optimize I with the help of DE, and get I,
If (fitness(Ipg) <= fitness(I,))
I = Ipg
End If
Update the best solution.

End While
Output the best solution.

ALGoriTHM 3: HBD.

TABLE 1: Error values obtained by BSA and HBD for 30-dimensional CEC-2013 benchmark functions.

BSA HBD
AVGy, + STDy, AVGy, + STDy, P value
F, 4.17E - 30 + 1.40E - 29 136E—29 + 417E - 29 = 0.359375
F, 1.22E+06 + 5.54F + 05 3.15E+05 £ 1.52E + 05 + 0.000014
F, 752E + 06 + 8.54F + 06 4.38E+06 + 8.11E + 06 + 0.045010
F, 1.25E + 04 + 3.47E + 03 5.05E+03 + 2.23E + 03 + 0.000016
F, 0.00E + 00 £ 0.00E + 00 0.00E + 00 + 0.00E + 00 = 1.000000
F, 3.04E + 01 % 2.54E + 01 1.12E+ 01 + L.47E + 01 + 0.001721
F, 739E + 01 + 1.03E + 01 5.03E+01 + L61E + 01 + 0.000101
F, 2.09E + 01 + 5.95E — 02 210E + 01 + 3.17E — 02 = 0142532
F, 2.70E + 01 + 2.29E + 00 2.12E + 01  4.26E + 00 + 0.000081
Fy 1.78E - 01 + 1.34E - 01 9.15E - 02 + 5.25E — 02 + 0.009417
F, 7.96E — 02 + 2.75E — 01 3.58E— 01 + 6.34E - 01 = 0.062500
F, 8.41E + 01 £ L51E + 01 8.09E + 01 + 1.53E + 01 = 0396679
F 1.44E + 02 + 2.37E + 01 1.29E + 02 + 2.90E + 01 = 0.061480
F, 3.70E+00 + 1.68E + 00 2.83E+00 + 1.82E + 00 + 0.034670
Fy 3.73E+03 + 4.27E + 02 3.50E+03 + 4.82E + 02 0.097970
Fi 1.31E + 00 + 2.14E — 01 L31E + 00 + 2.38E - 01 = 0.903627
F, 3.09E + 01 + 1.97E — 01 3.09E + 01 + 1.79E — 01 0.840072
Fiq 1.20E + 02 + 1.80E + 01 9.46E + 01 £ 2.11E + 01 + 0.000980
Fye 116E + 00 + 1.79E — 01 1.23E+00 + 2.28E — 01 = 0.312970
Fy LISE+01 + 4.55E — 01 L11E + 01 £ 5.89E — 01 0.057836
F, 2.78E+02 £ 6.63E + 01 2.95E + 02 + 795E + 01 = 0.431762
F,, 4.45E + 01 + 1.91E + 01 448E + 01 + 1.35E+ 01 = 0.443172
F, 4.46E +03 + 5.40F + 02 4.16E + 03 + 5.07E + 02 = 0.103553
F, 2.32E+02 + L17E + 01 2.28E+02 + 8.92E+ 00 = 0157770
F 2.87E+02 + L41E + 01 2.80E + 02 + 8.80E + 00 = 0.087527
F 2.00E +02 + 2.17E - 02 2.00E + 02 £ 6.81E — 03 + 0.000020
F, 8.80E + 02 + 149E + 02 7.52E + 02 £ 1.33E + 02 + 0.003822
F 3.00E +02 + 1.65E - 13 3.00E+02+132E-13 + 0.016377

+
-
Il
-
|




they are not significant for HBD and BSA for 3 functions
in which HBD gains lower solution quality. For composition
functions F,, -F,3, HBD and BSA draw a tie on F,; and F,5 by
the aid of average error values; however, HBD significantly
outperforms BSA according to the results of Wilcoxon test.
Moreover, according to average error values, HBD performs
better than BSA in F,;, F,,, F,5, and F,; but worse than BSA
in F,; and F,,. Nevertheless, two algorithms almost are not
significant for these 8 composition functions in terms of the
results of Wilcoxon test. Summarily, according to “+/=/-
HBD wins and ties BSA on 12 and 16 out of 28 benchmark
functions, respectively.

In order to further show the convergence speed of HBD,
the convergence curves of two algorithms for six selected
benchmark functions are given in Figure 1.

It is observed that the selected functions can be divided
into four groups, and overall the convergence performance
of HBD is better than BSA. For example, for the first group
of functions, for example, F, and F,, in which HBD has
significantly better average error values than BSA, HBD
converges faster than BSA in terms of the convergence curves
seen in Figures 1(c) and 1(f). For F,; and F,; belong to the
second group where HBD cannot bring the solutions with
higher quality significantly, HBD still converges faster than
BSA does. Third, for F; in which both of the two algorithms
reach the global optimum, convergence performance of HBD
is better compared to BSA. Additionally, HBD outperforms
BSA according to the convergence curves seen in Figure 1(a),
although the average error values optimized by HBD are
inferior but not significant to BSA.

All in all, HBD overall outperforms BSA in terms of
solution quality and convergence speed. This is because DE
with exploitive mutation strategy enhances the exploitation
capability of HBD, and it does not expend too much function
evaluations.

4.2. Scalability of HBD. In this section, to analyze the per-
formance of HBD affected by the problem dimensionality,
a scalability study is investigated, respectively, on the 28
functions with 10-D and 50-D due to their definition up to
50-D [31]. The results are tabulated in Table 2.

In the case of D = 10, according to average error values
shown in Table 2, HBD exhibits superiority in the majority of
functions while inferiority in a handful of ones. Additionally,
in terms of the total of “+/=/-" HBD wins and ties BSA in 9
and 19 out of 28 functions, respectively.

When D = 50, HBD still can bring solutions with higher
quality than BSA does in most of benchmark functions.
Moreover, HBD outperforms and ties BSA in 13 and 15 out
of 28 functions, respectively.

In summary, it suggests that the advantage of HBD over
BSA is stable when the dimensionality of problems increases.

4.3. The Effect of Mutation Strategy. In HBD, the “DE/best/1”
mutation strategy is used to enhance the exploitation capa-
bility of HBD in default. To show the performance of HBD
influenced by other exploitive mutation strategies, the exper-
iments are carried on benchmark functions and the results
are listed in Table 3 where cHBD and bHBD mean that HBD
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uses “DE/current-to-best/1” and “DE/best/2,” respectively.
The results obtained by cHBD and bHBD, which are highly
accurate compared to those obtained by HBD, are marked in
bold.

From Table 3, in terms of the average error values,
bHBD shows the higher accuracy compared to HBD for
a few functions since “DE/best/2” usually exhibits better
exploration than “DE/best/1” because of one more difference
of randomly selected individuals in the former [23]. cHBD
also gains higher accuracy of solutions than HBD does
for a handful of functions because “DE/current-best/1,” a
modification combining “DE/best/1” and “DE/rand/1” [28],
shows better exploration than “DE/best/1” In other words,
for a few functions, “DE/best/2” and “DE/current-best/1” can
balance the exploration and exploitation capabilities of HBD
better. For example, bHBD and cHBD bring the solutions
with higher quality to F,, F;, Fs, F,, F;, and F,; in particular,
they reach the global optimum. However, for most of the
functions, HBD with “DE/best/1” performs better than cHBD
and bHBD.

Additionally, Table 4 reports the results of the multiple-
problem Wilcoxon test which was done similarly in [29, 32]
between HBD and its variants for all functions. We can see
from Table 4 that HBD is significantly better than bHBD and
HBD gets higher R* value than R value although two values
are not significant. Therefore, HBD uses “DE/best/1” in the
tradeoft.

4.4. The Effect of Hybrid Schema. In this section, we analyze
the performance of HBD affected by the hybrid schema.
Firstly, to show the effect of more than one individual
optimized by DE, the algorithm, called aHBD which uses DE
to optimize the whole population, is used to compare with
HBD. Secondly, we add a probability P, on aHBD to control
the use of DE and propose paHBD. In paHBD, if the random
number r drawn from uniform distribution between 0 and 1
is less than P,, then DE is invoked. The P, is defined as follows:

p - fes

¢ mfes’

(12)

where fes is the number of function evaluations which had
been spent and mifes is the maximum number of function
evaluations. Additionally, BSADE is compared with HBD to
show their differences.

Table 5 lists the error values obtained by aHBD, paHBD,
BSADE, and HBD for 28 functions at D = 30. It can be
observed that HBD wins, ties, and loses aHBD in 10, 12, and
6 out of 28 functions in terms of “+/=/- respectively. It
says that optimizing more individuals using DE costs more
function evaluations when DE is embedded behind BSA
directly, resulting in reducing the iteration process cycles and
then getting poor performance for most functions. Regarding
BSADE, since BSA and DE are invoked in different stages
where they cannot exchange the population information, it
is clear that this schema cannot balance the exploitation and
exploration well. Thus, compared with BSADE, HBD brings
solutions with higher accuracy for most functions. Moreover,
HBD wins, ties, and loses BSADE in 8, 17, and 3 out of 28
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FIGURE 1: The convergence curves of BSA and HBD for selected benchmark functions.
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TABLE 3: Error values obtained by cHBD, HBD, and bHBD for CEC-2013 benchmark functions at D = 30.

cHBD HBD bHBD
AVGyg, + STDy, P value AVGy, + STDy, P value AVGy, + STDy,
F, 1.01E - 30 + 3.49E - 30 = 0.125000 1.36E—-29 + 4.17E-29 = 0.328125 6.31E-30 £ 1.67E - 29
F, 2.97E +05 + 1.51E + 05 = 0.676637 3.15E+05+1.52E+05 + 0.000240 707E+05 + 3.84E + 05
F; 3.77E+ 06 + 7.51E + 06 = 0.618641 438E+06 £ 8.11E+ 06 = 0.637733 4.25E+06 £ 7.27E+ 06
F, 4.72E+03 £ 1.90E + 03 = 0.736617 5.05E+03 +2.23E+03 + 0.006848 6.55E+03 £ 2.23E+03
F; 0.00E + 00 + 0.00E + 00 = 1.000000 0.00E + 00 £ 0.00E + 00 = 1.000000 0.00E+00 £ 0.00E + 00
Fy 1.12E+01 £ 1.34E + 01 = 0.326049 112E+01 £ 1.47E + 01 = 0.562928 8.98E+00 +5.93E + 00
E, 5.69E + 01 + 1.50E + 01 = 0.142532 5.03E+ 01+ 1.61E+01 + 0.003822 6.58E + 01 + 1.69E + 01
Fq 2.09E + 01 £ 4.71E - 02 = 0.264150 210E+01+£3.17E-02 = 0.287862 2.09E + 01 + 4.67E - 02
F, 2.61E+01+3.12E+00 + 0.000126 212E+01 + 4.26E + 00 + 0.000446 2.65E +01 £ 3.29E+ 00
F, 8.18E - 02 + 5.50E - 02 = 0.509755 9.15E-02 £ 5.25E—-02 = 0.300241 8.06E - 02+ 4.77E - 02
F, 0.00E + 00 £ 0.00E + 00 - 0.015625 3.58E-01+6.34E-01 - 0.015625 0.00E + 00 £ 0.00E + 00
F, 8.19E + 01 + 1.61E + 01 = 0.427339 8.09E+01 + 1.53E + 01 = 0.065311 9.01E+01 + 1.78E + 01
Fi5 1.26E + 02 + 2.58E + 01 = 0.798248 1.29E +02 + 2.90E + 01 0.174210 L39E+02 + 2.67E + 01
F, 4.01E+00 £ 1.94E+ 00 + 0.032428 2.83E+00 + 1.82E+00 = 0.082653 3.88E+00 + 2.08E+00
F5 3.80E + 03 + 4.02E + 02 + 0.017253 3.50E + 03 + 4.82E + 02 + 0.014889 3.81E+03 + 2.84E + 02
Fiq 1.29E + 00 + 2.45E - 01 = 0.967806 L31E+00 + 2.38E - 01 = 0.924971 1.30E + 00 + 2.09E- 01
F,, 3.10E+ 01+ 1.75E-01 0.165837 3.09E+01+179E-01 = 0.989266 3.09E+01 +1.55E-01
Fig 1.17E+02 + 1.58E + 01 + 0.000665 9.46E +01 + 2.11E+ 01 + 0.021418 1.10E + 02 + 1.99E + 01
Fg 1.27E+00 + 2.22E-01 = 0.427339 1.23E+00 + 2.28E-01 = 0.924971 1.22E+00 + 2.55E- 01
F,, 1.12E+01 £ 6.80E - 01 0.443172 LI1E+01+ 5.89E-01 = 0.121828 1.14E + 01 + 4.65E - 01
F,, 3.18E+02 £ 8.04E + 01 = 0.300009 2.95E+02 + 795E + 01 + 0.040267 3.49E + 02 + 8.29E + 01
F,, 5.28E+01+2.67E+01 = 0.367385 4.48E+ 01+ 1.35E+01 = 0.696425 4.58E+01 + 2.05E+ 01
F,; 4.37E+03 £ 4.03E+ 02 = 0.121828 4.16E+ 03 +5.07E + 02 + 0.039554 448E+03 £ 4.85E+02
E, 2.28E+02 £ 711E + 00 = 0.861162 2.28E+ 02+ 8.92E+ 00 = 0.946369 2.28E+02 £ 8.83E+00
F, 2.85E+02 £ 2.02E + 01 = 0.054374 2.80E +02 + 8.80E + 00 = 0.275832 2.85E+02 + 1.03E + 01
F,q 2.00E + 02 + 8.66E - 03 = 0.637733 2.00E+02 + 6.81E— 03 + 0.022988 2.00E +02 £ 9.50E - 03
Ey, 7.68E+ 02 + 1.45E + 02 = 0.736617 752E+ 02 £ 1.33E + 02 = 0.092631 8.36E + 02 + L.67E + 02
Fyg 2.94E + 02 + 2.96E + 01 = 0.161513 3.00E+02+132E-13 = 0.808365 3.00E+02 £ 1.36E-13
+/=/- 4/23/1 9/18/1
TABLE 4: Results of the multiple-problem Wilcoxon test for HBD, cHBD, and bHBD for F,-F,; at D = 30.
Algorithm R R P-value a=0.05 a=0.1
HBD versus cHBD 235 143 0.269095 = =
HBD versus bHBD 276 75 0.010695 + +

»

functions with the help of “+/=/- respectively. However,
paHBD uses the probability to control the use of DE. In
this case, it can decrease the cost of function evaluation at
early evolution stage. Thus, paHBD is almost similar to HBD
according to “+/=/-7

In addition, we also perform the multiple-problem
Wilcoxon test for HBD, aHBD, paHBD, and BSADE for 28
functions and list the results in Table 6.

It can be found from Table 6 that HBD is not significant
to aHBD, paHBD, and BSADE. But HBD gets higher R*
values than R™ values, compared with aHBD and BSADE,
respectively. But HBD obtains slightly lower R~ value than
R" value in comparison with paHBD. This is because HBD
brings weakly lower accurate solutions on F,, F;, F,, and Fs,

resulting in higher ranking. Nevertheless, it indicates that the
hybrid schema used in HBD is a reasonable choice.

4.5. The Effect of Probability Model. In HBD, a linear model
seen (10) is used to select one individual to optimize. It is
worth pointing out that other models, for example, nonlinear,
can also be adopted in our algorithm. In this section, we
do not seek the optimal probability model but only analyze
the performance influenced by different models. Thus, two
models, as similarly used in [29, 33], are employed to study
the performance affected by other models. They are the
quadratic model and the sinusoidal model, formulated as
seen in (13) and (14), respectively. The average error values
and the results of the multiple-problem Wilcoxon test are
reported in Tables 7 and 8, respectively, where gHBD is HBD
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TABLE 6: Results of the multiple-problem Wilcoxon test for HBD, aHBD, paHBD, and BSADE for F,-F,4 at D = 30.
Algorithm P value a = 0.05 a=0.1
HBD versus aHBD 0.600457 =
HBD versus paHBD 0.891321 =
HBD versus BSADE 262.5 143.5 0.175450 =
TABLE 7: Error values obtained by qHBD, HBD, and sHBD for CEC-2013 benchmark functions at D = 30.
qHBD HBD sHBD
AVGy, +STDy, P value AVGy, + STDy, P value AVGy, + STDy,
F, 5.05E-31+ 2.52E-30 = 0.078125 1.36E—-29 + 417E-29 = 0.429688 6.18E-30 + 2.22E-29
F, 3.56E+ 05+ 2.89E + 05 = 0.798248 3.15E+ 05+ 1.52E+05 = 0.736617 2.87E+ 05 + 1.36E + 05
F, 4.94E + 06 £ 732E + 06 = 0.618641 4.38E+ 06 + 8.11E+ 06 = 0.756995 3.57E+ 06 £ 6.05E + 06
F, 4.69E + 03 + 1.64E + 03 = 0.736617 5.05E+03 +2.23E+03 = 0.903627 5.20E+ 03 + 2.96E + 03
F; 2.84E—-16 + 1.42E-15 = 1.000000 0.00E + 00 + 0.00E + 00 = 1.000000 0.00E + 00 + 0.00E + 00
Fg 1.05E + 01 + 1.31E + 01 = 0.381860 1.12E+ 01 £ 1.47E + 01 = 0.861162 9.06E + 00 + 6.44E + 00
E, 5.68E + 01 + 1.66E + 01 0.191898 5.03E+ 01 £ 1.61E+ 01 = 0.756995 519E+01+1.93E+01
Fy 2.09E + 01 + 6.58E — 02 = 0.509755 2.10E+01+3.17E-02 = 0.165837 2.09E + 01 + 5.52E - 02
F, 2.38E+ 01+ 3.78E+ 00 + 0.039554 212E+01 + 4.26E+ 00 = 0.231167 2.24E+ 01+ 3.57E+ 00
F, 9.15E - 02 + 6.35E - 02 = 0.264150 9.15E - 02 + 5.25E - 02 = 0.527183 9.80E - 02 + 6.25E - 02
F, 4.38E-01+ 9.56E-01 = 0.986328 3.58E-01+6.34E-01 = 0.366699 1.99E - 01 + 4.06E - 01
F, 7.44E+ 01+ 1.79E + 01 = 0.073565 8.09E + 01+ 1.53E +01 = 0.374558 7.83E+01 £ 1.32E + 01
F, 1.26E + 02 + 2.53E + 01 = 0.989266 1.29E+ 02 + 2.90E + 01 = 0.411840 1.26E + 02 + 2.94E + 01
F, 3.14E+00 + 1.74E + 00 = 0.618641 2.83E+00 +1.82E+00 = 0.051087 3.66E+00 + 1.60E + 00
F 3.60E+03 £+ 4.07E+02 = 0.903627 3.50E + 03 + 4.82E + 02 = 0.676637 3.49E+03 + 3.98E + 02
Fq 1.29E + 00 + 2.55E - 01 = 0.967806 1.31E+00 + 2.38E - 01 = 0.696425 1.28E+ 00 + 2.15E - 01
F,, 3.10E+ 01 + 1.86E - 01 = 0.492633 3.09E+01+1.79E-01 = 0.946369 3.09E+01+ 2.11E-01
Fig 9.93E + 01 + 1.75E + 01 = 0.396679 9.46E +01 + 2.11E + 01 = 0.840072 9.52E+01 + 1.75E + 01
Fg 1.20E+ 00 £ 2.23E - 01 = 0.736617 1.23E+00 + 2.28E-01 = 0.210872 1.26E+ 00 + 2.04E - 01
F,, 1.09E + 01 + 7.81E - 01 = 0.165837 11E+01+5.89E-01 = 0.191898 114E+01 + 5.24E - 01
F,, 3.10E + 02 + 8.68E + 01 = 0.480701 2.95E+02 + 7.95E + 01 = 0.165492 3.28E+02 + 8.02E + 01
F,, 4.19E+ 01 £ 1.90E + 01 = 0.443172 4.48E+01+1.35E+01 = 0.287862 4.24E+01 + 1.86E + 01
F,, 4.16E+ 03 + 4.19E + 02 = 0.924971 4.16E+03 +5.07E + 02 = 0.840072 4.12E + 03 + 3.91E + 02
F,, 231E+02 +1.02E+01 = 0.637733 2.28E+02 + 8.92E+ 00 = 0.777543 2.28E+02 +9.52E+ 00
F,; 2.76E+ 02 + 9.42E + 00 - 0.042207 2.80E+02 + 8.80E+ 00 = 0.157770 2.75E+02 £ 1.43E + 01
F,q 2.00E+02 £ 6.05E-03 = 0.777543 2.00E+02 + 6.81E—-03 = 0.840072 2.00E+02 + 6.31E-03
E,, 7.82E+02 £ 1.48E + 02 = 0.287862 7.52E+ 02 + 1.33E + 02 = 0.459336 790E + 02 + 1.21E + 02
F,q 3.00E+02+114E-13 = 1.000000 3.00E+02+132E-13 - 0.025347 3.00E+02 £ 8.76E - 14
+/=/— 1/26/1 0/27/1
TABLE 8: Results of the multiple-problem Wilcoxon test for HBD, qHBD, and sHBD for F,-F,4 at D = 30.
Algorithm P value a =0.05 a=0.1
HBD versus qgHBD 0.239106 =
HBD versus sHBD 0.409125 =

with the quadratic model and sHBD means HBD with the

sinusoidal one. Consider

n-(

p;i=0.5 <1.0 — cos (%n))

From Table 7, we can find that gHBD can bring higher

solutions to 11 out of 28 functions compared with HBD,
although the results they obtain are not significant in terms

(13)

of “+/=/=" In addition, qHBD gets lower R~ values than
R" values HBD gained, though they are not significant at

the 5% and 10% significance level. It says that the linear
(14) model is a reasonable choice compared with the quadratic
model. However, it is not the optimal one compared with
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TABLE 10: Results of the multiple-problem Wilcoxon test for seven algorithms for CEC2005 functions at D = 10.
Algorithm R" R P value a=0.05 a=0.1
HBD versus SPSO2011 261.95 63.05 0.007453 = +
HBD versus CMAES 275.90 49.10 0.002279 + +
HBD versus ABC 179.93 145.07 0.639106 = =
HBD versus JDE 276.00 49.00 0.002259 + +
HBD versus CLPSO 291.00 34.00 0.000545 + +
HBD versus SADE 234.50 90.50 0.052709 = +
TABLE 11: Average ranking of seven algorithms by the Friedman test for CEC2005 functions at D = 10.

Algorithm SPSO2011 CMAES ABC JDE CLPSO SADE HBD
Ranking 4.06 5.24 3.58 4.44 4.60 3.42 2.66

the sinusoidal model. For instance, sHBD wins, ties, and
loses HBD in 1, 27, and 0 out of 28 functions according to
“+/=/- Moreover, sHBD has higher R values than R" values
HBD does though they are not significant at the 5% and 10%
significance level.

4.6. Compared with Other Algorithms. Firstly, HBD is com-
pared with 6 non-BSA approaches in [17], namely, PSO2011
[34], CMAES [35, 36], ABC [7], JDE [37], CLPSO [38], and
SADE [39]. Moreover, to compare fair and conveniently, we
use the 25 functions and the parameters which are employed
and suggested in [17]. More details about these 25 functions
can be found in CEC-2005 competition [40]. Table 9 lists
the minimal fitness and average fitness of 7 approaches,
where the results of 6 non-BSA algorithms are adopted from
[17] directly. In addition, the results of multiple-problem
Wilcoxon test and Friedman test similarly done in [29] for the
seven algorithms are listed in Tables 10 and 11, respectively.

From Table 9, we find that each algorithm does well in
some functions according to its average error value. For
instance, PSO2011, CMAES, ABC, JDE, CLPSO, SADE, and
HBD perform betterin 8, 5,9, 3, 3, 3, and 7 out of 25 functions,
respectively. However, Table 10 shows that HBD gets higher
R" values than R™ values in all cases. This suggests that HBD
is better than the other 6 algorithms. Moreover, for Wilcoxon
test at « = 0.05 and « = 0.01 in three cases, there are
significant differences for CEC2005 functions. Furthermore,
with respect to the average rankings of different algorithms
by the Friedman test, it can be seen clearly from Table 11 that
HBD offers the best overall performance, while SADE is the
second best, followed by ABC, PSO2011, CLPSO, JDE, and
CMAES.

Secondly, to appreciate the actual performance of the
proposed algorithm, HBD is in comparison with the other
five algorithms identified as NBIPOP-aCMA [41], tk-PSO
[42], SPSO2011 [43], SPSOABC [44], and PVADE [45], which
were presented during the CEC-2013 Special Session & Com-
petition on Real-Parameter Single Objective Optimization.

Table 12 lists the average error values which are dealt with
from [46], and the average rankings of the six algorithms
by the Friedman test for CEC-2013 functions at D = 30
are given in Table 13. Since NBIPOP-aCMA is one of top
three performing algorithms for CEC-2013 functions [47],

seen from Table 12, it shows the promising performance in
almost all of functions. Other algorithms bring solutions
with higher accuracy in a handful of functions. For example,
tk-PSO, SPSO2011, SPSOABC, PVADE, and HBD yield the
better performance on 3, 2, 6, 4, and 5 out of 28 functions in
terms of the average error values. However, according to the
average rankings of different algorithms by the Friedman test
in Table 13, we can find that NBIPOP-aCMA is the best, and
HBD offers the second best overall performance, followed by
SPSOABC, fk-PSO, PVADE, and PSO2011.

5. Conclusion

In this paper, we presented a hybrid BSA, called HBD,
which combined BSA and DE with exploitive mutation
strategy. At each iteration process, DE was embedded behind
the BSA algorithm to optimize one individual which was
selected according to its probability in order to enhance
the convergence of BSA and to bring solutions with higher
quality.

Comprehensive experiments have been carried out in 28
benchmark functions proposed in CEC-2013 competition.
The experimental results reveal that the hybridization of BSA
and DE provides the high effectiveness and efficiency in most
of functions, contributing to solutions with higher accuracy,
faster convergence speed, and more stable scalability. HBD
was also compared with other evolutionary algorithms and
has shown its promising performance.

There are several interesting directions for future work.
Experimentally, the linear probability model used to select
one individual to optimize is a reasonable but not optimal
one; thus, firstly, the comprehensive tests will be performed
on various probability models in HBD. Secondly, although
experimental results have shown that HBD owns the sta-
ble scalability, we plan to investigate HBD for large-scale
optimization problems. Last but not least, we plan to apply
HBD to some real-world optimization problems for further
examinations.
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TABLE 13: Average ranking of six algorithms by the Friedman test for CEC2013 functions at D = 30.

Algorithm NBIPOP-aCMA fk-PSO SPSO2011 SPSOABC PVADE HBD

Ranking 1.80 3.61 5.29 3.34 3.95 3.02
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